From e8dfb3cf49d4e29103c89a0c961770783da39d91 Mon Sep 17 00:00:00 2001
From: "Tu, Ethan" <tuethan@msu.edu>
Date: Mon, 13 Apr 2020 15:46:37 -0400
Subject: [PATCH] Delete pkOptimizer.html

---
 docs/pkOptimizer.html | 561 ------------------------------------------
 1 file changed, 561 deletions(-)
 delete mode 100644 docs/pkOptimizer.html

diff --git a/docs/pkOptimizer.html b/docs/pkOptimizer.html
deleted file mode 100644
index 61df014..0000000
--- a/docs/pkOptimizer.html
+++ /dev/null
@@ -1,561 +0,0 @@
-<!doctype html>
-<html lang="en">
-<head>
-<meta charset="utf-8">
-<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
-<meta name="generator" content="pdoc 0.7.4" />
-<title>pkOptimizer API documentation</title>
-<meta name="description" content="" />
-<link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
-<link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
-<link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
-<style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
-<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
-<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
-</head>
-<body>
-<main>
-<article id="content">
-<header>
-<h1 class="title">Module <code>pkOptimizer</code></h1>
-</header>
-<section id="section-intro">
-<details class="source">
-<summary>
-<span>Expand source code</span>
-</summary>
-<pre><code class="python">#!/usr/bin/env python
-# coding: utf-8
-
-# In[9]:
-
-
-from scipy.stats import gamma
-from scipy.integrate import odeint 
-from scipy.optimize import minimize
-from scipy.optimize import curve_fit
-
-import os
-import csv
-import re
-import math as math
-import numpy as np
-import matplotlib.pyplot as plt
-#%matplotlib inline
-
-class pkOptimizer:
-    &#34;&#34;&#34;The pkOptimizer object is an optimizer for parameters in pk models.&#34;&#34;&#34;
-    
-    def __init__ (self, wd, Flow = 1/60, Vp = 0.05, Visf = 0.15, PS = 1/60):
-        &#34;&#34;&#34;Initializes the model with initial guess parameter values for flow, Vp, Visf, and PS.
-        Parameters
-        ----------      
-        Flow : double
-            Flow is the flow of plasma through the blood vessel in mL/(mL*min). Defaults to 1/60.
-        
-        Vp : double
-            Vp is the volume of plasma in mL. Defaults to 0.05.
-            
-        Visf : double
-            Visf is the volume of interstitial fluid in mL. Defaults to 0.15.
-        
-        PS : double
-            PS is the permeability-surface area constant in mL/(g*min). Defaults to 1/60.    
-        &#34;&#34;&#34;
-        
-    def getData(self, wd):
-        &#34;&#34;&#34;Imports data from all .csv files in directory.
-        Parameters
-        ----------  
-        wd : str
-            wd is the working directory path
-            
-        Attributes
-        ----------
-        t : double[]
-            list of all timepoints
-        aorta : double[]
-            concentration of tracer in aorta (input function)
-        myo : double[]
-            concentration of tracer in myocardial tissue (Cisf)
-        
-        Returns
-        -------
-        t : double[]
-            list of all timepoints
-        aorta : double[]
-            concentration of tracer in aorta (input function)
-        myo : double[]
-            concentration of tracer in myocardial tissue (Cisf)
-        &#34;&#34;&#34;
-    
-        os.chdir(wd)
-        #os.chdir(r&#34;C:\Users\Ethan\OneDrive - Michigan State University\MSU\Classwork\Computational Modeling\Models\Data&#34;)
-        #create directory of all csv files,
-        data = list(csv.reader(open(&#39;CTPERF005_stress.csv&#39;), delimiter = &#39;\t&#39;))
-
-        t = []
-        aorta = []
-        myo = []
-        
-        for i in range(12):
-            t.append(float(re.compile(&#39;\d+[.]+\d+|\d+&#39;).findall(data[i+1][0])[0]))
-            aorta.append(float(re.compile(&#39;\d+[.]+\d+|\d+&#39;).findall(data[i+1][1])[0]))
-            myo.append(float(re.compile(&#39;\d+[.]+\d+|\d+&#39;).findall(data[i+1][2])[0]))
-
-        return t, aorta, myo
-
-    def gammaFunc(self, time, a, l, s):
-        &#34;&#34;&#34;Creates a gamma variate probability density function with given alpha, location, and scale values.
-        Parameters
-        ----------  
-        time : double[]
-            array of timepoints
-        a : double
-            alpha value of gamma PDF
-        l : double
-            location of 50th percentile of function
-        s : double
-            scale parameter 
-            
-        Returns
-        -------
-        rv.pdf(time)
-            probability density function of your gamma variate.
