diff --git a/Auto-SKLearn_AutoML/Classification.ipynb b/Auto-SKLearn_AutoML/Classification.ipynb index d4dfef7e13a64b026fb5f08334a570d8dfaba3fc..57391f91c37791f41850721ac11e14e56af26d18 100644 --- a/Auto-SKLearn_AutoML/Classification.ipynb +++ b/Auto-SKLearn_AutoML/Classification.ipynb @@ -1,226 +1,4 @@ { -<<<<<<< HEAD - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "name": "Classification.ipynb", - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Classification Using Auto-SKLearn", - "\n", - "**_NOTE_** autosklearn only will run in linux (feb 26, 2022)\n", - "\n" - ], - "metadata": { - "id": "-I9i52jCjML_" - } - }, - { - "cell_type": "markdown", - "source": [ - "[](https://colab.research.google.com/github/mcint170/DataTools_Tutorial_Demo/blob/main/Auto-SKLearn_AutoML/Classification.ipynb)" - ], - "metadata": { - "id": "-ZrgwiL9kR_L" - } - }, - { - "cell_type": "code", - "source": [ - "!pip install auto-sklearn" - ], - "metadata": { - "id": "XAjlAHVRenet" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "If running on Google Colab: After running this cell, Click Runtime -> Restart runtime. Then you can run the following cells." - ], - "metadata": { - "id": "yqIcMA8hgZ8W" - } - }, - { - "cell_type": "code", - "source": [ - "# imports\n", - "from pprint import pprint\n", - "\n", - "import sklearn.datasets\n", - "import sklearn.metrics\n", - "import pickle\n", - "\n", - "import autosklearn.classification" - ], - "metadata": { - "id": "BXuKNodQe7QZ" - }, - "execution_count": 4, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# split the dataset\n", - "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\n", - "X_train, X_test, y_train, y_test = \\\n", - " sklearn.model_selection.train_test_split(X, y, random_state=1)" - ], - "metadata": { - "id": "ExulDsEAfAoO" - }, - "execution_count": 5, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# Fit the classifier\n", - "automl = autosklearn.classification.AutoSklearnClassifier(\n", - " time_left_for_this_task=120,\n", - " per_run_time_limit=30,\n", - " tmp_folder='/tmp/autosklearn_classification_example_tmp',\n", - ")\n", - "automl.fit(X_train, y_train, dataset_name='breast_cancer')" - ], - "metadata": { - "id": "-0zi5I38fNMM", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "e732438b-610c-4d82-bd38-b1a5497541c6" - }, - "execution_count": 6, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "AutoSklearnClassifier(per_run_time_limit=30, time_left_for_this_task=120,\n", - " tmp_folder='/tmp/autosklearn_classification_example_tmp')" - ] - }, - "metadata": {}, - "execution_count": 6 - } - ] - }, - { - "cell_type": "code", - "source": [ - "# Different Models run by autosklearn\n", - "print(automl.leaderboard())" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "SxtOkluYiVHe", - "outputId": "29e44357-b2cb-404d-a024-cda5bd61b65a" - }, - "execution_count": 7, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " rank ensemble_weight type cost duration\n", - "model_id \n", - "7 1 0.10 extra_trees 0.014184 1.502508\n", - "2 2 0.02 random_forest 0.028369 2.024807\n", - "36 3 0.06 k_nearest_neighbors 0.028369 0.853534\n", - "26 4 0.04 extra_trees 0.028369 2.240347\n", - "19 5 0.02 extra_trees 0.028369 2.791073\n", - "22 6 0.02 gradient_boosting 0.028369 1.149980\n", - "3 7 0.14 mlp 0.028369 1.667622\n", - "12 8 0.04 gradient_boosting 0.035461 1.240657\n", - "17 9 0.02 gradient_boosting 0.035461 1.510491\n", - "8 10 0.02 random_forest 0.035461 1.958862\n", - "37 11 0.06 gradient_boosting 0.035461 1.585859\n", - "5 12 0.04 random_forest 0.035461 2.075770\n", - "27 13 0.10 extra_trees 0.042553 1.910083\n", - "34 14 0.08 random_forest 0.042553 1.884860\n", - "9 15 0.04 extra_trees 0.042553 1.799630\n", - "23 16 0.02 mlp 0.049645 2.405247\n", - "35 17 0.06 extra_trees 0.056738 1.586217\n", - "32 18 0.02 extra_trees 0.063830 1.650489\n", - "38 19 0.02 extra_trees 0.063830 2.128083\n", - "20 20 0.02 passive_aggressive 0.078014 0.774718\n", - "30 21 0.04 adaboost 0.078014 3.121010\n", - "29 22 0.02 gaussian_nb 0.141844 1.951357\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "# Show the different models\n", - "pprint(automl.show_models(), indent=4)" - ], - "metadata": { - "id": "25xOtCJ7icgh" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# Predict the test labels\n", - "predictions = automl.predict(X_test)\n", - "print(\"Accuracy score:\", sklearn.metrics.accuracy_score(y_test, predictions))" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "XvbhWaZpidYt", - "outputId": "7a153d86-4d3b-474a-f867-8adf7e07318b" - }, - "execution_count": 9, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Accuracy score: 0.9440559440559441\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "# Export the model with the highest rank\n", - "clf = automl.show_models()[7]['sklearn_classifier']\n", - "pickle.dump(clf,open('model.pickle','wb'))" - ], - "metadata": { - "id": "iCFcuh9EikR_" - }, - "execution_count": 10, - "outputs": [] - } - ] -======= "cells": [ { "cell_type": "markdown", @@ -234,26 +12,56 @@ "Example coming from [here](https://automl.github.io/auto-sklearn/master/examples/20_basic/example_classification.html#sphx-glr-examples-20-basic-example-classification-py)" ] }, + { + "cell_type": "markdown", + "id": "c5dad4c0", + "metadata": {}, + "source": [ + "**Classification doesn't work with current version of scipy/github and requires different packages/updates to run notebook**\n", + "- Note from professor Colbry: Notebook can't be fixed in classtime, write note of what needs to be fixed and push to gitlab as is." + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "id": "c69433ce", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ImportError", + "evalue": "cannot import name 'apply' from 'dask.compatibility' (/home/weinbren/.local/lib/python3.8/site-packages/dask/compatibility.py)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-23-910f3a285265>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mautosklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclassification\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/.local/lib/python3.8/site-packages/autosklearn/classification.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mautosklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mestimators\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mAutoSklearnClassifier\u001b[0m \u001b[0;31m# noqa (imported but unused)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/.local/lib/python3.8/site-packages/autosklearn/estimators.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mwarnings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistributed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 20\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mjoblib\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.local/lib/python3.8/site-packages/dask/distributed.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mdistributed\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmsg\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"No module named 'distributed'\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/anaconda3/lib/python3.8/site-packages/distributed/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0m_version\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_versions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mactor\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mActor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mActorFuture\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m from .client import (\n\u001b[1;32m 9\u001b[0m \u001b[0mClient\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/anaconda3/lib/python3.8/site-packages/distributed/actor.