diff --git a/Auto-SKLearn_AutoML/Classification.ipynb b/Auto-SKLearn_AutoML/Classification.ipynb
index d4dfef7e13a64b026fb5f08334a570d8dfaba3fc..57391f91c37791f41850721ac11e14e56af26d18 100644
--- a/Auto-SKLearn_AutoML/Classification.ipynb
+++ b/Auto-SKLearn_AutoML/Classification.ipynb
@@ -1,226 +1,4 @@
 {
-<<<<<<< HEAD
-  "nbformat": 4,
-  "nbformat_minor": 0,
-  "metadata": {
-    "colab": {
-      "name": "Classification.ipynb",
-      "provenance": []
-    },
-    "kernelspec": {
-      "name": "python3",
-      "display_name": "Python 3"
-    },
-    "language_info": {
-      "name": "python"
-    }
-  },
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "source": [
-        "# Classification Using Auto-SKLearn",
-        "\n",
-        "**_NOTE_** autosklearn only will run in linux (feb 26, 2022)\n",
-        "\n"
-      ],
-      "metadata": {
-        "id": "-I9i52jCjML_"
-      }
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mcint170/DataTools_Tutorial_Demo/blob/main/Auto-SKLearn_AutoML/Classification.ipynb)"
-      ],
-      "metadata": {
-        "id": "-ZrgwiL9kR_L"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "!pip install auto-sklearn"
-      ],
-      "metadata": {
-        "id": "XAjlAHVRenet"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "source": [
-        "If running on Google Colab: After running this cell, Click Runtime -> Restart runtime. Then you can run the following cells."
-      ],
-      "metadata": {
-        "id": "yqIcMA8hgZ8W"
-      }
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# imports\n",
-        "from pprint import pprint\n",
-        "\n",
-        "import sklearn.datasets\n",
-        "import sklearn.metrics\n",
-        "import pickle\n",
-        "\n",
-        "import autosklearn.classification"
-      ],
-      "metadata": {
-        "id": "BXuKNodQe7QZ"
-      },
-      "execution_count": 4,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# split the dataset\n",
-        "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\n",
-        "X_train, X_test, y_train, y_test = \\\n",
-        "    sklearn.model_selection.train_test_split(X, y, random_state=1)"
-      ],
-      "metadata": {
-        "id": "ExulDsEAfAoO"
-      },
-      "execution_count": 5,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Fit the classifier\n",
-        "automl = autosklearn.classification.AutoSklearnClassifier(\n",
-        "    time_left_for_this_task=120,\n",
-        "    per_run_time_limit=30,\n",
-        "    tmp_folder='/tmp/autosklearn_classification_example_tmp',\n",
-        ")\n",
-        "automl.fit(X_train, y_train, dataset_name='breast_cancer')"
-      ],
-      "metadata": {
-        "id": "-0zi5I38fNMM",
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "outputId": "e732438b-610c-4d82-bd38-b1a5497541c6"
-      },
-      "execution_count": 6,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "AutoSklearnClassifier(per_run_time_limit=30, time_left_for_this_task=120,\n",
-              "                      tmp_folder='/tmp/autosklearn_classification_example_tmp')"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 6
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Different Models run by autosklearn\n",
-        "print(automl.leaderboard())"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "SxtOkluYiVHe",
-        "outputId": "29e44357-b2cb-404d-a024-cda5bd61b65a"
-      },
-      "execution_count": 7,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "          rank  ensemble_weight                 type      cost  duration\n",
-            "model_id                                                                \n",
-            "7            1             0.10          extra_trees  0.014184  1.502508\n",
-            "2            2             0.02        random_forest  0.028369  2.024807\n",
-            "36           3             0.06  k_nearest_neighbors  0.028369  0.853534\n",
-            "26           4             0.04          extra_trees  0.028369  2.240347\n",
-            "19           5             0.02          extra_trees  0.028369  2.791073\n",
-            "22           6             0.02    gradient_boosting  0.028369  1.149980\n",
-            "3            7             0.14                  mlp  0.028369  1.667622\n",
-            "12           8             0.04    gradient_boosting  0.035461  1.240657\n",
-            "17           9             0.02    gradient_boosting  0.035461  1.510491\n",
-            "8           10             0.02        random_forest  0.035461  1.958862\n",
-            "37          11             0.06    gradient_boosting  0.035461  1.585859\n",
-            "5           12             0.04        random_forest  0.035461  2.075770\n",
-            "27          13             0.10          extra_trees  0.042553  1.910083\n",
-            "34          14             0.08        random_forest  0.042553  1.884860\n",
-            "9           15             0.04          extra_trees  0.042553  1.799630\n",
-            "23          16             0.02                  mlp  0.049645  2.405247\n",
-            "35          17             0.06          extra_trees  0.056738  1.586217\n",
-            "32          18             0.02          extra_trees  0.063830  1.650489\n",
-            "38          19             0.02          extra_trees  0.063830  2.128083\n",
-            "20          20             0.02   passive_aggressive  0.078014  0.774718\n",
-            "30          21             0.04             adaboost  0.078014  3.121010\n",
-            "29          22             0.02          gaussian_nb  0.141844  1.951357\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Show the different models\n",
-        "pprint(automl.show_models(), indent=4)"
-      ],
-      "metadata": {
-        "id": "25xOtCJ7icgh"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Predict the test labels\n",
-        "predictions = automl.predict(X_test)\n",
-        "print(\"Accuracy score:\", sklearn.metrics.accuracy_score(y_test, predictions))"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "XvbhWaZpidYt",
-        "outputId": "7a153d86-4d3b-474a-f867-8adf7e07318b"
-      },
-      "execution_count": 9,
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Accuracy score: 0.9440559440559441\n"
-          ]
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "# Export the model with the highest rank\n",
-        "clf = automl.show_models()[7]['sklearn_classifier']\n",
-        "pickle.dump(clf,open('model.pickle','wb'))"
-      ],
-      "metadata": {
-        "id": "iCFcuh9EikR_"
-      },
-      "execution_count": 10,
-      "outputs": []
-    }
-  ]
-=======
  "cells": [
   {
    "cell_type": "markdown",
@@ -234,26 +12,56 @@
     "Example coming from [here](https://automl.github.io/auto-sklearn/master/examples/20_basic/example_classification.html#sphx-glr-examples-20-basic-example-classification-py)"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "id": "c5dad4c0",
+   "metadata": {},
+   "source": [
+    "**Classification doesn't work with current version of scipy/github and requires different packages/updates to run notebook**\n",
+    "- Note from professor Colbry: Notebook can't be fixed in classtime, write note of what needs to be fixed and push to gitlab as is."
+   ]
+  },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 23,
    "id": "c69433ce",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "ImportError",
+     "evalue": "cannot import name 'apply' from 'dask.compatibility' (/home/weinbren/.local/lib/python3.8/site-packages/dask/compatibility.py)",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-23-910f3a285265>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      8\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mautosklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclassification\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[0;32m~/.local/lib/python3.8/site-packages/autosklearn/classification.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mautosklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mestimators\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mAutoSklearnClassifier\u001b[0m  \u001b[0;31m# noqa (imported but unused)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[0;32m~/.local/lib/python3.8/site-packages/autosklearn/estimators.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     17\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mwarnings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     18\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistributed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     20\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mjoblib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     21\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m~/.local/lib/python3.8/site-packages/dask/distributed.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     10\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m     \u001b[0;32mfrom\u001b[0m \u001b[0mdistributed\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     12\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     13\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmsg\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"No module named 'distributed'\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/opt/anaconda3/lib/python3.8/site-packages/distributed/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      6\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0m_version\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_versions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mactor\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mActor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mActorFuture\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      8\u001b[0m from .client import (\n\u001b[1;32m      9\u001b[0m     \u001b[0mClient\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/opt/anaconda3/lib/python3.8/site-packages/distributed/actor.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqueue\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mQueue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mclient\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mFuture\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefault_client\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      7\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mprotocol\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mto_serialize\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      8\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0miscoroutinefunction\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msync\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mthread_state\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/opt/anaconda3/lib/python3.8/site-packages/distributed/client.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     28\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     29\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcollections_to_dsk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnormalize_token\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtokenize\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 30\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompatibility\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mapply\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     31\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mflatten\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     32\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhighlevelgraph\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mHighLevelGraph\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mImportError\u001b[0m: cannot import name 'apply' from 'dask.compatibility' (/home/weinbren/.local/lib/python3.8/site-packages/dask/compatibility.py)"
+     ]
+    }
+   ],
    "source": [