-        &#34;&#34;&#34;
-        rv = gamma(a, loc = l, scale = s) #input function
-        return rv.pdf(time)
-    
-    def curveFit(self, t, aorta, myo, model):
-        &#34;&#34;&#34;Takes in data and fits gamma curve to aorta and Cisf from model to myo. Returns parameters for best fit.
-        
-        Parameters
-        ----------  
-        t : double[]
-            list of all timepoints
-        aorta : double[]
-            concentration of tracer in aorta (input function)
-        myo : double[]
-            concentration of tracer in myocardial tissue (Cisf)
-        model : pkModel object
-            a pk model, either 1Comp or 2Comp
-        
-        Returns
-        -------
-        Flow : double
-            Flow is the flow of plasma through the blood vessel in mL/(mL*min).
-        
-        Vp : double
-            Vp is the volume of plasma in mL.
-            
-        Visf : double
-            Visf is the volume of interstitial fluid in mL.
-        
-        PS : double
-            PS is the permeability-surface area constant in mL/(g*min).
-        &#34;&#34;&#34;
-    
-    def getPlot(self):
-        &#34;&#34;&#34;Plots the original data to the fitted curve.&#34;&#34;&#34;
-        plt.plot(t, aorta, &#39;bo&#39;, label=&#39;data&#39;)
-        #plt.plot(t, y, &#39;b-&#39;, label=&#39;data&#39;)
-        popt, pcov = curve_fit(gammaFunc, t, aorta, p0 = [2, 8, 10000], method = &#39;trf&#39;)
-
-        print(f&#39;alpha = {popt[0]}, loc = {popt[1]}, scale = {popt[2]}&#39;)
-
-        plt.plot(t, gammaFunc(t, *popt), &#39;r-&#39;, label=&#39;fit: a=%5.3f, b=%5.3f, c=%5.3f&#39; % tuple(popt))
-        plt.plot(time, gammaFunc(time, .1313, 8.533, 10000), &#39;b-&#39;)
-
-
-# In[ ]:</code></pre>
-</details>
-</section>
-<section>
-</section>
-<section>
-</section>
-<section>
-</section>
-<section>
-<h2 class="section-title" id="header-classes">Classes</h2>
-<dl>
-<dt id="pkOptimizer.pkOptimizer"><code class="flex name class">
-<span>class <span class="ident">pkOptimizer</span></span>
-<span>(</span><span>wd, Flow=0.016666666666666666, Vp=0.05, Visf=0.15, PS=0.016666666666666666)</span>
-</code></dt>
-<dd>
-<section class="desc"><p>The pkOptimizer object is an optimizer for parameters in pk models.</p>
-<p>Initializes the model with initial guess parameter values for flow, Vp, Visf, and PS.
-Parameters</p>
-<hr>
-<p>Flow : double
-Flow is the flow of plasma through the blood vessel in mL/(mL*min). Defaults to 1/60.</p>
-<p>Vp : double
-Vp is the volume of plasma in mL. Defaults to 0.05.</p>
-<p>Visf : double
-Visf is the volume of interstitial fluid in mL. Defaults to 0.15.</p>
-<p>PS : double
-PS is the permeability-surface area constant in mL/(g*min). Defaults to 1/60.</p></section>
-<details class="source">
-<summary>
-<span>Expand source code</span>
-</summary>
-<pre><code class="python">class pkOptimizer:
-    &#34;&#34;&#34;The pkOptimizer object is an optimizer for parameters in pk models.&#34;&#34;&#34;
-    
-    def __init__ (self, wd, Flow = 1/60, Vp = 0.05, Visf = 0.15, PS = 1/60):
-        &#34;&#34;&#34;Initializes the model with initial guess parameter values for flow, Vp, Visf, and PS.
-        Parameters
-        ----------      
-        Flow : double
-            Flow is the flow of plasma through the blood vessel in mL/(mL*min). Defaults to 1/60.
-        
-        Vp : double
-            Vp is the volume of plasma in mL. Defaults to 0.05.
-            
-        Visf : double
-            Visf is the volume of interstitial fluid in mL. Defaults to 0.15.
-        
-        PS : double
-            PS is the permeability-surface area constant in mL/(g*min). Defaults to 1/60.    
-        &#34;&#34;&#34;
-        
-    def getData(self, wd):
-        &#34;&#34;&#34;Imports data from all .csv files in directory.
