diff --git a/Central_Limit_Theorem.ipynb b/Central_Limit_Theorem.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..590d918df2553495ed97403602e5692ba7f708ba --- /dev/null +++ b/Central_Limit_Theorem.ipynb @@ -0,0 +1,175 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "id": "6f3d3c8e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Volume in drive C is Windows\n", + " Volume Serial Number is 9804-D0F8\n", + "\n", + " Directory of C:\\Users\\12058\n", + "\n", + "06/28/2022 09:42 AM <DIR> .\n", + "06/28/2022 09:42 AM <DIR> ..\n", + "06/28/2022 07:50 AM <DIR> .ipynb_checkpoints\n", + "06/01/2022 09:53 AM <DIR> .ipython\n", + "06/02/2022 07:27 PM <DIR> .jupyter\n", + "06/02/2022 08:03 PM <DIR> .matplotlib\n", + "06/28/2022 09:43 AM <DIR> .ssh\n", + "06/08/2022 10:09 AM 248,337 01-Python_Packages.ipynb\n", + "06/08/2022 09:17 AM 98,945 04--Gauss_Jordan_pre-class-assignment.ipynb\n", + "06/08/2022 10:53 AM 39,849 04-Gauss_Jordan_in-class-assignment.ipynb\n", + "06/10/2022 09:59 AM 32,829 05--Gauss_Jordan2_pre-class-assignment.ipynb\n", + "06/12/2022 07:06 PM 9,262 05-Gauss_Jordan2_in-class-assignment.ipynb\n", + "06/13/2022 09:29 AM 27,253 06--Mechanics_pre-class-assignment.ipynb\n", + "06/13/2022 09:22 PM 19,582 06-Mechanics_in-class-assignment.ipynb\n", + "06/15/2022 09:34 AM 64,736 07--Transformations_pre-class-assignment.ipynb\n", + "06/15/2022 10:51 AM 82,657 07-Transformations_in-class-assignment.ipynb\n", + "06/20/2022 09:23 AM 15,503 11--Vector_Spaces_pre-class-assignment.ipynb\n", + "06/20/2022 10:39 AM 17,851 11-Vector_Spaces_in-class-assignment.ipynb\n", + "06/22/2022 10:56 AM 13,714 14-Fundamental_Spaces_in-class-assignment(1).ipynb\n", + "04/29/2021 12:44 AM <DIR> 3D Objects\n", + "06/01/2022 10:34 AM 2,675 6-1 LA Practice .ipynb\n", + "06/01/2022 09:50 AM <DIR> anaconda3\n", + "06/28/2022 07:51 AM 6,858 answercheck.py\n", + "10/06/2020 08:59 PM <DIR> Apple\n", + "06/27/2022 10:33 AM 33,584 banner.png\n", + "06/27/2022 10:33 AM 53,166 beaumont.png\n", + "06/27/2022 10:33 AM 31,359 billboard.png\n", + "08/22/2021 02:05 PM 151 BullseyeCoverageError.txt\n", + "06/28/2022 07:57 AM 2,174 Central Limit Theorem .ipynb\n", + "04/29/2021 12:44 AM <DIR> Contacts\n", + "06/28/2022 09:43 AM <DIR> data_science_bridge_curriculum\n", + "01/04/2021 01:01 PM <DIR> Documents\n", + "06/28/2022 09:13 AM <DIR> Downloads\n", + "06/10/2022 10:50 AM 2,193 Example 6.10 OneNote .ipynb\n", + "04/29/2021 12:44 AM <DIR> Favorites\n", + "06/17/2022 11:00 PM 69,632 HW1-Systems_of_linear_equations-STUDENT(1).ipynb\n", + "06/27/2022 10:38 AM 335,400 HW2-Affine_transform-STUDENT(1).ipynb\n", + "06/24/2022 10:36 AM 22,996 Intro_to_Statistics.ipynb\n", + "04/29/2021 12:44 AM <DIR> Links\n", + "04/29/2021 12:44 AM <DIR> Music\n", + "08/01/2021 10:31 AM <DIR> OneDrive\n", + "06/02/2022 08:50 PM 76,621 PRACTICE Chapter 2 Vectors-Copy1.ipynb\n", + "06/02/2022 08:51 PM 76,621 PRACTICE Chapter 2 Vectors.ipynb\n", + "06/13/2022 09:11 AM 9,464 Practice_6_10.ipynb\n", + "06/28/2022 07:56 AM 2,103 PTest.ipynb\n", + "12/21/2021 06:50 PM <DIR> PycharmProjects\n", + "06/03/2022 09:21 AM 25,465 Python_practice_6_1 (1).ipynb\n", + "06/07/2022 09:34 PM 4,627 Python_practice_6_6.ipynb\n", + "04/29/2021 12:44 AM <DIR> Saved Games\n", + "04/29/2021 12:44 AM <DIR> Searches\n", + "06/27/2022 10:33 AM 46,172 sparty.png\n", + "06/02/2022 10:58 PM 2,752 Untitled.ipynb\n", + "04/29/2021 