Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "GMRES.h"
#include "list.h"
#include "vector.h"
#include <omp.h>
/* sparse matrix-vector product Ax=b
* where:
* A: lower triangular matrix
* x: vector
* b: vector (result) */
static void Sparse_MatVec( const sparse_matrix * const A,
#ifdef _OPENMP
static real *b_local;
unsigned int tid;
#endif
Kurt A. O'Hearn
committed
#pragma omp parallel \
Kurt A. O'Hearn
committed
default(none) shared(n, b_local) private(si, ei, H, i, j, k, tid)
Kurt A. O'Hearn
committed
#ifdef _OPENMP
tid = omp_get_thread_num();
#pragma omp master
{
Kurt A. O'Hearn
committed
/* keep b_local for program duration to avoid allocate/free
* overhead per Sparse_MatVec call*/
if ( b_local == NULL )
if ( (b_local = (real*) malloc( omp_get_num_threads() * n * sizeof(real))) == NULL )
{
exit( INSUFFICIENT_SPACE );
}
Kurt A. O'Hearn
committed
Vector_MakeZero( (real * const)b_local, omp_get_num_threads() * n );
}
Kurt A. O'Hearn
committed
#pragma omp barrier
#endif
#pragma omp for schedule(guided)
for ( i = 0; i < n; ++i )
{
si = A->start[i];
ei = A->start[i + 1] - 1;
for ( k = si; k < ei; ++k )
{
j = A->entries[k].j;
H = A->entries[k].val;
#ifdef _OPENMP
b_local[tid * n + j] += H * x[i];
b_local[tid * n + i] += H * x[j];
#else
b[j] += H * x[i];
b[i] += H * x[j];
#endif
}
// the diagonal entry is the last one in
#ifdef _OPENMP
b_local[tid * n + i] += A->entries[k].val * x[i];
#else
b[i] += A->entries[k].val * x[i];
#endif
}
#ifdef _OPENMP
#pragma omp for schedule(guided)
for ( i = 0; i < n; ++i )
for ( j = 0; j < omp_get_num_threads(); ++j )
Kurt A. O'Hearn
committed
{
b[i] += b_local[j * n + i];
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
}
/* sparse matrix-vector product Gx=b (for Jacobi iteration),
* followed by vector addition of D^{-1}b,
* where G = (I - D^{-1}R) (G not explicitly computed and stored)
* R: strictly triangular matrix (diagonals not used)
* tri: triangularity of A (lower/upper)
* D^{-1} (D_inv): inverse of the diagonal of R
* b: vector (result)
* D^{-1}b (Dinv_b): precomputed vector-vector product */
static void Sparse_MatVec_Vector_Add( const sparse_matrix * const R,
const TRIANGULARITY tri, const real * const Dinv,
const real * const x, real * const b, const real * const Dinv_b)
int i, k, si = 0, ei = 0;
#ifdef _OPENMP
static real *b_local;
unsigned int tid;
#endif
Vector_MakeZero( b, R->n );
#pragma omp parallel \
Kurt A. O'Hearn
committed
default(none) shared(b_local) private(si, ei, i, k, tid)
#ifdef _OPENMP
tid = omp_get_thread_num();
#pragma omp master
/* keep b_local for program duration to avoid allocate/free
* overhead per Sparse_MatVec call*/
if ( b_local == NULL )
{
if ( (b_local = (real*) malloc( omp_get_num_threads() * R->n * sizeof(real))) == NULL )
{
exit( INSUFFICIENT_SPACE );
}
}
Vector_MakeZero( b_local, omp_get_num_threads() * R->n );
}
#pragma omp barrier
#endif
#pragma omp for schedule(guided)
for ( i = 0; i < R->n; ++i )
if (tri == LOWER)
{
si = R->start[i];
ei = R->start[i + 1] - 1;
}
else if (tri == UPPER)
{
si = R->start[i] + 1;
ei = R->start[i + 1];
}
for ( k = si; k < ei; ++k )
{
#ifdef _OPENMP
b_local[tid * R->n + i] += R->entries[k].val * x[R->entries[k].j];
#else
b[i] += R->entries[k].val * x[R->entries[k].j];
#endif
}
#ifdef _OPENMP
b_local[tid * R->n + i] *= -Dinv[i];
#else
b[i] *= -Dinv[i];
#endif
#ifdef _OPENMP
#pragma omp for schedule(guided)
for ( i = 0; i < R->n; ++i )
for ( k = 0; k < omp_get_num_threads(); ++k )
{
b[i] += b_local[k * R->n + i];
}
b[i] += Dinv_b[i];
}
#endif
/* solve sparse lower triangular linear system using forward substitution */
void Forward_Subs( sparse_matrix *L, real *b, real *y )
{
int i, pj, j, si, ei;
real val;
for ( i = 0; i < L->n; ++i )
y[i] = b[i];
si = L->start[i];
ei = L->start[i + 1];
for ( pj = si; pj < ei - 1; ++pj )
{
// TODO: remove assignments? compiler optimizes away?
j = L->entries[pj].j;
val = L->entries[pj].val;
y[i] -= val * y[j];
}
y[i] /= L->entries[pj].val;
/* solve sparse upper triangular linear system using backward substitution */
void Backward_Subs( sparse_matrix *U, real *y, real *x )
{
int i, pj, j, si, ei;
real val;
for ( i = U->n - 1; i >= 0; --i )
x[i] = y[i];
si = U->start[i];
ei = U->start[i + 1];
for ( pj = si + 1; pj < ei; ++pj )
{
// TODO: remove assignments? compiler optimizes away?
j = U->entries[pj].j;
val = U->entries[pj].val;
x[i] -= val * x[j];
}
x[i] /= U->entries[si].val;
/* Jacobi iteration using truncated Neumann series: x_{k+1} = Gx_k + D^{-1}b
* where:
* G = I - D^{-1}R
* R = triangular matrix
* D = diagonal matrix, diagonals from R
*
* Note: used during the backsolves when applying preconditioners with
* triangular factors in iterative linear solvers
*
* Note: Newmann series arises from series expansion of the inverse of
* the coefficient matrix in the triangular system */
static void Jacobi_Iter( const sparse_matrix * const R, const TRIANGULARITY tri,
const real * const Dinv, const unsigned int n,
const real * const b, real * const x, const unsigned int maxiter )
Kurt A. O'Hearn
committed
unsigned int i, k, si = 0, ei = 0, iter = 0;
#ifdef _OPENMP
static real *b_local;
unsigned int tid;
#endif
static real *Dinv_b, *rp, *rp2, *rp3;
Kurt A. O'Hearn
committed
#pragma omp parallel \
Kurt A. O'Hearn
committed
default(none) shared(b_local, Dinv_b, rp, rp2, rp3, iter, stderr) private(si, ei, i, k, tid)
Kurt A. O'Hearn
committed
#ifdef _OPENMP
tid = omp_get_thread_num();
#endif
#pragma omp master
{
Kurt A. O'Hearn
committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/* keep b_local for program duration to avoid allocate/free
* overhead per Sparse_MatVec call*/
if ( Dinv_b == NULL )
{
if ( (Dinv_b = (real*) malloc(sizeof(real) * n)) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit(INSUFFICIENT_SPACE);
}
}
if ( rp == NULL )
{
if ( (rp = (real*) malloc(sizeof(real) * n)) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit(INSUFFICIENT_SPACE);
}
}
if ( rp2 == NULL )
{
if ( (rp2 = (real*) malloc(sizeof(real) * n)) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit(INSUFFICIENT_SPACE);
}
}
#ifdef _OPENMP
if ( b_local == NULL )
{
if ( (b_local = (real*) malloc( omp_get_num_threads() * R->n * sizeof(real))) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_SPACE );
}
}
#endif
Vector_MakeZero( rp, n );
}
#pragma omp barrier
/* precompute and cache, as invariant in loop below */
#pragma omp for schedule(guided)
for ( i = 0; i < n; ++i )
{
Kurt A. O'Hearn
committed
Dinv_b[i] = Dinv[i] * b[i];
}
Kurt A. O'Hearn
committed
#pragma omp barrier
do
{
Kurt A. O'Hearn
committed
// x_{k+1} = G*x_{k} + Dinv*b;
//Sparse_MatVec_Vector_Add( (sparse_matrix*)R, tri, Dinv, rp, rp2, Dinv_b );
#pragma omp master
{
Vector_MakeZero( rp2, R->n );
#ifdef _OPENMP
Vector_MakeZero( b_local, omp_get_num_threads() * R->n );
#endif
}
#pragma omp barrier
Kurt A. O'Hearn
committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#pragma omp for schedule(guided)
for ( i = 0; i < R->n; ++i )
{
if (tri == LOWER)
{
si = R->start[i];
ei = R->start[i + 1] - 1;
}
else if (tri == UPPER)
{
si = R->start[i] + 1;
ei = R->start[i + 1];
}
for ( k = si; k < ei; ++k )
{
#ifdef _OPENMP
b_local[tid * R->n + i] += R->entries[k].val * rp[R->entries[k].j];
#else
rp2[i] += R->entries[k].val * rp[R->entries[k].j];
#endif
}
#ifdef _OPENMP
b_local[tid * R->n + i] *= -Dinv[i];
#else
rp2[i] *= -Dinv[i];
#endif
}
#pragma omp barrier
Kurt A. O'Hearn
committed
#pragma omp for schedule(guided)
for ( i = 0; i < R->n; ++i )
{
#ifdef _OPENMP
for ( k = 0; k < omp_get_num_threads(); ++k )
{
rp2[i] += b_local[k * R->n + i];
}
#endif
Kurt A. O'Hearn
committed
rp2[i] += Dinv_b[i];
}
#pragma omp master
{
rp3 = rp;
rp = rp2;
rp2 = rp3;
++iter;
}
#pragma omp barrier
}
while ( iter < maxiter );
/* generalized minimual residual iterative solver for sparse linear systems,
* diagonal preconditioner */
real *b, real tol, real *x, FILE *fout, real *time, real *spmv_time )
int i, j, k, itr, N;
real cc, tmp1, tmp2, temp, bnorm;
struct timeval start, stop;
N = H->n;
bnorm = Norm( b, N );
/* apply the diagonal pre-conditioner to rhs */
gettimeofday( &start, NULL );
for ( i = 0; i < N; ++i )
workspace->b_prc[i] = b[i] * workspace->Hdia_inv[i];
gettimeofday( &stop, NULL );
*time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
/* GMRES outer-loop */
for ( itr = 0; itr < MAX_ITR; ++itr )
{
/* calculate r0 */
gettimeofday( &start, NULL );
gettimeofday( &stop, NULL );
*spmv_time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
for ( i = 0; i < N; ++i )
workspace->b_prm[i] *= workspace->Hdia_inv[i]; /* pre-conditioner */
Vector_Sum(workspace->v[0], 1., workspace->b_prc, -1., workspace->b_prm, N);
workspace->g[0] = Norm( workspace->v[0], N );
Vector_Scale( workspace->v[0], 1. / workspace->g[0], workspace->v[0], N );
//fprintf( stderr, "res: %.15e\n", workspace->g[0] );
/* GMRES inner-loop */
for ( j = 0; j < RESTART && fabs(workspace->g[j]) / bnorm > tol; j++ )
{
/* matvec */
gettimeofday( &start, NULL );
gettimeofday( &stop, NULL );
*spmv_time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
/*pre-conditioner*/
gettimeofday( &start, NULL );
workspace->v[j + 1][k] *= workspace->Hdia_inv[k];
gettimeofday( &stop, NULL );
*time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
//fprintf( stderr, "%d-%d: matvec done.\n", itr, j );
/* apply modified Gram-Schmidt to orthogonalize the new residual */
for ( i = 0; i <= j; i++ )
{
workspace->h[i][j] = Dot( workspace->v[i], workspace->v[j + 1], N );
Vector_Add( workspace->v[j + 1],
-workspace->h[i][j], workspace->v[i], N );
}
workspace->h[j + 1][j] = Norm( workspace->v[j + 1], N );
Vector_Scale( workspace->v[j + 1],
1. / workspace->h[j + 1][j], workspace->v[j + 1], N );
// fprintf( stderr, "%d-%d: orthogonalization completed.\n", itr, j );
/* Givens rotations on the upper-Hessenberg matrix to make it U */
for ( i = 0; i <= j; i++ )
{
if ( i == j )
{
cc = SQRT( SQR(workspace->h[j][j]) + SQR(workspace->h[j + 1][j]) );
workspace->hc[j] = workspace->h[j][j] / cc;
workspace->hs[j] = workspace->h[j + 1][j] / cc;
}
tmp1 = workspace->hc[i] * workspace->h[i][j] +
workspace->hs[i] * workspace->h[i + 1][j];
tmp2 = -workspace->hs[i] * workspace->h[i][j] +
workspace->hc[i] * workspace->h[i + 1][j];
workspace->h[i][j] = tmp1;
workspace->h[i + 1][j] = tmp2;
}
/* apply Givens rotations to the rhs as well */
tmp1 = workspace->hc[j] * workspace->g[j];
tmp2 = -workspace->hs[j] * workspace->g[j];
workspace->g[j] = tmp1;
workspace->g[j + 1] = tmp2;
// fprintf( stderr, "h: " );
// for( i = 0; i <= j+1; ++i )
// fprintf( stderr, "%.6f ", workspace->h[i][j] );
// fprintf( stderr, "\n" );
//fprintf( stderr, "res: %.15e\n", workspace->g[j+1] );
}
/* solve Hy = g.
H is now upper-triangular, do back-substitution */
for ( i = j - 1; i >= 0; i-- )
{
temp = workspace->g[i];
for ( k = j - 1; k > i; k-- )
temp -= workspace->h[i][k] * workspace->y[k];
workspace->y[i] = temp / workspace->h[i][i];
}
/* update x = x_0 + Vy */
for ( i = 0; i < j; i++ )
Vector_Add( x, workspace->y[i], workspace->v[i], N );
/* stopping condition */
if ( fabs(workspace->g[j]) / bnorm <= tol )
break;
// Sparse_MatVec( H, x, workspace->b_prm );
// for( i = 0; i < N; ++i )
// workspace->b_prm[i] *= workspace->Hdia_inv[i];
// fprintf( fout, "\n%10s%15s%15s\n", "b_prc", "b_prm", "x" );
// for( i = 0; i < N; ++i )
// fprintf( fout, "%10.5f%15.12f%15.12f\n",
// workspace->b_prc[i], workspace->b_prm[i], x[i] );*/
// fprintf(fout,"GMRES outer:%d, inner:%d iters - residual norm: %25.20f\n",
// itr, j, fabs( workspace->g[j] ) / bnorm );
// data->timing.matvec += itr * RESTART + j;
if ( itr >= MAX_ITR )
{
fprintf( stderr, "GMRES convergence failed\n" );
// return -1;
return itr * (RESTART + 1) + j + 1;
int GMRES_HouseHolder( static_storage *workspace, sparse_matrix *H,
real *b, real tol, real *x, FILE *fout)
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
int i, j, k, itr, N;
real cc, tmp1, tmp2, temp, bnorm;
real v[10000], z[RESTART + 2][10000], w[RESTART + 2];
real u[RESTART + 2][10000];
N = H->n;
bnorm = Norm( b, N );
/* apply the diagonal pre-conditioner to rhs */
for ( i = 0; i < N; ++i )
workspace->b_prc[i] = b[i] * workspace->Hdia_inv[i];
// memset( x, 0, sizeof(real) * N );
/* GMRES outer-loop */
for ( itr = 0; itr < MAX_ITR; ++itr )
{
/* compute z = r0 */
Sparse_MatVec( H, x, workspace->b_prm );
for ( i = 0; i < N; ++i )
workspace->b_prm[i] *= workspace->Hdia_inv[i]; /* pre-conditioner */
Vector_Sum( z[0], 1., workspace->b_prc, -1., workspace->b_prm, N );
Vector_MakeZero( w, RESTART + 1 );
w[0] = Norm( z[0], N );
Vector_Copy( u[0], z[0], N );
u[0][0] += ( u[0][0] < 0.0 ? -1 : 1 ) * w[0];
Vector_Scale( u[0], 1 / Norm( u[0], N ), u[0], N );
w[0] *= ( u[0][0] < 0.0 ? 1 : -1 );
// fprintf( stderr, "\n\n%12.6f\n", w[0] );
/* GMRES inner-loop */