-        Parameters
-        ----------  
-        wd : str
-            wd is the working directory path
-            
-        Attributes
-        ----------
-        t : double[]
-            list of all timepoints
-        aorta : double[]
-            concentration of tracer in aorta (input function)
-        myo : double[]
-            concentration of tracer in myocardial tissue (Cisf)
-        
-        Returns
-        -------
-        t : double[]
-            list of all timepoints
-        aorta : double[]
-            concentration of tracer in aorta (input function)
-        myo : double[]
-            concentration of tracer in myocardial tissue (Cisf)
-        &#34;&#34;&#34;
-    
-        os.chdir(wd)
-        #os.chdir(r&#34;C:\Users\Ethan\OneDrive - Michigan State University\MSU\Classwork\Computational Modeling\Models\Data&#34;)
-        #create directory of all csv files,
-        data = list(csv.reader(open(&#39;CTPERF005_stress.csv&#39;), delimiter = &#39;\t&#39;))
-
-        t = []
-        aorta = []
-        myo = []
-        
-        for i in range(12):
-            t.append(float(re.compile(&#39;\d+[.]+\d+|\d+&#39;).findall(data[i+1][0])[0]))
-            aorta.append(float(re.compile(&#39;\d+[.]+\d+|\d+&#39;).findall(data[i+1][1])[0]))
-            myo.append(float(re.compile(&#39;\d+[.]+\d+|\d+&#39;).findall(data[i+1][2])[0]))
-
-        return t, aorta, myo
-
-    def gammaFunc(self, time, a, l, s):
-        &#34;&#34;&#34;Creates a gamma variate probability density function with given alpha, location, and scale values.
-        Parameters
-        ----------  
-        time : double[]
-            array of timepoints
-        a : double
-            alpha value of gamma PDF
-        l : double
-            location of 50th percentile of function
-        s : double
-            scale parameter 
-            
-        Returns
-        -------
-        rv.pdf(time)
-            probability density function of your gamma variate.
-        &#34;&#34;&#34;
-        rv = gamma(a, loc = l, scale = s) #input function
-        return rv.pdf(time)
-    
-    def curveFit(self, t, aorta, myo, model):
-        &#34;&#34;&#34;Takes in data and fits gamma curve to aorta and Cisf from model to myo. Returns parameters for best fit.
-        
-        Parameters
-        ----------  
-        t : double[]
-            list of all timepoints
-        aorta : double[]
-            concentration of tracer in aorta (input function)
-        myo : double[]
-            concentration of tracer in myocardial tissue (Cisf)
-        model : pkModel object
-            a pk model, either 1Comp or 2Comp
-        
-        Returns
-        -------
-        Flow : double
-            Flow is the flow of plasma through the blood vessel in mL/(mL*min).
-        
-        Vp : double
-            Vp is the volume of plasma in mL.
-            
-        Visf : double
-            Visf is the volume of interstitial fluid in mL.
-        
-        PS : double
-            PS is the permeability-surface area constant in mL/(g*min).
-        &#34;&#34;&#34;
-    
-    def getPlot(self):
-        &#34;&#34;&#34;Plots the original data to the fitted curve.&#34;&#34;&#34;
-        plt.plot(t, aorta, &#39;bo&#39;, label=&#39;data&#39;)
-        #plt.plot(t, y, &#39;b-&#39;, label=&#39;data&#39;)
-        popt, pcov = curve_fit(gammaFunc, t, aorta, p0 = [2, 8, 10000], method = &#39;trf&#39;)
-
-        print(f&#39;alpha = {popt[0]}, loc = {popt[1]}, scale = {popt[2]}&#39;)
-
-        plt.plot(t, gammaFunc(t, *popt), &#39;r-&#39;, label=&#39;fit: a=%5.3f, b=%5.3f, c=%5.3f&#39; % tuple(popt))
-        plt.plot(time, gammaFunc(time, .1313, 8.533, 10000), &#39;b-&#39;)</code></pre>
-</details>
-<h3>Methods</h3>
-<dl>
-<dt id="pkOptimizer.pkOptimizer.curveFit"><code class="name flex">
-<span>def <span class="ident">curveFit</span></span>(<span>self, t, aorta, myo, model)</span>
-</code></dt>
-<dd>
-<section class="desc"><p>Takes in data and fits gamma curve to aorta and Cisf from model to myo. Returns parameters for best fit.</p>
-<h2 id="parameters">Parameters</h2>
-<p>t : double[]
-list of all timepoints
-aorta : double[]
-concentration of tracer in aorta (input function)
-myo : double[]
-concentration of tracer in myocardial tissue (Cisf)
-model : pkModel object
-a pk model, either 1Comp or 2Comp</p>
-<h2 id="returns">Returns</h2>
-<dl>
-<dt><strong><code>Flow</code></strong> :&ensp;<code>double</code></dt>
-<dd>Flow is the flow of plasma through the blood vessel in mL/(mL*min).</dd>
-<dt><strong><code>Vp</code></strong> :&ensp;<code>double</code></dt>
-<dd>Vp is the volume of plasma in mL.</dd>
-<dt><strong><code>Visf</code></strong> :&ensp;<code>double</code></dt>
-<dd>Visf is the volume of interstitial fluid in mL.</dd>
-<dt><strong><code>PS</code></strong> :&ensp;<code>double</code></dt>
-<dd>PS is the permeability-surface area constant in mL/(g*min).</dd>
-</dl></section>
-<details class="source">
-<summary>
-<span>Expand source code</span>
-</summary>
-<pre><code class="python">def curveFit(self, t, aorta, myo, model):
-    &#34;&#34;&#34;Takes in data and fits gamma curve to aorta and Cisf from model to myo. Returns parameters for best fit.
