
ParallelReax Manual

by Hasan Metin Aktulga
Feb 15, 2010

1 Input Files

ParallelReax expects 3 input files: geometry, force field and control files.

1.1 Geometry File

Geometry file tells about the types and initial positions of the atoms in the system.
ParallelReax supports geometry files in pdb and custom formats. It is also possible
to restart from an earlier simulation using a restart file (which can be either in ascii
or binary format).

1.1.1 pdb format

For more information on pdb format, please visit http://www.wwpdb.org/docs.

html. Input files of various other formats can easily be converted to pdb using the
freely availabe OpenBabel software (http://openbabel.sourceforge.net/wiki/
Main Page).

pdb format limits the number of atom serial digits just to 5, therefore the max-
imum number of atoms that can be input using the pdb format is only 100000.

1.1.2 custom format

ParallelReax features a custom geometry format as well. The format of the custom
geometry file is very simple. The first line describes the simulation box, the second
line gives the total number of atoms. Then there needs to be a single line for each
atom describing it in detail.

BOXGEO x_len y_len z_len alpha beta gamma

N

1 ele1 name1 x1 y1 z1

1

http://www.wwpdb.org/docs.html
http://www.wwpdb.org/docs.html
http://openbabel.sourceforge.net/wiki/Main_Page
http://openbabel.sourceforge.net/wiki/Main_Page

2 ele2 name2 x2 y2 z2

.

.

.

N eleN nameN xN yN zN

First three floating point numbers on the first line give the length of the simula-
tion box in x, y, z dimensions, the remaining ones are for the angles between them.
Currently, ParallelReax works only with an orthogonal box meaning all angles need
to be 90.0 degrees. There is no limit by the format on the number of atoms that
can be input. Each atom line consists of 6 fields:

• an integer denoting the atom serial

• a string for the chemical symbol of the element (2 characters max, case insen-
sitive)

• a string for the atom name (7 characters max)

• 3 floating point numbers describing the position in cartesian coordinates

1.2 Force Field File

Force field file contains the ReaxFF parameters to be used during the simulation.

1.3 Control File

Parameters in the control file allow the user to tune various simulation options.
Parameter names are case-sensitive but their order is not important (except that
ensemble type needs to precede p mass and pressure). Described below are the fields
that you might use in a control file. If a parameter is missing from the control file,
its default value will be assumed.

simulation_name test_parallel

Output files produced by ParallelReax will be in simulation name.some extension
format. They will be discussed in more detail in section 3. Default value is “simu-
late”.

2

ensemble_type 1 ! 0:NVE 1:bNVT 2:nhNVT 3:sNPT 4:iNPT 5:NPT

ensemble type denotes the type of ensemble to be produced by ParallelReax. Sup-
ported ensemble types are as follows:

• 0: NVE

• 1: bNVT - NVT with Berendsen thermostat

• 2: nhNVT - NVT with Nose-Hoover thermostat (under testing)

• 3: sNPT - semiisotropic NPT with Berendsen’s coupling

• 4: iNPT - isotropic NPT with Berendsen’s coupling

• 5: NPT - anisotropic NPT with Parrinello-Rehman coupling (under develop-
ment)

ensemble type is NVE by default.

nsteps 1000 ! number of simulation steps

dt 0.25 ! time step in fs

nsteps controls the total number of steps to be simulated and dt controls the length
of each time step (measured in femtoseconds). Number of steps is 0 by default and
timestep length is 0.25 fs.

proc_by_dim 1 1 3 ! decomposition of the simulation box to processors

ParallelReax uses the domain decompostion technique to distribute the load among
processors, it currently does not have dynamic load balancing. proc by dim denotes
the desired decomposition of the simulation box into subboxes (first integer is the
number of equal-length partitions in x dimension, second integer is for y dimension
and the last one is for z dimension). Each subbox is subsequently assigned to
a processor. ParallelReax constructs a periodic 3D mesh based on proc by dim
parameter. The default is to use a single processor without any decomposition.

geo_format 0 ! 0:custom 1:pdb 2:ASCII restart 3:binary restart

3

geo format parameter informs ParallelReax about the format of the geometry file
to read. pdb and custom formats were already discussed at section 1.1. The default
input format is the custom one.

