Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
Reyesrivera, Jose
Hj scattering amplitudes
Commits
0c561d38
Commit
0c561d38
authored
Jul 01, 2021
by
Reyesrivera, Jose
Browse files
add HZ amplitude
parent
e1be292e
Changes
29
Expand all
Hide whitespace changes
Inline
Side-by-side
.DS_Store
View file @
0c561d38
No preview for this file type
data/.DS_Store
View file @
0c561d38
No preview for this file type
feynamps/.DS_Store
View file @
0c561d38
No preview for this file type
feynamps/FeynAmp_LR_qq2HZ.m
0 → 100644
View file @
0c561d38
This diff is collapsed.
Click to expand it.
feynamps/helicities/+++/FeynAmp_qqHZ_ppp.m
0 → 100644
View file @
0c561d38
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
-
(
Alfa
^
2
*
col12
*
MT
^
2
*
MU
*
Sqrt
[
Kallen\[Lambda]
[
S
,
MH
^
2
,
MZ
^
2
]]
*
((
9
-
24
*
SW
^
2
+
32
*
SW
^
4
)
*
(
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[
-
((
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
,
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
-
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
S
)
-
MZ
^
2
*
S
+
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]])
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]
^
(
3
/
2
)
+
9
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]
*
(
-
((
MH
^
2
*
(
MH
^
2
-
MZ
^
2
-
S
)
*
(
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[
-
((
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
,
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
-
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
S
)
-
MZ
^
2
*
S
+
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]))
/
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
-
2
*
MH
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
]
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
MH
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
])
/
(
2
*
MT
^
2
)]
+
(
Sqrt
[
-
4
*
MT
^
2
+
MZ
^
2
]
*
(
MH
^
2
+
MZ
^
2
-
S
)
*
Log
[
1
+
(
MZ
*
(
-
MZ
+
Sqrt
[
-
4
*
MT
^
2
+
MZ
^
2
]))
/
(
2
*
MT
^
2
)])
/
MZ
+
(
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)]
*
(
MH
^
2
-
MZ
^
2
+
S
)
*
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)])
/
(
2
*
MT
^
2
)])
/
S
)
-
2
*
(
9
-
24
*
SW
^
2
+
32
*
SW
^
4
)
*
((
2
*
(
MH
^
6
*
(
MT
^
2
+
MZ
^
2
)
+
MT
^
2
*
(
MZ
^
2
-
S
)
^
3
+
MH
^
2
*
(
MZ
^
2
-
S
)
*
(
MZ
^
4
+
2
*
MZ
^
2
*
S
-
MT
^
2
*
(
MZ
^
2
+
3
*
S
))
-
MH
^
4
*
(
2
*
MZ
^
4
-
MZ
^
2
*
S
+
MT
^
2
*
(
MZ
^
2
+
3
*
S
)))
*
(
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[
-
((
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
,
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
-
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
S
)
-
MZ
^
2
*
S
+
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]))
/
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]
+
(
MH
^
2
+
MZ
^
2
-
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]
+
MH
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
]
*
(
MH
^
4
-
5
*
MZ
^
4
+
MH
^
2
*
(
4
*
MZ
^
2
-
2
*
S
)
+
4
*
MZ
^
2
*
S
+
S
^
2
)
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
MH
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
])
/
(
2
*
MT
^
2
)]
+
MZ
*
Sqrt
[
-
4
*
MT
^
2
+
MZ
^
2
]
*
(
-
5
*
MH
^
4
+
(
MZ
^
2
-
S
)
^
2
+
4
*
MH
^
2
*
(
MZ
^
2
+
S
))
*
Log
[
1
+
(
MZ
*
(
-
MZ
+
Sqrt
[
-
4
*
MT
^
2
+
MZ
^
2
]))
/
(
2
*
MT
^
2
)]
-
(
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)]
*
(
MH
^
6
-
MH
^
4
*
(
MZ
^
2
+
2
*
S
)
+
(
MZ
^
3
-
MZ
*
S
)
^
2
+
MH
^
2
*
(
-
MZ
^
4
+
8
*
MZ
^
2
*
S
+
S
^
2
))
*
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)])
/
(
2
*
MT
^
2
)])
/
S
-
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]
*
(
-
((
MZ
^
2
*
(
-
MH
^
2
+
MZ
^
2
-
S
)
*
(
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[
(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[
-
((
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
,
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
-
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
S
)
-
MZ
^
2
*
S
+
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]))
/
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
+
(
Sqrt
[
MH
^
2
-
4
*
MT
^
2
]
*
(
MH
^
2
+
MZ
^
2
-
S
)
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
MH
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
])
/
(
2
*
MT
^
2
)])
/
MH
-
2
*
MZ
*
Sqrt
[
-
4
*
MT
^
2
+
MZ
^
2
]
*
Log
[
1
+
(
MZ
*
(
-
MZ
+
Sqrt
[
-
4
*
MT
^
2
+
MZ
^
2
]))
/
(
2
*
MT
^
2
)]
+
(
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)]
*
(
-
MH
^
2
+
MZ
^
2
+
S
)
*
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)])
/
(
2
*
MT
^
2
)])
/
S
)))
*
Sin
[
\[Theta]
3
]
*
Sin
[
\[Phi]
3
]
*
((
-
I
)
*
Conjugate
[
Cos
[
\[Phi]
3
]
+
I
*
Cos
[
\[Theta]
3
]
*
Sin
[
\[Phi]
3
]]
+
I
*
Cos
[
\[Phi]
3
]
+
Cos
[
\[Theta]
3
]
*
Sin
[
\[Phi]
3
]))
/
(
24
*
Sqrt
[
2
]
*
CW
^
3
*
MW
*
(
-
MZ
^
2
+
S
)
*
SW
^
4
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]
^
2
)
feynamps/helicities/+++/FeynAmp_qqHg_ppp.m
View file @
0c561d38
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
{{{{
0
}}}}[[
1
,
1
,
1
,
1
,
1
]]
0
feynamps/helicities/++-/FeynAmp_qqHZ_pp0.m
0 → 100644
View file @
0c561d38
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
0
feynamps/helicities/++-/FeynAmp_qqHZ_ppm.m
0 → 100644
View file @
0c561d38
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
0
feynamps/helicities/++-/FeynAmp_qqHg_ppm.m
View file @
0c561d38
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
(
Alfas
*
col421
*
EL
*
GS
*
MT
^
2
*
(
-
4
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
]
*
S
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
MH
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
])
/
(
2
*
MT
^
2
)]
+
MH
*
(
MH
^
2
-
4
*
MT
^
2
-
S
)
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
MH
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
])
/
(
2
*
MT
^
2
)]
^
2
+
MH
*
(
-
4
*
MH
^
2
+
4
*
S
+
4
*
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)]
*
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)])
/
(
2
*
MT
^
2
)]
+
(
-
MH
^
2
+
4
*
MT
^
2
+
S
)
*
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)])
/
(
2
*
MT
^
2
)]
^
2
))
*
Sin
[
\[Theta]
3
]
*
(
Cos
[
\[Theta]
3
]
*
Cos
[
\[Phi]
3
]
+
I
*
Sin
[
\[Phi]
3
]))
/
(
2
*
Sqrt
[
2
]
*
MH
*
MW
*
Pi
*
(
MH
^
2
-
S
)
*
Sqrt
[
S
]
*
SW
*
Abs
[
Sin
[
\[Theta]
3
]])
0
feynamps/helicities/++0/FeynAmp_qqHZ_pp0.m
0 → 100644
View file @
0c561d38
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
-
(
Alfa
^
2
*
col12
*
MT
^
2
*
MU
*
Csc
[
\[Theta]
3
]
*
Sqrt
[
Kallen\[Lambda]
[
S
,
MH
^
2
,
MZ
^
2
]]
*
(
-
Sqrt
[
MH
^
2
+
Kallen\[Lambda]
[
S
,
MH
^
2
,
MZ
^
2
]
/
(
4
*
S
)]
+
Cos
[
2
*
\[Theta]
3
]
*
Sqrt
[
MH
^
2
+
Kallen\[Lambda]
[
S
,
MH
^
2
,
MZ
^
2
]
/
(
4
*
S
)]
-
Sqrt
[
4
*
MZ
^
2
+
Kallen\[Lambda]
[
S
,
MH
^
2
,
MZ
^
2
]
/
S
])
*
((
9
-
24
*
SW
^
2
+
32
*
SW
^
4
)
*
(
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[
-
((
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
,
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
-
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
S
)
-
MZ
^
2
*
S
+
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]])
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]
^
(
3
/
2
)
+
9
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]
*
(
-
((
MH
^
2
*
(
MH
^
2
-
MZ
^
2
-
S
)
*
(
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[
-
((
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
,
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
-
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
S
)
-
MZ
^
2
*
S
+
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]))
/
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
-
2
*
MH
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
]
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
MH
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
])
/
(
2
*
MT
^
2
)]
+
(
Sqrt
[
-
4
*
MT
^
2
+
MZ
^
2
]
*
(
MH
^
2
+
MZ
^
2
-
S
)
*
Log
[
1
+
(
MZ
*
(
-
MZ
+
Sqrt
[
-
4
*
MT
^
2
+
MZ
^
2
]))
/
(
2
*
MT
^
2
)])
/
MZ
+
(
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)]
*
(
MH
^
2
-
MZ
^
2
+
S
)
*
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)])
/
(
2
*
MT
^
2
)])
/
S
)
-
2
*
(
9
-
24
*
SW
^
2
+
32
*
SW
^
4
)
*
((
2
*
(
MH
^
6
*
(
MT
^
2
+
MZ
^
2
)
+
MT
^
2
*
(
MZ
^
2
-
S
)
^
3
+
MH
^
2
*
(
MZ
^
2
-
S
)
*
(
MZ
^
4
+
2
*
MZ
^
2
*
S
-
MT
^
2
*
(
MZ
^
2
+
3
*
S
))
-
MH
^
4
*
(
2
*
MZ
^
4
-
MZ
^
2
*
S
+
MT
^
2
*
(
MZ
^
2
+
3
*
S
)))
*
(
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
-
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MH
*
(
MH
^
2
-
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
3
-
MH
*
(
MZ
^
2
+
S
)
+
Sqrt
[(
MH
^
2
-
4
*
MT
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
MZ
)
+
MZ
^
3
-
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[
-
((
MZ
*
(
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
,
-
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
MZ
*
(
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
MZ
-
MZ
^
3
+
MZ
*
S
+
Sqrt
[(
-
4
*
MT
^
2
+
MZ
^
2
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
-
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
+
DiLog
[(
S
*
(
MH
^
2
+
MZ
^
2
-
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
MH
^
2
*
S
+
MZ
^
2
*
S
-
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
-
MH
^
2
-
MZ
^
2
+
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]
-
DiLog
[(
S
*
(
-
MH
^
2
-
MZ
^
2
+
S
+
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]))
/
(
-
(
MH
^
2
*
S
)
-
MZ
^
2
*
S
+
S
^
2
+
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]])
,
MH
^
2
+
MZ
^
2
-
S
-
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]]))
/
Sqrt
[
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]]
+
(
MH
^
2
+
MZ
^
2
-
S
)
*
Kallen\[Lambda]
[
MH
^
2
,
MZ
^
2
,
S
]
+
MH
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
]
*
(
MH
^
4
-
5
*
MZ
^
4
+
MH
^
2
*
(
4
*
MZ
^
2
-
2
*
S
)
+
4
*
MZ
^
2
*
S
+
S
^
2
)
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
MH
*
Sqrt
[
MH
^
2
-
4
*
MT
^
2
])
/
(
2
*
MT
^
2
)]
+
MZ
*
Sqrt
[
-
4
*
MT
^
2
+
MZ
^
2
]
*
(
-
5
*
MH
^
4
+
(
MZ
^
2
-
S
)
^
2
+
4
*
MH
^
2
*
(
MZ
^
2
+
S
))
*
Log
[
1
+
(
MZ
*
(
-
MZ
+
Sqrt
[
-
4
*
MT
^
2
+
MZ
^
2
]))
/
(
2
*
MT
^
2
)]
-
(
Sqrt
[
S
*
(
-
4
*
MT
^
2
+
S
)]
*
(
MH
^
6
-
MH
^
4
*
(
MZ
^
2
+
2
*
S
)
+
(
MZ
^
3
-
MZ
*
S
)
^
2
+