     "# imports\n",
     "from pprint import pprint\n",
     "\n",
     "import sklearn.datasets\n",
     "import sklearn.metrics\n",
+    "# Fixed import model_selection\n",
+    "import sklearn.model_selection\n",
     "import pickle\n",
     "\n",
-    "import autosklearn.classification"
+    "# This does not work on current version of github, needs update. \n",
+    "import autosklearn.classification\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 21,
    "id": "2b1e1930",
    "metadata": {},
    "outputs": [],
@@ -266,10 +74,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 22,
    "id": "15e5f821",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "AttributeError",
+     "evalue": "module 'autosklearn' has no attribute 'classification'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-22-6c1473e893d3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0;31m# Fit the classifier\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m automl = autosklearn.classification.AutoSklearnClassifier(\n\u001b[0m\u001b[1;32m      3\u001b[0m     \u001b[0mtime_left_for_this_task\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m120\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m     \u001b[0mper_run_time_limit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m     \u001b[0mtmp_folder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'/tmp/autosklearn_classification_example_tmp'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mAttributeError\u001b[0m: module 'autosklearn' has no attribute 'classification'"
+     ]
+    }
+   ],
    "source": [
     "# Fit the classifier\n",
     "automl = autosklearn.classification.AutoSklearnClassifier(\n",
@@ -282,10 +102,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 11,
    "id": "2d4e4d9f",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'automl' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-11-6dfffdcd8374>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0;31m# Different Models run by autosklearn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mautoml\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mleaderboard\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m: name 'automl' is not defined"
+     ]
+    }
+   ],
    "source": [
     "# Different Models run by autosklearn\n",
     "print(automl.leaderboard())"
@@ -293,10 +125,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 12,
    "id": "72e580e7",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'automl' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-12-ab76765f6a20>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0;31m# Show the different models\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mpprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mautoml\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow_models\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindent\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m: name 'automl' is not defined"
+     ]
+    }
+   ],
    "source": [
     "# Show the different models\n",
     "pprint(automl.show_models(), indent=4)"
@@ -304,10 +148,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 13,
    "id": "027039cd",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'automl' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-13-596897413c8d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0;31m# Predict the test labels\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mpredictions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mautoml\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Accuracy score:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmetrics\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maccuracy_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpredictions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mNameError\u001b[0m: name 'automl' is not defined"
+     ]
+    }
+   ],
    "source": [
     "# Predict the test labels\n",
     "predictions = automl.predict(X_test)\n",
@@ -316,10 +172,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 14,
    "id": "acd372ea",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'automl' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-14-14e40d77d77d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0;31m# Export the model with the highest rank\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mclf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mautoml\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow_models\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m7\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'sklearn_classifier'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      3\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdump\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclf\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'model.pickle'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'wb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mNameError\u001b[0m: name 'automl' is not defined"
+     ]
+    }
+   ],
    "source": [
     "# Export the model with the highest rank\n",
     "clf = automl.show_models()[7]['sklearn_classifier']\n",
@@ -328,10 +196,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 15,
    "id": "a3324782",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'clf' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-15-b9c89d294f77>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mclf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m: name 'clf' is not defined"
+     ]
+    }
+   ],
    "source": [
     "clf"
    ]
@@ -347,7 +227,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3 (ipykernel)",
+   "display_name": "Python 3",
    "language": "python",
    "name": "python3"
   },
@@ -361,10 +241,9 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.7"
+   "version": "3.8.8"
   }
  },
  "nbformat": 4,
  "nbformat_minor": 5
->>>>>>> 7e6d5ac (Adding minor comments and updates to AutoML tutorial)
 }