-    
-    Parameters
-    ----------  
-    t : double[]
-        list of all timepoints
-    aorta : double[]
-        concentration of tracer in aorta (input function)
-    myo : double[]
-        concentration of tracer in myocardial tissue (Cisf)
-    model : pkModel object
-        a pk model, either 1Comp or 2Comp
-    
-    Returns
-    -------
-    Flow : double
-        Flow is the flow of plasma through the blood vessel in mL/(mL*min).
-    
-    Vp : double
-        Vp is the volume of plasma in mL.
-        
-    Visf : double
-        Visf is the volume of interstitial fluid in mL.
-    
-    PS : double
-        PS is the permeability-surface area constant in mL/(g*min).
-    &#34;&#34;&#34;</code></pre>
-</details>
-</dd>
-<dt id="pkOptimizer.pkOptimizer.gammaFunc"><code class="name flex">
-<span>def <span class="ident">gammaFunc</span></span>(<span>self, time, a, l, s)</span>
-</code></dt>
-<dd>
-<section class="desc"><p>Creates a gamma variate probability density function with given alpha, location, and scale values.
-Parameters</p>
-<hr>
-<p>time : double[]
-array of timepoints
-a : double
-alpha value of gamma PDF
-l : double
-location of 50th percentile of function
-s : double
-scale parameter </p>
-<h2 id="returns">Returns</h2>
-<dl>
-<dt><code>rv.pdf</code>(<code>time</code>)</dt>
-<dd>probability density function of your gamma variate.</dd>
-</dl></section>
-<details class="source">
-<summary>
-<span>Expand source code</span>
-</summary>
-<pre><code class="python">def gammaFunc(self, time, a, l, s):
-    &#34;&#34;&#34;Creates a gamma variate probability density function with given alpha, location, and scale values.
-    Parameters
-    ----------  
-    time : double[]
-        array of timepoints
-    a : double
-        alpha value of gamma PDF
-    l : double
-        location of 50th percentile of function
-    s : double
-        scale parameter 
-        
-    Returns
-    -------
-    rv.pdf(time)
-        probability density function of your gamma variate.
-    &#34;&#34;&#34;
-    rv = gamma(a, loc = l, scale = s) #input function
-    return rv.pdf(time)</code></pre>
-</details>
-</dd>
-<dt id="pkOptimizer.pkOptimizer.getData"><code class="name flex">
-<span>def <span class="ident">getData</span></span>(<span>self, wd)</span>
-</code></dt>
-<dd>
-<section class="desc"><p>Imports data from all .csv files in directory.
-Parameters</p>
-<hr>
-<p>wd : str
-wd is the working directory path</p>
-<h2 id="attributes">Attributes</h2>
-<dl>
-<dt><strong><code>t</code></strong> :&ensp;<code>double</code>[]</dt>
-<dd>list of all timepoints</dd>
-<dt><strong><code>aorta</code></strong> :&ensp;<code>double</code>[]</dt>
-<dd>concentration of tracer in aorta (input function)</dd>
-<dt><strong><code>myo</code></strong> :&ensp;<code>double</code>[]</dt>
-<dd>concentration of tracer in myocardial tissue (Cisf)</dd>
-</dl>
-<h2 id="returns">Returns</h2>
-<dl>
-<dt><strong><code>t</code></strong> :&ensp;<code>double</code>[]</dt>
-<dd>list of all timepoints</dd>
-<dt><strong><code>aorta</code></strong> :&ensp;<code>double</code>[]</dt>
-<dd>concentration of tracer in aorta (input function)</dd>
-<dt><strong><code>myo</code></strong> :&ensp;<code>double</code>[]</dt>
-<dd>concentration of tracer in myocardial tissue (Cisf)</dd>
-</dl></section>
-<details class="source">
-<summary>
-<span>Expand source code</span>
-</summary>
-<pre><code class="python">def getData(self, wd):
-    &#34;&#34;&#34;Imports data from all .csv files in directory.
-    Parameters
-    ----------  
-    wd : str
-        wd is the working directory path
-        
-    Attributes
-    ----------
-    t : double[]
-        list of all timepoints
-    aorta : double[]
-        concentration of tracer in aorta (input function)
-    myo : double[]
-        concentration of tracer in myocardial tissue (Cisf)
-    
-    Returns
-    -------
-    t : double[]
-        list of all timepoints
-    aorta : double[]
-        concentration of tracer in aorta (input function)
-    myo : double[]
-        concentration of tracer in myocardial tissue (Cisf)
-    &#34;&#34;&#34;
-
-    os.chdir(wd)
-    #os.chdir(r&#34;C:\Users\Ethan\OneDrive - Michigan State University\MSU\Classwork\Computational Modeling\Models\Data&#34;)
-    #create directory of all csv files,
-    data = list(csv.reader(open(&#39;CTPERF005_stress.csv&#39;), delimiter = &#39;\t&#39;))
-
-    t = []
-    aorta = []
-    myo = []
-    
-    for i in range(12):
-        t.append(float(re.compile(&#39;\d+[.]+\d+|\d+&#39;).findall(data[i+1][0])[0]))
-        aorta.append(float(re.compile(&#39;\d+[.]+\d+|\d+&#39;).findall(data[i+1][1])[0]))
-        myo.append(float(re.compile(&#39;\d+[.]+\d+|\d+&#39;).findall(data[i+1][2])[0]))
-
-    return t, aorta, myo</code></pre>
-</details>
-</dd>
-<dt id="pkOptimizer.pkOptimizer.getPlot"><code class="name flex">
-<span>def <span class="ident">getPlot</span></span>(<span>self)</span>
-</code></dt>
-<dd>
-<section class="desc"><p>Plots the original data to the fitted curve.</p></section>
-<details class="source">
-<summary>
-<span>Expand source code</span>
-</summary>
-<pre><code class="python">def getPlot(self):
-    &#34;&#34;&#34;Plots the original data to the fitted curve.&#34;&#34;&#34;
-    plt.plot(t, aorta, &#39;bo&#39;, label=&#39;data&#39;)
-    #plt.plot(t, y, &#39;b-&#39;, label=&#39;data&#39;)
-    popt, pcov = curve_fit(gammaFunc, t, aorta, p0 = [2, 8, 10000], method = &#39;trf&#39;)
-
-    print(f&#39;alpha = {popt[0]}, loc = {popt[1]}, scale = {popt[2]}&#39;)
-
-    plt.plot(t, gammaFunc(t, *popt), &#39;r-&#39;, label=&#39;fit: a=%5.3f, b=%5.3f, c=%5.3f&#39; % tuple(popt))
-    plt.plot(time, gammaFunc(time, .1313, 8.533, 10000), &#39;b-&#39;)</code></pre>
-</details>
-</dd>
-</dl>
-</dd>
-</dl>
-</section>
-</article>
-<nav id="sidebar">
-<h1>Index</h1>
-<div class="toc">
-<ul></ul>
-</div>
-<ul id="index">
-<li><h3><a href="#header-classes">Classes</a></h3>
-<ul>
-<li>
-<h4><code><a title="pkOptimizer.pkOptimizer" href="#pkOptimizer.pkOptimizer">pkOptimizer</a></code></h4>
-<ul class="">
-<li><code><a title="pkOptimizer.pkOptimizer.curveFit" href="#pkOptimizer.pkOptimizer.curveFit">curveFit</a></code></li>
-<li><code><a title="pkOptimizer.pkOptimizer.gammaFunc" href="#pkOptimizer.pkOptimizer.gammaFunc">gammaFunc</a></code></li>
-<li><code><a title="pkOptimizer.pkOptimizer.getData" href="#pkOptimizer.pkOptimizer.getData">getData</a></code></li>
-<li><code><a title="pkOptimizer.pkOptimizer.getPlot" href="#pkOptimizer.pkOptimizer.getPlot">getPlot</a></code></li>
-</ul>
-</li>
-</ul>
-</li>
-</ul>
-</nav>
-</main>
-<footer id="footer">
-<p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.7.4</a>.</p>
-</footer>
-<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
-<script>hljs.initHighlightingOnLoad()</script>
-</body>
-</html>
\ No newline at end of file
-- 
GitLab