diff --git a/pk_optimizer/pkOptimizer.ipynb b/pk_optimizer/pkOptimizer.ipynb deleted file mode 100644 index fa5b9f96be05394b2e3e00ed1a4a0d4c82c29825..0000000000000000000000000000000000000000 --- a/pk_optimizer/pkOptimizer.ipynb +++ /dev/null @@ -1,175 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "from scipy.stats import gamma\n", - "from scipy.integrate import odeint \n", - "from scipy.optimize import minimize\n", - "from scipy.optimize import curve_fit\n", - "\n", - "import os\n", - "import csv\n", - "import re\n", - "import math as math\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "#%matplotlib inline\n", - "\n", - "class pkOptimizer:\n", - " \"\"\"The pkOptimizer object is an optimizer for parameters in pk models.\"\"\"\n", - " \n", - " def __init__ (self, wd, Flow = 1/60, Vp = 0.05, Visf = 0.15, PS = 1/60):\n", - " \"\"\"Initializes the model with initial guess parameter values for flow, Vp, Visf, and PS.\n", - " Parameters\n", - " ---------- \n", - " Flow : double\n", - " Flow is the flow of plasma through the blood vessel in mL/(mL*min). Defaults to 1/60.\n", - " \n", - " Vp : double\n", - " Vp is the volume of plasma in mL. Defaults to 0.05.\n", - " \n", - " Visf : double\n", - " Visf is the volume of interstitial fluid in mL. Defaults to 0.15.\n", - " \n", - " PS : double\n", - " PS is the permeability-surface area constant in mL/(g*min). Defaults to 1/60. \n", - " \"\"\"\n", - " \n", - " def getData(self, wd):\n", - " \"\"\"Imports data from all .csv files in directory.\n", - " Parameters\n", - " ---------- \n", - " wd : str\n", - " wd is the working directory path\n", - " \n", - " Attributes\n", - " ----------\n", - " t : double[]\n", - " list of all timepoints\n", - " aorta : double[]\n", - " concentration of tracer in aorta (input function)\n", - " myo : double[]\n", - " concentration of tracer in myocardial tissue (Cisf)\n", - " \n", - " Returns\n", - " -------\n", - " t : double[]\n", - " list of all timepoints\n", - " aorta : double[]\n", - " concentration of tracer in aorta (input function)\n", - " myo : double[]\n", - " concentration of tracer in myocardial tissue (Cisf)\n", - " \"\"\"\n", - " \n", - " os.chdir(wd)\n", - " #os.chdir(r\"C:\\Users\\Ethan\\OneDrive - Michigan State University\\MSU\\Classwork\\Computational Modeling\\Models\\Data\")\n", - " #create directory of all csv files,\n", - " data = list(csv.reader(open('CTPERF005_stress.csv'), delimiter = '\\t'))\n", - "\n", - " t = []\n", - " aorta = []\n", - " myo = []\n", - " \n", - " for i in range(12):\n", - " t.append(float(re.compile('\\d+[.]+\\d+|\\d+').findall(data[i+1][0])[0]))\n", - " aorta.append(float(re.compile('\\d+[.]+\\d+|\\d+').findall(data[i+1][1])[0]))\n", - " myo.append(float(re.compile('\\d+[.]+\\d+|\\d+').findall(data[i+1][2])[0]))\n", - "\n", - " return t, aorta, myo\n", - "\n", - " def gammaFunc(self, time, a, l, s):\n", - " \"\"\"Creates a gamma variate probability density function with given alpha, location, and scale values.\n", - " Parameters\n", - " ---------- \n", - " time : double[]\n", - " array of timepoints\n", - " a : double\n", - " alpha value of gamma PDF\n", - " l : double\n", - " location of 50th percentile of function\n", - " s : double\n", - " scale parameter \n", - " \n", - " Returns\n", - " -------\n", - " rv.pdf(time)\n", - " probability density function of your gamma variate.\n", - " \"\"\"\n", - " rv = gamma(a, loc = l, scale = s) #input function\n", - " return rv.pdf(time)\n", - " \n", - " def curveFit(self, t, aorta, myo, model):\n", - " \"\"\"Takes in data and fits gamma curve to aorta and Cisf from model to myo. Returns parameters for best fit.\n", - " \n", - " Parameters\n", - " ---------- \n", - " t : double[]\n", - " list of all timepoints\n", - " aorta : double[]\n", - " concentration of tracer in aorta (input function)\n", - " myo : double[]\n", - " concentration of tracer in myocardial tissue (Cisf)\n", - " model : pkModel object\n", - " a pk model, either 1Comp or 2Comp\n", - " \n", - " Returns\n", - " -------\n", - " Flow : double\n", - " Flow is the flow of plasma through the blood vessel in mL/(mL*min).\n", - " \n", - " Vp : double\n", - " Vp is the volume of plasma in mL.\n", - " \n", - " Visf : double\n", - " Visf is the volume of interstitial fluid in mL.\n", - " \n", - " PS : double\n", - " PS is the permeability-surface area constant in mL/(g*min).\n", - " \"\"\"\n", - " \n", - " def getPlot(self):\n", - " \"\"\"Plots the original data to the fitted curve.\"\"\"\n", - " plt.plot(t, aorta, 'bo', label='data')\n", - " #plt.plot(t, y, 'b-', label='data')\n", - " popt, pcov = curve_fit(gammaFunc, t, aorta, p0 = [2, 8, 10000], method = 'trf')\n", - "\n", - " print(f'alpha = {popt[0]}, loc = {popt[1]}, scale = {popt[2]}')\n", - "\n", - " plt.plot(t, gammaFunc(t, *popt), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))\n", - " plt.plot(time, gammaFunc(time, .1313, 8.533, 10000), 'b-')\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.1" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -}