Commit 16581298 authored by Reyesrivera, Jose's avatar Reyesrivera, Jose
Browse files

update vel series

parent 80dfe8c2
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
{2 + Eps^(-1) + DiscB[MH^2, Sqrt[MT^2], Sqrt[MT^2]] + Log[Mu^2/MT^2],
Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/(2*MT^2)]^2/(2*MH^2),
1/(2*MH^2) + (MT^2*Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/
(2*MT^2)]^2)/(2*MH^4), 3/4 + DiscB[MH^2, Sqrt[MT^2], Sqrt[MT^2]]/4 +
(MT^2*Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/(2*MT^2)]^2)/
(4*MH^2) + (Eps^(-1) + Log[Mu^2/MT^2])/4}
{2 + Eps^(-1) + DiscB[MH^2, MT, MT] + Log[Mu^2/MT^2],
Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2/(2*MH^2),
(MH^2 + MT^2*Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2)/
(2*MH^4), (3 + Eps^(-1) + DiscB[MH^2, MT, MT] - 2*Log[MT] +
(MT^2*Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2)/MH^2 +
Log[Mu^2])/4}
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
{2 + Eps^(-1) + DiscB[MH^2, Sqrt[MT^2], Sqrt[MT^2]] + Log[Mu^2/MT^2],
Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/(2*MT^2)]^2/(2*MH^2),
1/(2*MH^2) + (MT^2*Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/
(2*MT^2)]^2)/(2*MH^4), 3/4 + DiscB[MH^2, Sqrt[MT^2], Sqrt[MT^2]]/4 +
(MT^2*Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/(2*MT^2)]^2)/
(4*MH^2) + (Eps^(-1) + Log[Mu^2/MT^2])/4}
{2 + Eps^(-1) + DiscB[MH^2, MT, MT] + Log[Mu^2/MT^2],
Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2/(2*MH^2),
(MH^2 + MT^2*Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2)/
(2*MH^4), (3 + Eps^(-1) + DiscB[MH^2, MT, MT] - 2*Log[MT] +
(MT^2*Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2)/MH^2 +
Log[Mu^2])/4}
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
{PVB[0, 0, MH^2, Sqrt[MT^2], Sqrt[MT^2]] ->
2 + Eps^(-1) + DiscB[MH^2, Sqrt[MT^2], Sqrt[MT^2]] + Log[Mu^2/MT^2],
2 + Eps^(-1) + DiscB[MH^2, MT, MT] + Log[Mu^2/MT^2],
PVC[0, 0, 0, 0, MH^2, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]] ->
Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/(2*MT^2)]^2/(2*MH^2),
Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2/(2*MH^2),
PVC[0, 1, 1, 0, MH^2, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]] ->
1/(2*MH^2) + (MT^2*Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/
(2*MT^2)]^2)/(2*MH^4), PVC[1, 0, 0, 0, MH^2, 0, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]] -> 3/4 + DiscB[MH^2, Sqrt[MT^2], Sqrt[MT^2]]/4 +
(MT^2*Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/(2*MT^2)]^2)/
(4*MH^2) + (Eps^(-1) + Log[Mu^2/MT^2])/4}
(MH^2 + MT^2*Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2)/
(2*MH^4), PVC[1, 0, 0, 0, MH^2, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]] ->
(3 + Eps^(-1) + DiscB[MH^2, MT, MT] - 2*Log[MT] +
(MT^2*Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2)/MH^2 +
Log[Mu^2])/4}
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
{PVB[0, 0, MH^2, Sqrt[MT^2], Sqrt[MT^2]] ->
2 + Eps^(-1) + DiscB[MH^2, Sqrt[MT^2], Sqrt[MT^2]] + Log[Mu^2/MT^2],
2 + Eps^(-1) + DiscB[MH^2, MT, MT] + Log[Mu^2/MT^2],
PVC[0, 0, 0, 0, MH^2, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]] ->
Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/(2*MT^2)]^2/(2*MH^2),
Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2/(2*MH^2),
PVC[0, 1, 1, 0, MH^2, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]] ->
1/(2*MH^2) + (MT^2*Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/
(2*MT^2)]^2)/(2*MH^4), PVC[1, 0, 0, 0, MH^2, 0, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]] -> 3/4 + DiscB[MH^2, Sqrt[MT^2], Sqrt[MT^2]]/4 +
(MT^2*Log[(-MH^2 + 2*MT^2 + Sqrt[-(MH^2*(-MH^2 + 4*MT^2))])/(2*MT^2)]^2)/
(4*MH^2) + (Eps^(-1) + Log[Mu^2/MT^2])/4}
(MH^2 + MT^2*Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2)/
(2*MH^4), PVC[1, 0, 0, 0, MH^2, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]] ->
(3 + Eps^(-1) + DiscB[MH^2, MT, MT] - 2*Log[MT] +
(MT^2*Log[(-MH^2 + 2*MT^2 + MH*Sqrt[MH^2 - 4*MT^2])/(2*MT^2)]^2)/MH^2 +
Log[Mu^2])/4}
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
{PVB[0, 0, S, Sqrt[MT^2], Sqrt[MT^2]], PVB[0, 0, T, Sqrt[MT^2], Sqrt[MT^2]],
PVB[0, 0, U, Sqrt[MT^2], Sqrt[MT^2]], PVC[0, 0, 0, 0, U, MH^2, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVC[0, 0, 0, MH^2, S, 0, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVC[0, 0, 0, MH^2, T, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVB[0, 0, U, Sqrt[MT^2], Sqrt[MT^2]], PVC[0, 0, 0, 0, 0, T, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVC[0, 0, 0, 0, MH^2, S, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVC[0, 0, 0, 0, U, MH^2, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 0, 0, MH^2, 0, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 0, 0, MH^2, S, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 0, 0, MH^2, T, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 0, 1, 0, 0, T, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 0, 1, 0, MH^2, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 0, 1, 0, U, MH^2, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 0, 1, MH^2, 0, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 0, 2, 0, U, MH^2, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 1, 0, 0, 0, T, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 1, 0, 0, MH^2, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 1, 0, MH^2, 0, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 1, 0, MH^2, S, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 1, 0, MH^2, T, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[0, 1, 1, 0, U, MH^2, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
