diff --git a/GAMA_AutoML_Tutorial.ipynb b/GAMA_AutoML_Tutorial.ipynb
index 9b90d1f2eb218cbc0794e17ac87836c9cc771e95..1cbb73063d9e8e2debac5f648ac4a6a201145848 100644
--- a/GAMA_AutoML_Tutorial.ipynb
+++ b/GAMA_AutoML_Tutorial.ipynb
@@ -26,6 +26,20 @@
     "Image source: https://github.com/openml-labs/gama/raw/master/images/logos/Logo-With-Grey-Name-Transparent.png"
    ]
   },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "id": "481fae1c",
+   "metadata": {},
+   "source": [
+    "## View Documentation At:\n",
+    "* https://openml-labs.github.io/gama/master/\n",
+    "* https://github.com/openml-labs/gama\n",
+    "* https://openml-labs.github.io/gama/master/index.html\n",
+    "* https://openml-labs.github.io/gama/master/user_guide/index.html#dashboard\n",
+    "* https://openml-labs.github.io/gama/master/api/index.html"
+   ]
+  },
   {
    "cell_type": "markdown",
    "id": "25258b82",
@@ -44,12 +58,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 4,
    "id": "bded45a9",
    "metadata": {},
    "outputs": [],
    "source": [
-    "# pip install gama"
+    "# pip install gama\n",
+    "#     *or*\n",
+    "# pip3 install gama "
    ]
   },
   {
@@ -88,7 +104,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 1,
    "id": "00a14ad0",
    "metadata": {},
    "outputs": [],
@@ -170,21 +186,9 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Starting `fit` which will take roughly 3 minutes...\n"
-     ]
-    },
-    {
-     "ename": "IndexError",
-     "evalue": "list index out of range",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[1;31mIndexError\u001b[0m                                Traceback (most recent call last)",
-      "\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_25136/719449767.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m     11\u001b[0m \u001b[0mautoml\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mGamaClassifier\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmax_total_time\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m180\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstore\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m\"nothing\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mn_jobs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     12\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Starting `fit` which will take roughly 3 minutes...\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 13\u001b[1;33m \u001b[0mautoml\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     14\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     15\u001b[0m \u001b[0mlabel_predictions\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mautoml\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\REPOS\\DataTools_Tutorial_Demo\\envs_gama\\lib\\site-packages\\gama\\GamaClassifier.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, *args, **kwargs)\u001b[0m\n\u001b[0;32m    132\u001b[0m             \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_label_encoder\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    133\u001b[0m         \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_evaluation_library\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdetermine_sample_indices\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstratify\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 134\u001b[1;33m         \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    135\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    136\u001b[0m     \u001b[1;32mdef\u001b[0m \u001b[0m_encode_labels\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\REPOS\\DataTools_Tutorial_Demo\\envs_gama\\lib\\site-packages\\gama\\gama.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, warm_start)\u001b[0m\n\u001b[0;32m    537\u001b[0m             )\n\u001b[0;32m    538\u001b[0m             \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_post_processing\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdynamic_defaults\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 539\u001b[1;33m             self.model = self._post_processing.post_process(\n\u001b[0m\u001b[0;32m    540\u001b[0m                 \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_x\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    541\u001b[0m                 \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_y\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\REPOS\\DataTools_Tutorial_Demo\\envs_gama\\lib\\site-packages\\gama\\postprocessing\\best_fit.py\u001b[0m in \u001b[0;36mpost_process\u001b[1;34m(self, x, y, timeout, selection)\u001b[0m\n\u001b[0;32m     24\u001b[0m         \u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mSeries\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mselection\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mList\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mIndividual\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     25\u001b[0m     ) -> object:\n\u001b[1;32m---> 26\u001b[1;33m         \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_selected_individual\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mselection\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     27\u001b[0m         \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_selected_individual\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpipeline\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     28\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;31mIndexError\u001b[0m: list index out of range"
+      "Starting `fit` which will take roughly 3 minutes...\n",
+      "accuracy: 0.951048951048951\n",
+      "log loss: 0.13989498044372267\n"
      ]
     }
    ],
@@ -222,7 +226,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 2,
    "id": "35f68b4c",
    "metadata": {},
    "outputs": [
@@ -230,20 +234,8 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Starting `fit` which will take roughly 3 minutes...\n"
-     ]
-    },
-    {
-     "ename": "IndexError",
-     "evalue": "list index out of range",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[1;31mIndexError\u001b[0m                                Traceback (most recent call last)",
-      "\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_25136/3966760049.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m      9\u001b[0m \u001b[0mautoml\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mGamaRegressor\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmax_total_time\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m180\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstore\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m\"nothing\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mn_jobs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     10\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Starting `fit` which will take roughly 3 minutes...\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 11\u001b[1;33m \u001b[0mautoml\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     12\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     13\u001b[0m \u001b[0mpredictions\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mautoml\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\REPOS\\DataTools_Tutorial_Demo\\envs_gama\\lib\\site-packages\\gama\\gama.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, warm_start)\u001b[0m\n\u001b[0;32m    537\u001b[0m             )\n\u001b[0;32m    538\u001b[0m             \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_post_processing\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdynamic_defaults\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 539\u001b[1;33m             self.model = self._post_processing.post_process(\n\u001b[0m\u001b[0;32m    540\u001b[0m                 \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_x\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    541\u001b[0m                 \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_y\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\REPOS\\DataTools_Tutorial_Demo\\envs_gama\\lib\\site-packages\\gama\\postprocessing\\best_fit.py\u001b[0m in \u001b[0;36mpost_process\u001b[1;34m(self, x, y, timeout, selection)\u001b[0m\n\u001b[0;32m     24\u001b[0m         \u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mSeries\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mselection\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mList\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mIndividual\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     25\u001b[0m     ) -> object:\n\u001b[1;32m---> 26\u001b[1;33m         \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_selected_individual\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mselection\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     27\u001b[0m         \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_selected_individual\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpipeline\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     28\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;31mIndexError\u001b[0m: list index out of range"
+      "Starting `fit` which will take roughly 3 minutes...\n",
+      "MSE: 17.566521076771657\n"
      ]
     }
    ],
@@ -282,25 +274,6 @@
     "\n"
    ]
   },
-  {
-   "cell_type": "markdown",
-   "id": "ffdabb07",
-   "metadata": {},
-   "source": [
-    "## References"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "500eb430",
-   "metadata": {},
-   "source": [
-    "* https://github.com/openml-labs/gama\n",
-    "* https://openml-labs.github.io/gama/master/index.html\n",
-    "* https://openml-labs.github.io/gama/master/user_guide/index.html#dashboard\n",
-    "* https://openml-labs.github.io/gama/master/api/index.html"
-   ]
-  },
   {
    "cell_type": "markdown",
    "id": "e0a28b97",
@@ -312,7 +285,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3 (ipykernel)",
+   "display_name": "Python 3",
    "language": "python",
    "name": "python3"
   },
@@ -326,7 +299,12 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.7"
+   "version": "3.10.0"
+  },
+  "vscode": {
+   "interpreter": {
+    "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
+   }
   }
  },
  "nbformat": 4,