From e8dfb3cf49d4e29103c89a0c961770783da39d91 Mon Sep 17 00:00:00 2001 From: "Tu, Ethan" <tuethan@msu.edu> Date: Mon, 13 Apr 2020 15:46:37 -0400 Subject: [PATCH] Delete pkOptimizer.html --- docs/pkOptimizer.html | 561 ------------------------------------------ 1 file changed, 561 deletions(-) delete mode 100644 docs/pkOptimizer.html diff --git a/docs/pkOptimizer.html b/docs/pkOptimizer.html deleted file mode 100644 index 61df014..0000000 --- a/docs/pkOptimizer.html +++ /dev/null @@ -1,561 +0,0 @@ -<!doctype html> -<html lang="en"> -<head> -<meta charset="utf-8"> -<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" /> -<meta name="generator" content="pdoc 0.7.4" /> -<title>pkOptimizer API documentation</title> -<meta name="description" content="" /> -<link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'> -<link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'> -<link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet"> -<style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style> -<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style> -<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style> -</head> -<body> -<main> -<article id="content"> -<header> -<h1 class="title">Module <code>pkOptimizer</code></h1> -</header> -<section id="section-intro"> -<details class="source"> -<summary> -<span>Expand source code</span> -</summary> -<pre><code class="python">#!/usr/bin/env python -# coding: utf-8 - -# In[9]: - - -from scipy.stats import gamma -from scipy.integrate import odeint -from scipy.optimize import minimize -from scipy.optimize import curve_fit - -import os -import csv -import re -import math as math -import numpy as np -import matplotlib.pyplot as plt -#%matplotlib inline - -class pkOptimizer: - """The pkOptimizer object is an optimizer for parameters in pk models.""" - - def __init__ (self, wd, Flow = 1/60, Vp = 0.05, Visf = 0.15, PS = 1/60): - """Initializes the model with initial guess parameter values for flow, Vp, Visf, and PS. - Parameters - ---------- - Flow : double - Flow is the flow of plasma through the blood vessel in mL/(mL*min). Defaults to 1/60. - - Vp : double - Vp is the volume of plasma in mL. Defaults to 0.05. - - Visf : double - Visf is the volume of interstitial fluid in mL. Defaults to 0.15. - - PS : double - PS is the permeability-surface area constant in mL/(g*min). Defaults to 1/60. - """ - - def getData(self, wd): - """Imports data from all .csv files in directory. - Parameters - ---------- - wd : str - wd is the working directory path - - Attributes - ---------- - t : double[] - list of all timepoints - aorta : double[] - concentration of tracer in aorta (input function) - myo : double[] - concentration of tracer in myocardial tissue (Cisf) - - Returns - ------- - t : double[] - list of all timepoints - aorta : double[] - concentration of tracer in aorta (input function) - myo : double[] - concentration of tracer in myocardial tissue (Cisf) - """ - - os.chdir(wd) - #os.chdir(r"C:\Users\Ethan\OneDrive - Michigan State University\MSU\Classwork\Computational Modeling\Models\Data") - #create directory of all csv files, - data = list(csv.reader(open('CTPERF005_stress.csv'), delimiter = '\t')) - - t = [] - aorta = [] - myo = [] - - for i in range(12): - t.append(float(re.compile('\d+[.]+\d+|\d+').findall(data[i+1][0])[0])) - aorta.append(float(re.compile('\d+[.]+\d+|\d+').findall(data[i+1][1])[0])) - myo.append(float(re.compile('\d+[.]+\d+|\d+').findall(data[i+1][2])[0])) - - return t, aorta, myo - - def gammaFunc(self, time, a, l, s): - """Creates a gamma variate probability density function with given alpha, location, and scale values. - Parameters - ---------- - time : double[] - array of timepoints - a : double - alpha value of gamma PDF - l : double - location of 50th percentile of function - s : double - scale parameter - - Returns - ------- - rv.pdf(time) - probability density function of your gamma variate. - """ - rv = gamma(a, loc = l, scale = s) #input function - return rv.pdf(time) - - def curveFit(self, t, aorta, myo, model): - """Takes in data and fits gamma curve to aorta and Cisf from model to myo. Returns parameters for best fit. - - Parameters - ---------- - t : double[] - list of all timepoints - aorta : double[] - concentration of tracer in aorta (input function) - myo : double[] - concentration of tracer in myocardial tissue (Cisf) - model : pkModel object - a pk model, either 1Comp or 2Comp - - Returns - ------- - Flow : double - Flow is the flow of plasma through the blood vessel in mL/(mL*min). - - Vp : double - Vp is the volume of plasma in mL. - - Visf : double - Visf is the volume of interstitial fluid in mL. - - PS : double - PS is the permeability-surface area constant in mL/(g*min). - """ - - def getPlot(self): - """Plots the original data to the fitted curve.""" - plt.plot(t, aorta, 'bo', label='data') - #plt.plot(t, y, 'b-', label='data') - popt, pcov = curve_fit(gammaFunc, t, aorta, p0 = [2, 8, 10000], method = 'trf') - - print(f'alpha = {popt[0]}, loc = {popt[1]}, scale = {popt[2]}') - - plt.plot(t, gammaFunc(t, *popt), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) - plt.plot(time, gammaFunc(time, .1313, 8.533, 10000), 'b-') - - -# In[ ]:</code></pre> -</details> -</section> -<section> -</section> -<section> -</section> -<section> -</section> -<section> -<h2 class="section-title" id="header-classes">Classes</h2> -<dl> -<dt id="pkOptimizer.pkOptimizer"><code class="flex name class"> -<span>class <span class="ident">pkOptimizer</span></span> -<span>(</span><span>wd, Flow=0.016666666666666666, Vp=0.05, Visf=0.15, PS=0.016666666666666666)</span> -</code></dt> -<dd> -<section class="desc"><p>The pkOptimizer object is an optimizer for parameters in pk models.</p> -<p>Initializes the model with initial guess parameter values for flow, Vp, Visf, and PS. -Parameters</p> -<hr> -<p>Flow : double -Flow is the flow of plasma through the blood vessel in mL/(mL*min). Defaults to 1/60.</p> -<p>Vp : double -Vp is the volume of plasma in mL. Defaults to 0.05.</p> -<p>Visf : double -Visf is the volume of interstitial fluid in mL. Defaults to 0.15.</p> -<p>PS : double -PS is the permeability-surface area constant in mL/(g*min). Defaults to 1/60.</p></section> -<details class="source"> -<summary> -<span>Expand source code</span> -</summary> -<pre><code class="python">class pkOptimizer: - """The pkOptimizer object is an optimizer for parameters in pk models.""" - - def __init__ (self, wd, Flow = 1/60, Vp = 0.05, Visf = 0.15, PS = 1/60): - """Initializes the model with initial guess parameter values for flow, Vp, Visf, and PS. - Parameters - ---------- - Flow : double - Flow is the flow of plasma through the blood vessel in mL/(mL*min). Defaults to 1/60. - - Vp : double - Vp is the volume of plasma in mL. Defaults to 0.05. - - Visf : double - Visf is the volume of interstitial fluid in mL. Defaults to 0.15. - - PS : double - PS is the permeability-surface area constant in mL/(g*min). Defaults to 1/60. - """ - - def getData(self, wd): - """Imports data from all .csv files in directory. - Parameters - ---------- - wd : str - wd is the working directory path - - Attributes - ---------- - t : double[] - list of all timepoints - aorta : double[] - concentration of tracer in aorta (input function) - myo : double[] - concentration of tracer in myocardial tissue (Cisf) - - Returns - ------- - t : double[] - list of all timepoints - aorta : double[] - concentration of tracer in aorta (input function) - myo : double[] - concentration of tracer in myocardial tissue (Cisf) - """ - - os.chdir(wd) - #os.chdir(r"C:\Users\Ethan\OneDrive - Michigan State University\MSU\Classwork\Computational Modeling\Models\Data") - #create directory of all csv files, - data = list(csv.reader(open('CTPERF005_stress.csv'), delimiter = '\t')) - - t = [] - aorta = [] - myo = [] - - for i in range(12): - t.append(float(re.compile('\d+[.]+\d+|\d+').findall(data[i+1][0])[0])) - aorta.append(float(re.compile('\d+[.]+\d+|\d+').findall(data[i+1][1])[0])) - myo.append(float(re.compile('\d+[.]+\d+|\d+').findall(data[i+1][2])[0])) - - return t, aorta, myo - - def gammaFunc(self, time, a, l, s): - """Creates a gamma variate probability density function with given alpha, location, and scale values. - Parameters - ---------- - time : double[] - array of timepoints - a : double - alpha value of gamma PDF - l : double - location of 50th percentile of function - s : double - scale parameter - - Returns - ------- - rv.pdf(time) - probability density function of your gamma variate. - """ - rv = gamma(a, loc = l, scale = s) #input function - return rv.pdf(time) - - def curveFit(self, t, aorta, myo, model): - """Takes in data and fits gamma curve to aorta and Cisf from model to myo. Returns parameters for