Other options include resuming from an older run by setting geo format to
“ASCII” or “binary” restart and providing the name of the restart file as an argu-
ment to ParallelReax. Then ParallelReax will read the box geometry, positions and
velocities for all atoms in the system from the restart file and continue execution
thereon.

tabulate_long_range 10000 ! granularity of tables, 0 no tabulation

When set to m (must be a positive integer), this option turns on the tabulation
optimization for computing electrostatics and van der Waals interactions. The range
[0, cutoff] is sampled at m equally spaced points; energy and forces due to long
range interactions between each atom type in the system are computed at each of
these sample points and stored in a table. Then for each interval, we compute the
coefficients of its cubic spline interpolation function. During the simulation when we
need to compute the long range interactions between any two atoms, we locate the
corresponding interpolation function and compute the energy and forces between
them by interpolating. This method gives huge speed-up compared to computing
everything from scratch each time and with only 10000 sample points it is able to
provide accuracies at the machine precision level. The default is no tabulation.

energy_update_freq 10

This option controls the frequency of writes into output files (besides the trajectory
and restart files which are controled by some other parameters explained later)
described in section 3. The default value for this parameter is 0, meaning there will
not be any energies and performance logs output.

remove_CoM_vel 500 ! removal of CoM trans&rot vel freq

Removal of translational and rotational velocities around the center of mass needs
to be done for NVT and NPT type simulations to remove the unphysical effects of
scaling velocities. In case of NVE, this is not necessary and is not done regardless
of the value of remove CoM vel. The default value is to remove translational and
rotational velocities at every 250 steps.

4

nbrhood_cutoff 5.0 ! bonded intr cutoff in A

thb_cutoff 0.001 ! bond strength threshold for 3-body intrs

hbond_cutoff 7.50 ! cutoff distance (H--Z) for hydrogen bonds

These cutoff parameters are crucial for the correctness and efficiency of Parallel-
Reax. Normally, bonded interactions are truncated after 4-5 Åin ReaxFF and this
is controlled by the nbrhood cutoff parameter (default value is 4 Å).

thb cutoff sets the bond strength threshold for valence angle interactions. Bonds
which are weaker than thb cutoff will not be included in valence angle interactions
(default thb cutoff is 0.001).

Currently, hbond cutoff is set pretty conservatively to 7.5 Åin ReaxFF. It should
be okay to lower it to 6 Åfor the newer force field files. If hbond cutoff is set to 0,
hydrogen bond interactions will be turned off completely (could be very useful for
increasing the performance of simulations where it is apriori known that there are
no hydrogen bonding interactions) and this is the default behaviour.

reneighbor 10 ! in steps

vlist_buffer 2 ! in angstroms

ParallelReax features delayed neighbor generation by using Verlet lists. reneigh-
bor controls the reneighboring frequency and vlist buffer controls the buffer space
beyond the nonbonded interaction cutoff. By default, vlist buffer is set to 0 and
reneighboring is done at every step.

q_err 1e-6 ! norm of the relative residual in QEq solve

qeq_freq 1 ! frequency to update charges with QEq

In ParallelReax, we use a CG solver (with a diagonal preconditioner) for the charge
equilibration problem. q err denotes the stopping criteria for the CG solver. A
lower threshold would yield more accurate charge equilibration at the expense of
increased computational time. A threshold of 10−6 should be good enough for most
cases and this is the default value.

qeq freq can be used to perform charge equilibration at every few steps instead
of the default behaviour of performing it at every step. Although doing QEq less fre-
quently would save important computational time, it is not recommended. Because
this might cause wild fluctuations in energies.

5

temp_init 0.0 ! desired init T

temp_final 300.0 ! desired final T

t_mass 0.1666 ! thermal inertia in fs

Temperature coupling parameters are effective in all types of ensembles except for
NVE. Initial temperature is controlled via the temp init parameter including the
NVE ensemble. 0 K is the default value for temp init and 300 K is the default value
for temp final.