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqueue\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mQueue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mclient\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mFuture\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefault_client\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mprotocol\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mto_serialize\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0miscoroutinefunction\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msync\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mthread_state\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/anaconda3/lib/python3.8/site-packages/distributed/client.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcollections_to_dsk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnormalize_token\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtokenize\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 30\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompatibility\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mapply\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 31\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mflatten\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mdask\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhighlevelgraph\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mHighLevelGraph\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mImportError\u001b[0m: cannot import name 'apply' from 'dask.compatibility' (/home/weinbren/.local/lib/python3.8/site-packages/dask/compatibility.py)" + ] + } + ], "source": [ "# imports\n", "from pprint import pprint\n", "\n", "import sklearn.datasets\n", "import sklearn.metrics\n", + "# Fixed import model_selection\n", + "import sklearn.model_selection\n", "import pickle\n", "\n", - "import autosklearn.classification" + "# This does not work on current version of github, needs update. \n", + "import autosklearn.classification\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "id": "2b1e1930", "metadata": {}, "outputs": [], @@ -266,10 +74,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "id": "15e5f821", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "AttributeError", + "evalue": "module 'autosklearn' has no attribute 'classification'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-22-6c1473e893d3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Fit the classifier\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m automl = autosklearn.classification.AutoSklearnClassifier(\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mtime_left_for_this_task\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m120\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mper_run_time_limit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mtmp_folder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'/tmp/autosklearn_classification_example_tmp'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAttributeError\u001b[0m: module 'autosklearn' has no attribute 'classification'" + ] + } + ], "source": [ "# Fit the classifier\n", "automl = autosklearn.classification.AutoSklearnClassifier(\n", @@ -282,10 +102,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "id": "2d4e4d9f", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'automl' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-11-6dfffdcd8374>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Different Models run by autosklearn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mautoml\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mleaderboard\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'automl' is not defined" + ] + } + ], "source": [ "# Different Models run by autosklearn\n", "print(automl.leaderboard())" @@ -293,10 +125,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "72e580e7", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'automl' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-12-ab76765f6a20>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Show the different models\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mpprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mautoml\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow_models\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindent\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'automl' is not defined" + ] + } + ], "source": [ "# Show the different models\n", "pprint(automl.show_models(), indent=4)" @@ -304,10 +148,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "027039cd", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'automl' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-13-596897413c8d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Predict the test labels\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mpredictions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mautoml\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Accuracy score:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmetrics\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maccuracy_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpredictions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'automl' is not defined" + ] + } + ], "source": [ "# Predict the test labels\n", "predictions = automl.predict(X_test)\n", @@ -316,10 +172,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "id": "acd372ea", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'automl' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-14-14e40d77d77d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Export the model with the highest rank\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mclf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mautoml\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow_models\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m7\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'sklearn_classifier'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdump\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclf\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'model.pickle'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'wb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'automl' is not defined" + ] + } + ], "source": [ "# Export the model with the highest rank\n", "clf = automl.show_models()[7]['sklearn_classifier']\n", @@ -328,10 +196,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "id": "a3324782", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'clf' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-15-b9c89d294f77>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mclf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'clf' is not defined" + ] + } + ], "source": [ "clf" ] @@ -347,7 +227,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -361,10 +241,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 5 ->>>>>>> 7e6d5ac (Adding minor comments and updates to AutoML tutorial) }