12:44 AM <DIR> Videos\n", + "06/28/2022 07:48 AM 42,345 _Template.ipynb\n", + "06/08/2022 10:08 AM <DIR> __pycache__\n", + " 32 File(s) 1,516,876 bytes\n", + " 23 Dir(s) 401,290,428,416 bytes free\n" + ] + } + ], + "source": [ + "!dir\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "8e746444", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('answercheck.py', <http.client.HTTPMessage at 0x20990c87880>)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "##ANSWER##\n", + "#Install answercheck in current director\n", + "from urllib.request import urlretrieve\n", + "urlretrieve('https://raw.githubusercontent.com/colbrydi/jupytercheck/master/answercheck.py', filename='answercheck.py')\n", + "##ANSWER##" + ] + }, + { + "cell_type": "markdown", + "id": "b7598d9e", + "metadata": {}, + "source": [ + "# Central Limit Theroem \n", + "Understanding and computing using the Central Limit Theorem (CLT)" + ] + }, + { + "cell_type": "markdown", + "id": "74fcd9bf", + "metadata": {}, + "source": [ + "# Description \n", + "The Central Limit Theorem states that the distribution of sample means approximates a normal distribution as the sample size gets larger, regardless of the population's distribution. " + ] + }, + { + "cell_type": "markdown", + "id": "2238469c", + "metadata": {}, + "source": [ + "# Training Materials \n", + "https://www.khanacademy.org/math/ap-statistics/sampling-distribution-ap/what-is-sampling-distribution/v/central-limit-theorem\n", + "\n", + "https://www.youtube.com/watch?v=4YLtvNeRIrg" + ] + }, + { + "cell_type": "markdown", + "id": "bcc501fa", + "metadata": {}, + "source": [ + "# Self Assessment " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "aff596ae", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/PTest.ipynb b/PTest.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..cc6c5b797b51bb70fd201078150dcbcd4b7f0b44 --- /dev/null +++ b/PTest.ipynb @@ -0,0 +1,95 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "id": "15c5a985", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('answercheck.py', <http.client.HTTPMessage at 0x22adaab7c40>)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "##ANSWER##\n", + "#Install answercheck in current director\n", + "from urllib.request import urlretrieve\n", + "urlretrieve('https://raw.githubusercontent.com/colbrydi/jupytercheck/master/answercheck.py', filename='answercheck.py')\n", + "##ANSWER##" + ] + }, + { + "cell_type": "markdown", + "id": "031076bc", + "metadata": {}, + "source": [ + "# PTest \n", + "Understanding and computing using the Ptest " + ] + }, + { + "cell_type": "markdown", + "id": "87deb2e1", + "metadata": {}, + "source": [ + "# Description \n", + "A p-test is a statistical method to test the validity of a commonly accepted claim about a population. That commonly accepted claim is called a null hypothesis. Based on the p-value, we reject or fail to reject a null hypothesis.\n" + ] + }, + { + "cell_type": "markdown", + "id": "a182669f", + "metadata": {}, + "source": [ + "# Training Materials \n", + "https://www.youtube.com/watch?v=KS6KEWaoOOE\n", + "\n", + "https://www.youtube.com/watch?v=8Aw45HN5lnA" + ] + }, + { + "cell_type": "markdown", + "id": "0c7fd81c", + "metadata": {}, + "source": [ + "# Self Assessment " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6b14d8f0", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}