ParallelReax features both Berendsen and Nose-Hoover type thermostats. t mass
of 500.0 should be okay (and is the default) for the Berendsen thermostat and 0.166
should be okay for the Nose-Hoover thermostat in most systems to get a good con-
vergence rate.

Important note: Nose-Hoover thermostat is still under testing.

pressure 0.000101 0.000101 0.000101 ! ext pressure in GPa

p_mass 5000.0 5000.0 5000.0 ! pressure inertia in fs

Pressure coupling parameters are needed only when working with NPT -type en-
sembles. Currently iNPT (isotropic NPT) and sNPT (semi-isotropic NPT) are the
available pressure coupling ensembles. Berendsen thermostats and barostats are
used in both methods [2]. To have a stable system, using a p mass value around
5000.0 (which is the default already) together with a t mass of 500.0 should be fine.

For iNPT ensemble, pressure parameter expects a single floating number (in
case there are more, they will simply be ignored) to control pressure. For sNPT
ensemble, pressure parameter expects 3 floating point numbers to control pressure
on each side. Same things apply for p mass as well.

write_freq 100 ! write traj at every ’this’ many steps

traj_method 1 ! 0: simple parallel I/O, 1: MPI I/O

Trajectory of the simulation will be output to the trajectory file at evey write freq
steps. For making analysis easier, the trajectory file is written as an ASCII file. By
default, no trajectory file is written.

ParallelReax can output trajectories either using simple MPI send/receives (op-
tion 0 which is the default) or using MPI I/O calls (option 1) which are part of the
MPI-2 standard. The latter option is supposed to be more efficient (not verified by
tests though) but may not be available in some MPI implementations.

6

traj_title NVT_SIMULATION_OF_WATER

atom_info 1 ! 1: print basic atom info

atom_forces 1 ! 1: print the force on each atom

atom_velocities 1 ! 1: print atom velocities

bond_info 0 ! 1: print bonds

angle_info 0 ! 1: print angles

Currently ParallelReax only outputs trajectories in its custom trajectoty format.
This custom format starts with a trajectory header detailing the trajectroy title and
control parameters used for the simulation. A brief description of atoms follow the
trajectroy header with atom serial numbers and what element each atom is.

Then at each write freq steps (including step 0), a trajectory frame is appended
to the trajectory file. The frame header which gives information about various
potential energies, temperature, pressure and box geometry is standard. How-
ever, the latter parts of the frame can be customized using atom info, atom forces,
atom velocities, bond info and angle info parameters which are already self-explanatory.
The ordering is atoms section, bonds section and angles section assuming they are
all present. By default, all atom, bond and angle information outputting is turned
off.

One nice property of the custom trajectory format is that each part of the
trajectory is prepended by a numbers that can be used to skip that part. For
example, the trajectory header is prepended by an integer giving the number of
characters to skip the control parameters section. The initial atom descriptions
is prepended by the number of characters to skip the initial decriptions part and
another one that tells the number of atom description lines. Similar numbers are
found at the start of each section within a trajectory frame as well. So the general
layout of our custom trajectory format is as follows (assuming all trajectory options
are turned on):

CHARS_TO_SKIP_SECTION

trajectory header

CHARS_TO_SKIP_ATOM_DESCS NUM_LINES

atom descriptions

CHARS_TO_SKIP_FRAME_HEADER

frame1 header

CHARS_TO_SKIP_ATOM_LINES NUM_ATOM_LINES

frame1 atom info

CHARS_TO_SKIP_BOND_LINES NUM_BOND_LINES

7

frame1 bond info

CHARS_TO_SKIP_ANGLE_LINES NUM_ANGLE_LINES

frame1 angle info

.

.

.

CHARS_TO_SKIP_FRAME_HEADER

frameN header

CHARS_TO_SKIP_ATOM_LINES NUM_ATOM_LINES

frameN atom info

CHARS_TO_SKIP_BOND_LINES NUM_BOND_LINES

frameN bond info

CHARS_TO_SKIP_ANGLE_LINES NUM_ANGLE_LINES

frameN angle info

restart_format 1 ! 0: restarts in ASCII 1: restarts in binary

restart_freq 0 ! output a restart file at every ’this many’ steps

ParallelReax can output restart files both in ASCII and binary formats. While
ASCII format is good for portability, binary restart files are much more compact and
does not cause any loss of information due to truncation of floating point numbers.
For this reason binary restarts is the default.

