diff --git a/pk_optimizer/pkOptimizer.ipynb b/pk_optimizer/pkOptimizer.ipynb
deleted file mode 100644
index fa5b9f96be05394b2e3e00ed1a4a0d4c82c29825..0000000000000000000000000000000000000000
--- a/pk_optimizer/pkOptimizer.ipynb
+++ /dev/null
@@ -1,175 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from scipy.stats import gamma\n",
-    "from scipy.integrate import odeint \n",
-    "from scipy.optimize import minimize\n",
-    "from scipy.optimize import curve_fit\n",
-    "\n",
-    "import os\n",
-    "import csv\n",
-    "import re\n",
-    "import math as math\n",
-    "import numpy as np\n",
-    "import matplotlib.pyplot as plt\n",
-    "#%matplotlib inline\n",
-    "\n",
-    "class pkOptimizer:\n",
-    "    \"\"\"The pkOptimizer object is an optimizer for parameters in pk models.\"\"\"\n",
-    "    \n",
-    "    def __init__ (self, wd, Flow = 1/60, Vp = 0.05, Visf = 0.15, PS = 1/60):\n",
-    "        \"\"\"Initializes the model with initial guess parameter values for flow, Vp, Visf, and PS.\n",
-    "        Parameters\n",
-    "        ----------      \n",
-    "        Flow : double\n",
-    "            Flow is the flow of plasma through the blood vessel in mL/(mL*min). Defaults to 1/60.\n",
-    "        \n",
-    "        Vp : double\n",
-    "            Vp is the volume of plasma in mL. Defaults to 0.05.\n",
-    "            \n",
-    "        Visf : double\n",
-    "            Visf is the volume of interstitial fluid in mL. Defaults to 0.15.\n",
-    "        \n",
-    "        PS : double\n",
-    "            PS is the permeability-surface area constant in mL/(g*min). Defaults to 1/60.    \n",
-    "        \"\"\"\n",
-    "        \n",
-    "    def getData(self, wd):\n",
-    "        \"\"\"Imports data from all .csv files in directory.\n",
-    "        Parameters\n",
-    "        ----------  \n",
-    "        wd : str\n",
-    "            wd is the working directory path\n",
-    "            \n",
-    "        Attributes\n",
-    "        ----------\n",
-    "        t : double[]\n",
-    "            list of all timepoints\n",
-    "        aorta : double[]\n",
-    "            concentration of tracer in aorta (input function)\n",
-    "        myo : double[]\n",
-    "            concentration of tracer in myocardial tissue (Cisf)\n",
-    "        \n",
-    "        Returns\n",
-    "        -------\n",
-    "        t : double[]\n",
-    "            list of all timepoints\n",
-    "        aorta : double[]\n",
-    "            concentration of tracer in aorta (input function)\n",
-    "        myo : double[]\n",
-    "            concentration of tracer in myocardial tissue (Cisf)\n",
-    "        \"\"\"\n",
-    "    \n",
-    "        os.chdir(wd)\n",
-    "        #os.chdir(r\"C:\\Users\\Ethan\\OneDrive - Michigan State University\\MSU\\Classwork\\Computational Modeling\\Models\\Data\")\n",
-    "        #create directory of all csv files,\n",
-    "        data = list(csv.reader(open('CTPERF005_stress.csv'), delimiter = '\\t'))\n",
-    "\n",
-    "        t = []\n",
-    "        aorta = []\n",
-    "        myo = []\n",
-    "        \n",
-    "        for i in range(12):\n",
-    "            t.append(float(re.compile('\\d+[.]+\\d+|\\d+').findall(data[i+1][0])[0]))\n",
-    "            aorta.append(float(re.compile('\\d+[.]+\\d+|\\d+').findall(data[i+1][1])[0]))\n",
-    "            myo.append(float(re.compile('\\d+[.]+\\d+|\\d+').findall(data[i+1][2])[0]))\n",
-    "\n",
-    "        return t, aorta, myo\n",
-    "\n",
-    "    def gammaFunc(self, time, a, l, s):\n",
-    "        \"\"\"Creates a gamma variate probability density function with given alpha, location, and scale values.\n",
-    "        Parameters\n",
-    "        ----------  \n",
-    "        time : double[]\n",
-    "            array of timepoints\n",
-    "        a : double\n",
-    "            alpha value of gamma PDF\n",
-    "        l : double\n",
-    "            location of 50th percentile of function\n",
-    "        s : double\n",
-    "            scale parameter \n",
-    "            \n",
-    "        Returns\n",
-    "        -------\n",
-    "        rv.pdf(time)\n",
-    "            probability density function of your gamma variate.\n",
-    "        \"\"\"\n",
-    "        rv = gamma(a, loc = l, scale = s) #input function\n",
-    "        return rv.pdf(time)\n",
-    "    \n",
-    "    def curveFit(self, t, aorta, myo, model):\n",
-    "        \"\"\"Takes in data and fits gamma curve to aorta and Cisf from model to myo. Returns parameters for best fit.\n",
-    "        \n",
-    "        Parameters\n",
-    "        ----------  \n",
-    "        t : double[]\n",
-    "            list of all timepoints\n",
-    "        aorta : double[]\n",
-    "            concentration of tracer in aorta (input function)\n",
-    "        myo : double[]\n",
-    "            concentration of tracer in myocardial tissue (Cisf)\n",
-    "        model : pkModel object\n",
-    "            a pk model, either 1Comp or 2Comp\n",
-    "        \n",
-    "        Returns\n",
-    "        -------\n",
-    "        Flow : double\n",
-    "            Flow is the flow of plasma through the blood vessel in mL/(mL*min).\n",
-    "        \n",
-    "        Vp : double\n",
-    "            Vp is the volume of plasma in mL.\n",
-    "            \n",
-    "        Visf : double\n",
-    "            Visf is the volume of interstitial fluid in mL.\n",
-    "        \n",
-    "        PS : double\n",
-    "            PS is the permeability-surface area constant in mL/(g*min).\n",
-    "        \"\"\"\n",
-    "    \n",
-    "    def getPlot(self):\n",
-    "        \"\"\"Plots the original data to the fitted curve.\"\"\"\n",
-    "        plt.plot(t, aorta, 'bo', label='data')\n",
-    "        #plt.plot(t, y, 'b-', label='data')\n",
-    "        popt, pcov = curve_fit(gammaFunc, t, aorta, p0 = [2, 8, 10000], method = 'trf')\n",
-    "\n",
-    "        print(f'alpha = {popt[0]}, loc = {popt[1]}, scale = {popt[2]}')\n",
-    "\n",
-    "        plt.plot(t, gammaFunc(t, *popt), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))\n",
-    "        plt.plot(time, gammaFunc(time, .1313, 8.533, 10000), 'b-')\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.1"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}