......@@ -14,4 +23,82 @@
PVC[0, 2, 0, MH^2, T, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[1, 0, 0, 0, U, MH^2, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[1, 0, 0, MH^2, S, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVC[1, 0, 0, MH^2, T, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]]}
PVC[1, 0, 0, MH^2, T, 0, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 0, 0, 0, 0, 0, MH^2, 0, T, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 0, 0, 0, 0, MH^2, 0, 0, U, S, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 0, 0, MH^2, 0, 0, 0, U, T, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 0, 1, 0, 0, MH^2, 0, T, S,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 0, 0, 1, 0, MH^2, 0, 0, U, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 0, 0, 1, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 1, 0, 0, 0, MH^2, 0, T, S, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 1, 0, 0, MH^2, 0, 0, U, S,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 0, 1, 0, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 0, 1, 1, 0, 0, MH^2, 0, T, S, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 1, 1, 0, MH^2, 0, 0, U, S, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 1, 1, MH^2, 0, 0, 0, U, T,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 0, 1, 2, 0, 0, MH^2, 0, T, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 0, 1, 2, 0, MH^2, 0, 0, U, S, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 1, 2, MH^2, 0, 0, 0, U, T, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 2, 0, 0, 0, MH^2, 0, T, S,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 0, 2, 0, 0, MH^2, 0, 0, U, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 0, 2, 0, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 2, 1, 0, 0, MH^2, 0, T, S, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 2, 1, 0, MH^2, 0, 0, U, S,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 0, 2, 1, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 0, 3, 0, 0, 0, MH^2, 0, T, S, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 3, 0, 0, MH^2, 0, 0, U, S, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 0, 3, 0, MH^2, 0, 0, 0, U, T,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 1, 0, 0, 0, 0, MH^2, 0, T, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 1, 0, 0, 0, MH^2, 0, 0, U, S, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 1, 0, 0, MH^2, 0, 0, 0, U, T, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 1, 0, 1, 0, 0, MH^2, 0, T, S,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 1, 0, 1, 0, MH^2, 0, 0, U, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 1, 0, 1, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 1, 0, 2, 0, 0, MH^2, 0, T, S, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 1, 0, 2, 0, MH^2, 0, 0, U, S,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 1, 0, 2, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 1, 1, 0, 0, 0, MH^2, 0, T, S, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 1, 1, 0, 0, MH^2, 0, 0, U, S, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 1, 1, 0, MH^2, 0, 0, 0, U, T,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 1, 1, 1, 0, 0, MH^2, 0, T, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 1, 1, 1, 0, MH^2, 0, 0, U, S, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 1, 1, 1, MH^2, 0, 0, 0, U, T, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 1, 2, 0, 0, 0, MH^2, 0, T, S,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 1, 2, 0, 0, MH^2, 0, 0, U, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 1, 2, 0, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 2, 0, 0, MH^2, 0, 0, 0, U, T, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 2, 0, 1, 0, 0, MH^2, 0, T, S,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 2, 0, 1, 0, MH^2, 0, 0, U, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 2, 0, 1, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 2, 1, 0, 0, 0, MH^2, 0, T, S, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[0, 2, 1, 0, 0, MH^2, 0, 0, U, S,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[0, 2, 1, 0, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[0, 3, 0, 0, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[1, 0, 0, 0, 0, 0, MH^2, 0, T, S, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[1, 0, 0, 0, 0, MH^2, 0, 0, U, S,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[1, 0, 0, 0, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[1, 0, 0, 1, 0, 0, MH^2, 0, T, S, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[1, 0, 0, 1, 0, MH^2, 0, 0, U, S, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[1, 0, 0, 1, MH^2, 0, 0, 0, U, T,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[1, 0, 1, 0, 0, 0, MH^2, 0, T, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[1, 0, 1, 0, 0, MH^2, 0, 0, U, S, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]], PVD[1, 0, 1, 0, MH^2, 0, 0, 0, U, T, Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]], PVD[1, 1, 0, 0, 0, 0, MH^2, 0, T, S,
Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2]],
PVD[1, 1, 0, 0, 0, MH^2, 0, 0, U, S, Sqrt[MT^2], Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2]], PVD[1, 1, 0, 0, MH^2, 0, 0, 0, U, T, Sqrt[MT^2], Sqrt[MT^2],