There will not be any restart files output unless restart freq parameter is set to
a positive integer. A restart file will carry the name simulation name.resS where S
denotes the step that the restart file is written).

2 How to Compile and Run

When you extract the ParallelReax.tar.gz file with the command

gtar xvzf ParallelReax.tar.gz

a new directory, ParallelReax, will appear in your working directory. It contains the
source code directory (src) along with a directory for sample systems (examples).

You can compile ParallelReax by switching to the source directory and typing
make. This will produce the executable file, ParallelReax, inside the source directory.
The Makefile that comes in the distribution assumes OpenMPI as the default MPI

8

implementation and mpicc as the default MPI compiler. In case you have a different
MPI implementation, please set your MPI compiler in the Makefile appropriately.

ParallelReax requires 3 input files as mentioned in section 1. For example, the
command to run ParallelReax with OpenMPI is as follows:

mpirun -np num_procs -machinefile machines ParallelReax geo ffield control

3 Output

ParallelReax writes its output files into the directory where it is run. There are a
number of output files all of which have the simulation name as the first part of
their names followed by its unique extension:

• .out contains a summary of the simulation progress. Its format is:

Step Total Energy Potential Kinetic T (in K) Volume(in A^3) P(in GP)

• .pot contains detailed information regarding various types of energies that
comprise the total potential energy:

Step Bonds OverCoor+UnderCoor LonePair

Angle+Penalty 3-body Coalition Hydrogen Bonds Torsion 4-body Conjugation

vander Waals Coulomb Polarization

• .log is intended for performance tracking purposes. It displays the total time
per step and what parts of code take up how much time to compute.

• .prs is output only when pressure coupling is on. It displays detailed infor-
mation regarding the pressure and box dimensions.

• .trj is the trajectory file. Atom positions are written into this file at every
write freq steps using the desired format as explained before. Each frame is
concatenated one below the other.

Apart from these, there might be some text printed to stderr for debugging
purposes. If you encounter some problems with the code (like a segmentation fault
or unexpected termination of the code), please contact me with the error message
prined to stderr.

9

4 Tested Architectures

ParallelReax has been tested on a variety of platforms including:

• OpenMPI on Intel i7 processor

• OpenMPI on Intel Quadcore cluster

• OpenMPI on AMD Opteron cluster (hera @ LLNL)

• MPICH2 with Intel C compiler on AMD Opteron cluster (hera @ LLNL)

5 Performance

ParallelReax inherits many features from SerialReax algorithmically, i.e. its general
code structure, memory management, neighbor generation and force computation
routines are almost identical to those of SerialReax except where parallelization
needs are to be addressed. One significant difference, though, is the linear solver
used for the QEq problem. We use a GMRES solver with an ILU-based precondi-
tioner in SerialReax. However, neither GMRES nor ILU factorization algorithms
cannot be made parallel easily and efficiently. Therefore in ParallelReax, we have
substituted the GMRES solver with a CG solver and the ILU-based preconditioner
with a simple diagonal preconditioner. The resulting QEq solver is less efficient com-
pared to the one in SerialReax. This and other overheads due to parallelization cause
ParallelReax on a single processor to be slower than SerialReax. The performance
loss can be up to 40-50% depending on the system and simulation parameters.

5.1 Strong Scaling Test: Bilayer System

We have performed the strong scaling test (keep the system size constant, mea-
sure parallel efficiency while increasing the number of processors) on a 56800 atom
bilayer-water system.

During our tests, we have set the values of simulation parameters that are critical
for the performance of ParallelReax as follows:

• ensemble = 1 - Berendesen NVT

• nsteps = 1000

10

• dt = 0.25

• tabulate long range = 10000

• energy update freq = 10

• remove CoM vel = 500

• reneighbor = 1

• vlist buffer = 0

• nbrhood cutoff = 5.0

• hbond cutoff = 7.5

• thb cutoff = 0.001

• qeq freq = 1

• q err = 1e-6

We have compiled the source code using the Intel C compiler with MVAPICH2
(mpiicc) and the following optimization flags:

-O3 -funroll-loops -fstrict-aliasing

We have used the Hera cluster at LLNL for our experiments. Hera has 800
batch nodes, each with 4 AMD Opteron Quadcore CPUs at 2.3 GHz and 32 GBs
of memory. Nodes are interconnected with InfiniBand switches and work on the
CHAOS 4.2 operating system. Table 5.1 and figure 5.1 show how ParallelReax
scales with the increasing number of processors on the bilayer system.

11

executable num cores time per step(sec) QEq time per step(sec)
SerialReax (icc -fast) 1 7.76 1.34
SerialReax (gcc -O3) 1 9.95 1.35
ParallelReax 1 13.30 6.30
ParallelReax 4 4.13 1.93
ParallelReax 16 1.44 0.65
ParallelReax 32 0.81 0.36
ParallelReax 64 0.65 0.34
ParallelReax 125 0.50 0.28
ParallelReax 216 0.39 0.24
ParallelReax 343 0.37 0.22

 0.001

 0.01

 0.1

 1

 1 10 100 1000

tim
e

pe
r s

te
p

pe
r a

to
m

 (m
s)

number of cores

strong scaling test - bilayer simulation - hera@LLNL

total time
actual data points

qeq time
actual data points

Poor performance of ParallelReax compared to SerialReax can largely be at-
tributed to the much slower QEq solver used in ParallelReax.

5.2 Weak Scaling Test: Bulk Water System

We have performed the weak scaling test (increase both the problem size and the
number of processors at the same rate to keep the size of the problem assigned to a
processor constant), on a 6540 atom bulk water system.

12

During our tests, we have set the values of simulation parameters that are critical
for the performance of ParallelReax as follows:

• ensemble = 1 - Berendesen NVT

• nsteps = 1000

• dt = 0.25

• tabulate long range = 10000

• energy update freq = 10

• remove CoM vel = 500

• reneighbor = 1

• vlist buffer = 0

• nbrhood cutoff = 4.5

• hbond cutoff = 7.5

• thb cutoff = 0.001

• qeq freq = 1

• q err = 1e-6

Compilation of the parallel code and the platform we have tested it on are the
same as in section 5.1. Table 5.2 and figure 5.2 show the results of weak scaling
experiments.

13

executable num cores time per step(sec) QEq time per step(sec)
SerialReax (icc -fast) 1 0.74 0.12
SerialReax (gcc -O3) 1 0.96 0.13
ParallelReax 1 1.46 0.55
ParallelReax 4 1.52 0.59
ParallelReax 8 1.64 0.61
ParallelReax 16 1.86 0.71
ParallelReax 32 1.88 0.74
ParallelReax 64 1.98 0.81
ParallelReax 128 2.00 0.84
ParallelReax 256 2.07 0.88
ParallelReax 512 2.13 0.95

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 100 200 300 400 500 600

tim
e

pe
r s

te
p

(s
ec

)

number of cores

weak scaling test - water simulation - hera LLNL

total time
actual data points

qeq time
actual data points

Weak scaling numbers look satisfactory in general (if we consider in the context
of ParallelReax only). However, there is a sudden jump in the per step running time
when we go from 1 to 16 processors. We believe this is mostly due to caching/loading
issues in the 4 Quadcore processors packed cluster nodes. So weak scaling numbers
from 16 processors to 512 processors look nice despite the intensive communications
required for QEq (credit goes to the very well constructed Hera cluster).

14

References

[1] Glenn J. Martyna, Douglas J. Tobias, and Michael L. Klein. “Constant pressure
molecular dynamics algorithms.” The Journal of Chemical Physics 101, 4177
(1994).

[2] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J.
R. Haak. “Molecular dynamics with coupling to an external bath.” The Journal
of Chemical Physics 81, 3684-3690 (1984).

15

	Input Files
	Geometry File
	pdb format
	custom format

	Force Field File
	Control File

	How to Compile and Run
	Output
	Tested Architectures
	Performance
	Strong Scaling Test: Bilayer System
	Weak Scaling Test: Bulk Water System