best fit. - - Parameters - ---------- - t : double[] - list of all timepoints - aorta : double[] - concentration of tracer in aorta (input function) - myo : double[] - concentration of tracer in myocardial tissue (Cisf) - model : pkModel object - a pk model, either 1Comp or 2Comp - - Returns - ------- - Flow : double - Flow is the flow of plasma through the blood vessel in mL/(mL*min). - - Vp : double - Vp is the volume of plasma in mL. - - Visf : double - Visf is the volume of interstitial fluid in mL. - - PS : double - PS is the permeability-surface area constant in mL/(g*min). - """ - - def getPlot(self): - """Plots the original data to the fitted curve.""" - plt.plot(t, aorta, 'bo', label='data') - #plt.plot(t, y, 'b-', label='data') - popt, pcov = curve_fit(gammaFunc, t, aorta, p0 = [2, 8, 10000], method = 'trf') - - print(f'alpha = {popt[0]}, loc = {popt[1]}, scale = {popt[2]}') - - plt.plot(t, gammaFunc(t, *popt), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) - plt.plot(time, gammaFunc(time, .1313, 8.533, 10000), 'b-')</code></pre> -</details> -<h3>Methods</h3> -<dl> -<dt id="pkOptimizer.pkOptimizer.curveFit"><code class="name flex"> -<span>def <span class="ident">curveFit</span></span>(<span>self, t, aorta, myo, model)</span> -</code></dt> -<dd> -<section class="desc"><p>Takes in data and fits gamma curve to aorta and Cisf from model to myo. Returns parameters for best fit.</p> -<h2 id="parameters">Parameters</h2> -<p>t : double[] -list of all timepoints -aorta : double[] -concentration of tracer in aorta (input function) -myo : double[] -concentration of tracer in myocardial tissue (Cisf) -model : pkModel object -a pk model, either 1Comp or 2Comp</p> -<h2 id="returns">Returns</h2> -<dl> -<dt><strong><code>Flow</code></strong> : <code>double</code></dt> -<dd>Flow is the flow of plasma through the blood vessel in mL/(mL*min).</dd> -<dt><strong><code>Vp</code></strong> : <code>double</code></dt> -<dd>Vp is the volume of plasma in mL.</dd> -<dt><strong><code>Visf</code></strong> : <code>double</code></dt> -<dd>Visf is the volume of interstitial fluid in mL.</dd> -<dt><strong><code>PS</code></strong> : <code>double</code></dt> -<dd>PS is the permeability-surface area constant in mL/(g*min).</dd> -</dl></section> -<details class="source"> -<summary> -<span>Expand source code</span> -</summary> -<pre><code class="python">def curveFit(self, t, aorta, myo, model): - """Takes in data and fits gamma curve to aorta and Cisf from model to myo. Returns parameters for best fit. - - Parameters - ---------- - t : double[] - list of all timepoints - aorta : double[] - concentration of tracer in aorta (input function) - myo : double[] - concentration of tracer in myocardial tissue (Cisf) - model : pkModel object - a pk model, either 1Comp or 2Comp - - Returns - ------- - Flow : double - Flow is the flow of plasma through the blood vessel in mL/(mL*min). - - Vp : double - Vp is the volume of plasma in mL. - - Visf : double - Visf is the volume of interstitial fluid in mL. - - PS : double - PS is the permeability-surface area constant in mL/(g*min). - """</code></pre> -</details> -</dd> -<dt id="pkOptimizer.pkOptimizer.gammaFunc"><code class="name flex"> -<span>def <span class="ident">gammaFunc</span></span>(<span>self, time, a, l, s)</span> -</code></dt> -<dd> -<section class="desc"><p>Creates a gamma variate probability density function with given alpha, location, and scale values. -Parameters</p> -<hr> -<p>time : double[] -array of timepoints -a : double -alpha value of gamma PDF -l : double -location of 50th percentile of function -s : double -scale parameter </p> -<h2 id="returns">Returns</h2> -<dl> -<dt><code>rv.pdf</code>(<code>time</code>)</dt> -<dd>probability density function of your gamma variate.</dd> -</dl></section> -<details class="source"> -<summary> -<span>Expand source code</span> -</summary> -<pre><code class="python">def gammaFunc(self, time, a, l, s): - """Creates a gamma variate probability density function with given alpha, location, and scale values. - Parameters - ---------- - time : double[] - array of timepoints - a : double - alpha value of gamma PDF - l : double - location of 50th percentile of function - s : double - scale parameter - - Returns - ------- - rv.pdf(time) - probability density function of your gamma variate. - """ - rv = gamma(a, loc = l, scale = s) #input function - return rv.pdf(time)</code></pre> -</details> -</dd> -<dt id="pkOptimizer.pkOptimizer.getData"><code class="name flex"> -<span>def <span class="ident">getData</span></span>(<span>self, wd)</span> -</code></dt> -<dd> -<section class="desc"><p>Imports data from all .csv files in directory. -Parameters</p> -<hr> -<p>wd : str -wd is the working directory path</p> -<h2 id="attributes">Attributes</h2> -<dl> -<dt><strong><code>t</code></strong> : <code>double</code>[]</dt> -<dd>list of all timepoints</dd> -<dt><strong><code>aorta</code></strong> : <code>double</code>[]</dt> -<dd>concentration of tracer in aorta (input function)</dd> -<dt><strong><code>myo</code></strong> : <code>double</code>[]</dt> -<dd>concentration of tracer in myocardial tissue (Cisf)</dd> -</dl> -<h2 id="returns">Returns</h2> -<dl> -<dt><strong><code>t</code></strong> : <code>double</code>[]</dt> -<dd>list of all timepoints</dd> -<dt><strong><code>aorta</code></strong> : <code>double</code>[]</dt> -<dd>concentration of tracer in aorta (input function)</dd> -<dt><strong><code>myo</code></strong> : <code>double</code>[]</dt> -<dd>concentration of tracer in myocardial tissue (Cisf)</dd> -</dl></section> -<details class="source"> -<summary> -<span>Expand source code</span> -</summary> -<pre><code class="python">def getData(self, wd): - """Imports data from all .csv files in directory. - Parameters - ---------- - wd : str - wd is the working directory path - - Attributes - ---------- - t : double[] - list of all timepoints - aorta : double[] - concentration of tracer in aorta (input function) - myo : double[] - concentration of tracer in myocardial tissue (Cisf) - - Returns - ------- - t : double[] - list of all timepoints - aorta : double[] - concentration of tracer in aorta (input function) - myo : double[] - concentration of tracer in myocardial tissue (Cisf) - """ - - os.chdir(wd) - #os.chdir(r"C:\Users\Ethan\OneDrive - Michigan State University\MSU\Classwork\Computational Modeling\Models\Data") - #create directory of all csv files, - data = list(csv.reader(open('CTPERF005_stress.csv'), delimiter = '\t')) - - t = [] - aorta = [] - myo = [] - - for i in range(12): - t.append(float(re.compile('\d+[.]+\d+|\d+').findall(data[i+1][0])[0])) - aorta.append(float(re.compile('\d+[.]+\d+|\d+').findall(data[i+1][1])[0])) - myo.append(float(re.compile('\d+[.]+\d+|\d+').findall(data[i+1][2])[0])) - - return t, aorta, myo</code></pre> -</details> -</dd> -<dt id="pkOptimizer.pkOptimizer.getPlot"><code class="name flex"> -<span>def <span class="ident">getPlot</span></span>(<span>self)</span> -</code></dt> -<dd> -<section class="desc"><p>Plots the original data to the fitted curve.</p></section> -<details class="source"> -<summary> -<span>Expand source code</span> -</summary> -<pre><code class="python">def getPlot(self): - """Plots the original data to the fitted curve.""" - plt.plot(t, aorta, 'bo', label='data') - #plt.plot(t, y, 'b-', label='data') - popt, pcov = curve_fit(gammaFunc, t, aorta, p0 = [2, 8, 10000], method = 'trf') - - print(f'alpha = {popt[0]}, loc = {popt[1]}, scale = {popt[2]}') - - plt.plot(t, gammaFunc(t, *popt), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) - plt.plot(time, gammaFunc(time, .1313, 8.533, 10000), 'b-')</code></pre> -</details> -</dd> -</dl> -</dd> -</dl> -</section> -</article> -<nav id="sidebar"> -<h1>Index</h1> -<div class="toc"> -<ul></ul> -</div> -<ul id="index"> -<li><h3><a href="#header-classes">Classes</a></h3> -<ul> -<li> -<h4><code><a title="pkOptimizer.pkOptimizer" href="#pkOptimizer.pkOptimizer">pkOptimizer</a></code></h4> -<ul class=""> -<li><code><a title="pkOptimizer.pkOptimizer.curveFit" href="#pkOptimizer.pkOptimizer.curveFit">curveFit</a></code></li> -<li><code><a title="pkOptimizer.pkOptimizer.gammaFunc" href="#pkOptimizer.pkOptimizer.gammaFunc">gammaFunc</a></code></li> -<li><code><a title="pkOptimizer.pkOptimizer.getData" href="#pkOptimizer.pkOptimizer.getData">getData</a></code></li> -<li><code><a title="pkOptimizer.pkOptimizer.getPlot" href="#pkOptimizer.pkOptimizer.getPlot">getPlot</a></code></li> -</ul> -</li> -</ul> -</li> -</ul> -</nav> -</main> -<footer id="footer"> -<p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.7.4</a>.</p> -</footer> -<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script> -<script>hljs.initHighlightingOnLoad()</script> -</body> -</html> \ No newline at end of file -- GitLab