Sqrt[MT^2], Sqrt[MT^2]]}
PVB[0,0,S,Sqrt[MT^2],Sqrt[MT^2]]
PVB[0,0,T,Sqrt[MT^2],Sqrt[MT^2]]
PVB[0,0,U,Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,0,0,0,0,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,0,0,0,MH^2,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,0,0,0,U,MH^2,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,0,0,MH^2,0,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,0,0,MH^2,S,0,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,0,0,MH^2,T,0,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,0,1,0,0,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,0,1,0,MH^2,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,0,1,0,U,MH^2,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,0,1,MH^2,0,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,0,2,0,U,MH^2,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,1,0,0,0,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,1,0,0,MH^2,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,1,0,MH^2,0,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,1,0,MH^2,S,0,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,1,0,MH^2,T,0,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[0,1,1,0,U,MH^2,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
......@@ -16,3 +25,65 @@ PVC[0,2,0,MH^2,T,0,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[1,0,0,0,U,MH^2,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[1,0,0,MH^2,S,0,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVC[1,0,0,MH^2,T,0,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,0,0,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,0,0,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,0,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,0,1,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,0,1,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,0,1,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,1,0,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,1,0,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,1,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,1,1,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,1,1,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,1,1,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,1,2,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,1,2,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,1,2,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,2,0,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,2,0,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,2,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,2,1,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,2,1,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,2,1,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,3,0,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,3,0,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,0,3,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,0,0,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,0,0,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,0,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,0,1,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,0,1,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,0,1,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,0,2,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,0,2,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,0,2,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,1,0,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,1,0,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,1,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,1,1,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,1,1,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,1,1,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,2,0,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,2,0,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,1,2,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,2,0,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,2,0,1,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,2,0,1,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,2,0,1,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,2,1,0,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,2,1,0,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,2,1,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[0,3,0,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,0,0,0,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,0,0,0,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,0,0,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,0,0,1,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,0,0,1,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,0,0,1,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,0,1,0,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,0,1,0,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,0,1,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,1,0,0,0,0,MH^2,0,T,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,1,0,0,0,MH^2,0,0,U,S,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
PVD[1,1,0,0,MH^2,0,0,0,U,T,Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2],Sqrt[MT^2]]
This diff is collapsed.
This diff is collapsed.
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment