/*---------------------------------------------------------------------- SerialReax - Reax Force Field Simulator Copyright (2010) Purdue University Hasan Metin Aktulga, haktulga@cs.purdue.edu Joseph Fogarty, jcfogart@mail.usf.edu Sagar Pandit, pandit@usf.edu Ananth Y Grama, ayg@cs.purdue.edu This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details: <http://www.gnu.org/licenses/>. ----------------------------------------------------------------------*/ #include "lookup.h" #include "two_body_interactions.h" void Make_Lookup_Table(real xmin, real xmax, int n, lookup_function f, lookup_table* t) { int i; t->xmin = xmin; t->xmax = xmax; t->n = n; t->dx = (xmax - xmin) / (n - 1); t->inv_dx = 1.0 / t->dx; t->a = (n - 1) / (xmax - xmin); t->y = (real*) malloc(n * sizeof(real)); for (i = 0; i < n; i++) t->y[i] = f(i * t->dx + t->xmin); // fprintf(stdout,"dx = %lf\n",t->dx); // for(i=0; i < n; i++) // fprintf( stdout,"%d %lf %lf %lf\n", // i, i/t->a+t->xmin, t->y[i], exp(i/t->a+t->xmin) ); } /* Fills solution into x. Warning: will modify c and d! */ void Tridiagonal_Solve( const real *a, const real *b, real *c, real *d, real *x, unsigned int n) { int i; real id; /* Modify the coefficients. */ c[0] /= b[0]; /* Division by zero risk. */ d[0] /= b[0]; /* Division by zero would imply a singular matrix. */ for (i = 1; i < n; i++) { id = (b[i] - c[i - 1] * a[i]); /* Division by zero risk. */ c[i] /= id; /* Last value calculated is redundant. */ d[i] = (d[i] - d[i - 1] * a[i]) / id; } /* Now back substitute. */ x[n - 1] = d[n - 1]; for (i = n - 2; i >= 0; i--) x[i] = d[i] - c[i] * x[i + 1]; } void Natural_Cubic_Spline( const real *h, const real *f, cubic_spline_coef *coef, unsigned int n ) { int i; real *a, *b, *c, *d, *v; /* allocate space for the linear system */ a = (real*) malloc( n * sizeof(real) ); b = (real*) malloc( n * sizeof(real) ); c = (real*) malloc( n * sizeof(real) ); d = (real*) malloc( n * sizeof(real) ); v = (real*) malloc( n * sizeof(real) ); /* build the linear system */ a[0] = a[1] = a[n - 1] = 0; for ( i = 2; i < n - 1; ++i ) a[i] = h[i - 1]; b[0] = b[n - 1] = 0; for ( i = 1; i < n - 1; ++i ) b[i] = 2 * (h[i - 1] + h[i]); c[0] = c[n - 2] = c[n - 1] = 0; for ( i = 1; i < n - 2; ++i ) c[i] = h[i]; d[0] = d[n - 1] = 0; for ( i = 1; i < n - 1; ++i ) d[i] = 6 * ((f[i + 1] - f[i]) / h[i] - (f[i] - f[i - 1]) / h[i - 1]); /*fprintf( stderr, "i a b c d\n" ); for( i = 0; i < n; ++i ) fprintf( stderr, "%d %f %f %f %f\n", i, a[i], b[i], c[i], d[i] );*/ v[0] = 0; v[n - 1] = 0; Tridiagonal_Solve( &(a[1]), &(b[1]), &(c[1]), &(d[1]), &(v[1]), n - 2 ); for ( i = 1; i < n; ++i ) { coef[i - 1].d = (v[i] - v[i - 1]) / (6 * h[i - 1]); coef[i - 1].c = v[i] / 2; coef[i - 1].b = (f[i] - f[i - 1]) / h[i - 1] + h[i - 1] * (2 * v[i] + v[i - 1]) / 6; coef[i - 1].a = f[i]; } /*fprintf( stderr, "i v coef\n" ); for( i = 0; i < n; ++i ) fprintf( stderr, "%d %f %f %f %f %f\n", i, v[i], coef[i].a, coef[i].b, coef[i].c, coef[i].d ); */ } void Complete_Cubic_Spline( const real *h, const real *f, real v0, real vlast, cubic_spline_coef *coef, unsigned int n ) { int i; real *a, *b, *c, *d, *v; /* allocate space for the linear system */ a = (real*) malloc( n * sizeof(real) ); b = (real*) malloc( n * sizeof(real) ); c = (real*) malloc( n * sizeof(real) ); d = (real*) malloc( n * sizeof(real) ); v = (real*) malloc( n * sizeof(real) ); /* build the linear system */ a[0] = 0; for ( i = 1; i < n; ++i ) a[i] = h[i - 1]; b[0] = 2 * h[0]; for ( i = 1; i < n; ++i ) b[i] = 2 * (h[i - 1] + h[i]); c[n - 1] = 0; for ( i = 0; i < n - 1; ++i ) c[i] = h[i]; d[0] = 6 * (f[1] - f[0]) / h[0] - 6 * v0; d[n - 1] = 6 * vlast - 6 * (f[n - 1] - f[n - 2] / h[n - 2]); for ( i = 1; i < n - 1; ++i ) d[i] = 6 * ((f[i + 1] - f[i]) / h[i] - (f[i] - f[i - 1]) / h[i - 1]); /*fprintf( stderr, "i a b c d\n" ); for( i = 0; i < n; ++i ) fprintf( stderr, "%d %f %f %f %f\n", i, a[i], b[i], c[i], d[i] );*/ Tridiagonal_Solve( &(a[0]), &(b[0]), &(c[0]), &(d[0]), &(v[0]), n ); // Tridiagonal_Solve( &(a[1]), &(b[1]), &(c[1]), &(d[1]), &(v[1]), n-2 ); for ( i = 1; i < n; ++i ) { coef[i - 1].d = (v[i] - v[i - 1]) / (6 * h[i - 1]); coef[i - 1].c = v[i] / 2; coef[i - 1].b = (f[i] - f[i - 1]) / h[i - 1] + h[i - 1] * (2 * v[i] + v[i - 1]) / 6; coef[i - 1].a = f[i]; } /*fprintf( stderr, "i v coef\n" ); for( i = 0; i < n; ++i ) fprintf( stderr, "%d %f %f %f %f %f\n", i, v[i], coef[i].a, coef[i].b, coef[i].c, coef[i].d ); */ } void LR_Lookup( LR_lookup_table *t, real r, LR_data *y ) { int i; real base, dif; i = (int)(r * t->inv_dx); if ( i == 0 ) ++i; base = (real)(i + 1) * t->dx; dif = r - base; //fprintf( stderr, "r: %f, i: %d, base: %f, dif: %f\n", r, i, base, dif ); y->e_vdW = ((t->vdW[i].d * dif + t->vdW[i].c) * dif + t->vdW[i].b) * dif + t->vdW[i].a; y->CEvd = ((t->CEvd[i].d * dif + t->CEvd[i].c) * dif + t->CEvd[i].b) * dif + t->CEvd[i].a; //y->CEvd = (3*t->vdW[i].d*dif + 2*t->vdW[i].c)*dif + t->vdW[i].b; y->e_ele = ((t->ele[i].d * dif + t->ele[i].c) * dif + t->ele[i].b) * dif + t->ele[i].a; y->CEclmb = ((t->CEclmb[i].d * dif + t->CEclmb[i].c) * dif + t->CEclmb[i].b) * dif + t->CEclmb[i].a; y->H = y->e_ele * EV_to_KCALpMOL / C_ele; //y->H = ((t->H[i].d*dif + t->H[i].c)*dif + t->H[i].b)*dif + t->H[i].a; } void Make_LR_Lookup_Table( reax_system *system, control_params *control ) { int i, j, r; int num_atom_types; int existing_types[MAX_ATOM_TYPES]; real dr; real *h, *fh, *fvdw, *fele, *fCEvd, *fCEclmb; real v0_vdw, v0_ele, vlast_vdw, vlast_ele; /* real rand_dist; real evdw_abserr, evdw_relerr, fvdw_abserr, fvdw_relerr; real eele_abserr, eele_relerr, fele_abserr, fele_relerr; real evdw_maxerr, eele_maxerr; LR_data y, y_spline; */ /* initializations */ vlast_ele = 0; vlast_vdw = 0; v0_ele = 0; v0_vdw = 0; num_atom_types = system->reaxprm.num_atom_types; dr = control->r_cut / control->tabulate; h = (real*) malloc( (control->tabulate + 1) * sizeof(real) ); fh = (real*) malloc( (control->tabulate + 1) * sizeof(real) ); fvdw = (real*) malloc( (control->tabulate + 1) * sizeof(real) ); fCEvd = (real*) malloc( (control->tabulate + 1) * sizeof(real) ); fele = (real*) malloc( (control->tabulate + 1) * sizeof(real) ); fCEclmb = (real*) malloc( (control->tabulate + 1) * sizeof(real) ); /* allocate Long-Range LookUp Table space based on number of atom types in the ffield file */ LR = (LR_lookup_table**) malloc( num_atom_types * sizeof(LR_lookup_table*) ); for ( i = 0; i < num_atom_types; ++i ) LR[i] = (LR_lookup_table*) malloc(num_atom_types * sizeof(LR_lookup_table)); /* most atom types in ffield file will not exist in the current simulation. to avoid unnecessary lookup table space, determine the atom types that exist in the current simulation */ for ( i = 0; i < MAX_ATOM_TYPES; ++i ) existing_types[i] = 0; for ( i = 0; i < system->N; ++i ) existing_types[ system->atoms[i].type ] = 1; /* fill in the lookup table entries for existing atom types. only lower half should be enough. */ for ( i = 0; i < num_atom_types; ++i ) if ( existing_types[i] ) for ( j = i; j < num_atom_types; ++j ) if ( existing_types[j] ) { LR[i][j].xmin = 0; LR[i][j].xmax = control->r_cut; LR[i][j].n = control->tabulate + 1; LR[i][j].dx = dr; LR[i][j].inv_dx = control->tabulate / control->r_cut; LR[i][j].y = (LR_data*) malloc(LR[i][j].n * sizeof(LR_data)); LR[i][j].H = (cubic_spline_coef*) malloc(LR[i][j].n * sizeof(cubic_spline_coef)); LR[i][j].vdW = (cubic_spline_coef*) malloc(LR[i][j].n * sizeof(cubic_spline_coef)); LR[i][j].CEvd = (cubic_spline_coef*) malloc(LR[i][j].n * sizeof(cubic_spline_coef)); LR[i][j].ele = (cubic_spline_coef*) malloc(LR[i][j].n * sizeof(cubic_spline_coef)); LR[i][j].CEclmb = (cubic_spline_coef*) malloc(LR[i][j].n * sizeof(cubic_spline_coef)); for ( r = 1; r <= control->tabulate; ++r ) { LR_vdW_Coulomb( system, control, i, j, r * dr, &(LR[i][j].y[r]) ); h[r] = LR[i][j].dx; fh[r] = LR[i][j].y[r].H; fvdw[r] = LR[i][j].y[r].e_vdW; fCEvd[r] = LR[i][j].y[r].CEvd; fele[r] = LR[i][j].y[r].e_ele; fCEclmb[r] = LR[i][j].y[r].CEclmb; if ( r == 1 ) { v0_vdw = LR[i][j].y[r].CEvd; v0_ele = LR[i][j].y[r].CEclmb; } else if ( r == control->tabulate ) { vlast_vdw = LR[i][j].y[r].CEvd; vlast_ele = LR[i][j].y[r].CEclmb; } } /*fprintf( stderr, "%-6s %-6s %-6s\n", "r", "h", "fh" ); for( r = 1; r <= control->tabulate; ++r ) fprintf( stderr, "%f %f %f\n", r * dr, h[r], fh[r] ); */ Natural_Cubic_Spline( &h[1], &fh[1], &(LR[i][j].H[1]), control->tabulate + 1 ); /*fprintf( stderr, "%-6s %-6s %-6s\n", "r", "h", "fvdw" ); for( r = 1; r <= control->tabulate; ++r ) fprintf( stderr, "%f %f %f\n", r * dr, h[r], fvdw[r] ); fprintf( stderr, "v0_vdw: %f, vlast_vdw: %f\n", v0_vdw, vlast_vdw ); */ Complete_Cubic_Spline( &h[1], &fvdw[1], v0_vdw, vlast_vdw, &(LR[i][j].vdW[1]), control->tabulate + 1 ); Natural_Cubic_Spline( &h[1], &fCEvd[1], &(LR[i][j].CEvd[1]), control->tabulate + 1 ); /*fprintf( stderr, "%-6s %-6s %-6s\n", "r", "h", "fele" ); for( r = 1; r <= control->tabulate; ++r ) fprintf( stderr, "%f %f %f\n", r * dr, h[r], fele[r] ); fprintf( stderr, "v0_ele: %f, vlast_ele: %f\n", v0_ele, vlast_ele ); */ Complete_Cubic_Spline( &h[1], &fele[1], v0_ele, vlast_ele, &(LR[i][j].ele[1]), control->tabulate + 1 ); Natural_Cubic_Spline( &h[1], &fCEclmb[1], &(LR[i][j].CEclmb[1]), control->tabulate + 1 ); } /***** //test LR-Lookup table evdw_maxerr = 0; eele_maxerr = 0; for( i = 0; i < num_atom_types; ++i ) if( existing_types[i] ) for( j = i; j < num_atom_types; ++j ) if( existing_types[j] ) { for( r = 1; r <= 100; ++r ) { rand_dist = (real)rand()/RAND_MAX * control->r_cut; LR_vdW_Coulomb( system, control, i, j, rand_dist, &y ); LR_Lookup( &(LR[i][j]), rand_dist, &y_spline ); evdw_abserr = fabs(y.e_vdW - y_spline.e_vdW); evdw_relerr = fabs(evdw_abserr / y.e_vdW); fvdw_abserr = fabs(y.CEvd - y_spline.CEvd); fvdw_relerr = fabs(fvdw_abserr / y.CEvd); eele_abserr = fabs(y.e_ele - y_spline.e_ele); eele_relerr = fabs(eele_abserr / y.e_ele); fele_abserr = fabs(y.CEclmb - y_spline.CEclmb); fele_relerr = fabs(fele_abserr / y.CEclmb); if( evdw_relerr > 1e-10 || eele_relerr > 1e-10 ){ fprintf( stderr, "rand_dist = %24.15e\n", rand_dist ); fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n", y.H, y_spline.H, fabs(y.H-y_spline.H), fabs((y.H-y_spline.H)/y.H) ); fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n", y.e_vdW, y_spline.e_vdW, evdw_abserr, evdw_relerr ); fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n", y.CEvd, y_spline.CEvd, fvdw_abserr, fvdw_relerr ); fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n", y.e_ele, y_spline.e_ele, eele_abserr, eele_relerr ); fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n", y.CEclmb, y_spline.CEclmb, fele_abserr, fele_relerr ); } if( evdw_relerr > evdw_maxerr ) evdw_maxerr = evdw_relerr; if( eele_relerr > eele_maxerr ) eele_maxerr = eele_relerr; } } fprintf( stderr, "evdw_maxerr: %24.15e\n", evdw_maxerr ); fprintf( stderr, "eele_maxerr: %24.15e\n", eele_maxerr ); *******/ free(h); free(fh); free(fvdw); free(fCEvd); free(fele); free(fCEclmb); } int Lookup_Index_Of( real x, lookup_table* t ) { return (int)( t->a * ( x - t->xmin ) ); } real Lookup( real x, lookup_table* t ) { real x1, x2; real b; int i; /* if ( x < t->xmin) { fprintf(stderr,"Domain check %lf > %lf\n",t->xmin,x); exit(0); } if ( x > t->xmax) { fprintf(stderr,"Domain check %lf < %lf\n",t->xmax,x); exit(0); } */ i = Lookup_Index_Of( x, t ); x1 = i * t->dx + t->xmin; x2 = (i + 1) * t->dx + t->xmin; b = ( x2 * t->y[i] - x1 * t->y[i + 1] ) * t->inv_dx; // fprintf( stdout,"SLookup_Entry: %d, %lf, %lf, %lf, %lf: %lf, %lf\n", // i,x1,x2,x,b,t->one_over_dx*(t->y[i+1]-t->y[i])*x+b,exp(x)); return t->inv_dx * ( t->y[i + 1] - t->y[i] ) * x + b; }