for ( j = 0; j < RESTART && fabs( w[j] ) / bnorm > tol; j++ )
{
/* compute v_j */
Vector_Scale( z[j], -2 * u[j][j], u[j], N );
z[j][j] += 1.; /* due to e_j */
for ( i = j - 1; i >= 0; --i )
Vector_Add( z[j] + i, -2 * Dot( u[i] + i, z[j] + i, N - i ), u[i] + i, N - i );
/* matvec */
Sparse_MatVec( H, z[j], v );
for ( k = 0; k < N; ++k )
v[k] *= workspace->Hdia_inv[k]; /* pre-conditioner */
for ( i = 0; i <= j; ++i )
Vector_Add( v + i, -2 * Dot( u[i] + i, v + i, N - i ), u[i] + i, N - i );
if ( !Vector_isZero( v + (j + 1), N - (j + 1) ) )
{
/* compute the HouseHolder unit vector u_j+1 */
for ( i = 0; i <= j; ++i )
u[j + 1][i] = 0;
Vector_Copy( u[j + 1] + (j + 1), v + (j + 1), N - (j + 1) );
u[j + 1][j + 1] += ( v[j + 1] < 0.0 ? -1 : 1 ) * Norm( v + (j + 1), N - (j + 1) );
Vector_Scale( u[j + 1], 1 / Norm( u[j + 1], N ), u[j + 1], N );
/* overwrite v with P_m+1 * v */
v[j + 1] -= 2 * Dot( u[j + 1] + (j + 1), v + (j + 1), N - (j + 1) ) * u[j + 1][j + 1];
Vector_MakeZero( v + (j + 2), N - (j + 2) );
// Vector_Add( v, -2 * Dot( u[j+1], v, N ), u[j+1], N );
}
/* prev Givens rots on the upper-Hessenberg matrix to make it U */
for ( i = 0; i < j; i++ )
{
tmp1 = workspace->hc[i] * v[i] + workspace->hs[i] * v[i + 1];
tmp2 = -workspace->hs[i] * v[i] + workspace->hc[i] * v[i + 1];
v[i] = tmp1;
v[i + 1] = tmp2;
}
/* apply the new Givens rotation to H and right-hand side */
if ( fabs(v[j + 1]) >= ALMOST_ZERO )
{
cc = SQRT( SQR( v[j] ) + SQR( v[j + 1] ) );
workspace->hc[j] = v[j] / cc;
workspace->hs[j] = v[j + 1] / cc;
tmp1 = workspace->hc[j] * v[j] + workspace->hs[j] * v[j + 1];
tmp2 = -workspace->hs[j] * v[j] + workspace->hc[j] * v[j + 1];
v[j] = tmp1;
v[j + 1] = tmp2;
/* Givens rotations to rhs */
tmp1 = workspace->hc[j] * w[j];
tmp2 = -workspace->hs[j] * w[j];
w[j] = tmp1;
w[j + 1] = tmp2;
}
/* extend R */
for ( i = 0; i <= j; ++i )
workspace->h[i][j] = v[i];
// fprintf( stderr, "h:" );
// for( i = 0; i <= j+1 ; ++i )
// fprintf( stderr, "%.6f ", h[i][j] );
// fprintf( stderr, "\n" );
// fprintf( stderr, "%12.6f\n", w[j+1] );
}
/* solve Hy = w.
H is now upper-triangular, do back-substitution */
for ( i = j - 1; i >= 0; i-- )
{
temp = w[i];
for ( k = j - 1; k > i; k-- )
temp -= workspace->h[i][k] * workspace->y[k];
workspace->y[i] = temp / workspace->h[i][i];
}
// fprintf( stderr, "y: " );
// for( i = 0; i < RESTART+1; ++i )
// fprintf( stderr, "%8.3f ", workspace->y[i] );
/* update x = x_0 + Vy */
// memset( z, 0, sizeof(real) * N );
// for( i = j-1; i >= 0; i-- )
// {
// Vector_Copy( v, z, N );
// v[i] += workspace->y[i];
//
// Vector_Sum( z, 1., v, -2 * Dot( u[i], v, N ), u[i], N );
// }
//
// fprintf( stderr, "\nz: " );
// for( k = 0; k < N; ++k )
// fprintf( stderr, "%6.2f ", z[k] );
// fprintf( stderr, "\nx_bef: " );
// for( i = 0; i < N; ++i )
// fprintf( stderr, "%6.2f ", x[i] );
// Vector_Add( x, 1, z, N );
for ( i = j - 1; i >= 0; i-- )
Vector_Add( x, workspace->y[i], z[i], N );
// fprintf( stderr, "\nx_aft: " );
// for( i = 0; i < N; ++i )
// fprintf( stderr, "%6.2f ", x[i] );
/* stopping condition */
if ( fabs( w[j] ) / bnorm <= tol )
break;
// workspace->b_prm[i] *= workspace->Hdia_inv[i];
// fprintf( fout, "\n%10s%15s%15s\n", "b_prc", "b_prm", "x" );
// fprintf( fout, "%10.5f%15.12f%15.12f\n",
// workspace->b_prc[i], workspace->b_prm[i], x[i] );
//fprintf( fout,"GMRES outer:%d, inner:%d iters - residual norm: %15.10f\n",
// itr, j, fabs( workspace->g[j] ) / bnorm );
if ( itr >= MAX_ITR )
{
fprintf( stderr, "GMRES convergence failed\n" );
// return -1;
return itr * (RESTART + 1) + j + 1;
}
return itr * (RESTART + 1) + j + 1;
/* generalized minimual residual iterative solver for sparse linear systems,
* with preconditioner using factors LU \approx H
* and forward / backward substitution */
int PGMRES( static_storage *workspace, sparse_matrix *H, real *b, real tol,
sparse_matrix *L, sparse_matrix *U, real *x, FILE *fout, real *time, real *spmv_time )
int i, j, k, itr, N;
real cc, tmp1, tmp2, temp, bnorm;
struct timeval start, stop;
N = H->n;
bnorm = Norm( b, N );
/* GMRES outer-loop */
for ( itr = 0; itr < MAX_ITR; ++itr )
{
/* calculate r0 */
gettimeofday( &start, NULL );
gettimeofday( &stop, NULL );
*spmv_time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
Vector_Sum( workspace->v[0], 1., b, -1., workspace->b_prm, N );
gettimeofday( &start, NULL );
Forward_Subs( L, workspace->v[0], workspace->v[0] );
Backward_Subs( U, workspace->v[0], workspace->v[0] );
gettimeofday( &stop, NULL );
*time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
workspace->g[0] = Norm( workspace->v[0], N );
Vector_Scale( workspace->v[0], 1. / workspace->g[0], workspace->v[0], N );
//fprintf( stderr, "res: %.15e\n", workspace->g[0] );
/* GMRES inner-loop */
for ( j = 0; j < RESTART && fabs(workspace->g[j]) / bnorm > tol; j++ )
{
/* matvec */
gettimeofday( &start, NULL );
gettimeofday( &stop, NULL );
*spmv_time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
gettimeofday( &start, NULL );
Forward_Subs( L, workspace->v[j + 1], workspace->v[j + 1] );
Backward_Subs( U, workspace->v[j + 1], workspace->v[j + 1] );
gettimeofday( &stop, NULL );
*time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
/* apply modified Gram-Schmidt to orthogonalize the new residual */
for ( i = 0; i < j - 1; i++ ) workspace->h[i][j] = 0;
//for( i = 0; i <= j; i++ ) {
for ( i = MAX(j - 1, 0); i <= j; i++ )
{
workspace->h[i][j] = Dot( workspace->v[i], workspace->v[j + 1], N );
Vector_Add( workspace->v[j + 1], -workspace->h[i][j], workspace->v[i], N );
}
workspace->h[j + 1][j] = Norm( workspace->v[j + 1], N );
Vector_Scale( workspace->v[j + 1],
1. / workspace->h[j + 1][j], workspace->v[j + 1], N );
// fprintf( stderr, "%d-%d: orthogonalization completed.\n", itr, j );
/* Givens rotations on the upper-Hessenberg matrix to make it U */
for ( i = MAX(j - 1, 0); i <= j; i++ )
{
if ( i == j )
{
cc = SQRT( SQR(workspace->h[j][j]) + SQR(workspace->h[j + 1][j]) );
workspace->hc[j] = workspace->h[j][j] / cc;
workspace->hs[j] = workspace->h[j + 1][j] / cc;
}
tmp1 = workspace->hc[i] * workspace->h[i][j] +
workspace->hs[i] * workspace->h[i + 1][j];
tmp2 = -workspace->hs[i] * workspace->h[i][j] +
workspace->hc[i] * workspace->h[i + 1][j];
workspace->h[i][j] = tmp1;
workspace->h[i + 1][j] = tmp2;
}
/* apply Givens rotations to the rhs as well */
tmp1 = workspace->hc[j] * workspace->g[j];
tmp2 = -workspace->hs[j] * workspace->g[j];
workspace->g[j] = tmp1;
workspace->g[j + 1] = tmp2;
//fprintf( stderr, "h: " );
//for( i = 0; i <= j+1; ++i )
//fprintf( stderr, "%.6f ", workspace->h[i][j] );
//fprintf( stderr, "\n" );
//fprintf( stderr, "res: %.15e\n", workspace->g[j+1] );
}
/* solve Hy = g: H is now upper-triangular, do back-substitution */
for ( i = j - 1; i >= 0; i-- )
{
temp = workspace->g[i];
for ( k = j - 1; k > i; k-- )
temp -= workspace->h[i][k] * workspace->y[k];
workspace->y[i] = temp / workspace->h[i][i];
}
/* update x = x_0 + Vy */
Vector_MakeZero( workspace->p, N );
for ( i = 0; i < j; i++ )
Vector_Add( workspace->p, workspace->y[i], workspace->v[i], N );
//Backward_Subs( U, workspace->p, workspace->p );
//Forward_Subs( L, workspace->p, workspace->p );
Vector_Add( x, 1., workspace->p, N );
/* stopping condition */
if ( fabs(workspace->g[j]) / bnorm <= tol )
break;
// Sparse_MatVec( H, x, workspace->b_prm );
// for( i = 0; i < N; ++i )
// workspace->b_prm[i] *= workspace->Hdia_inv[i];
// fprintf( fout, "\n%10s%15s%15s\n", "b_prc", "b_prm", "x" );
// for( i = 0; i < N; ++i )
// fprintf( fout, "%10.5f%15.12f%15.12f\n",
// workspace->b_prc[i], workspace->b_prm[i], x[i] );*/
// fprintf(fout,"GMRES outer:%d, inner:%d iters - residual norm: %25.20f\n",
// itr, j, fabs( workspace->g[j] ) / bnorm );
// data->timing.matvec += itr * RESTART + j;
if ( itr >= MAX_ITR )
{
fprintf( stderr, "GMRES convergence failed\n" );
// return -1;
return itr * (RESTART + 1) + j + 1;
/* generalized minimual residual iterative solver for sparse linear systems,
* with preconditioner using factors LU \approx H
* and Jacobi iteration for approximate factor application */
int PGMRES_Jacobi( static_storage *workspace, sparse_matrix *H, real *b, real tol,
sparse_matrix *L, sparse_matrix *U, real *x, unsigned int iters,
FILE *fout, real *time, real *spmv_time )
struct timeval start, stop;
N = H->n;
bnorm = Norm( b, N );
/* Compute Jacobi iteration matrices from
* truncated Newmann series: x_{k+1} = Gx_k + D^{-1}b
* where:
* G = I - D^{-1}R
* R = triangular matrix
* D = diagonal matrix, diagonals from R */
if ( (Dinv_L = (real*) malloc(sizeof(real) * N)) == NULL
|| (Dinv_U = (real*) malloc(sizeof(real) * N)) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit(INSUFFICIENT_SPACE);
}
/* construct D^{-1}_L and D^{-1}_U */
for ( i = 0; i < N; ++i )
{
si = L->start[i + 1] - 1;
Dinv_L[i] = 1. / L->entries[si].val;
Dinv_U[i] = 1. / U->entries[si].val;
/* GMRES outer-loop */
for ( itr = 0; itr < MAX_ITR; ++itr )
{
/* calculate r0 */
gettimeofday( &start, NULL );
gettimeofday( &stop, NULL );
*spmv_time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
Vector_Sum( workspace->v[0], 1., b, -1., workspace->b_prm, N );
gettimeofday( &start, NULL );
Jacobi_Iter( L, LOWER, Dinv_L, N, workspace->v[0], workspace->v[0], iters );
Jacobi_Iter( U, UPPER, Dinv_U, N, workspace->v[0], workspace->v[0], iters );
gettimeofday( &stop, NULL );
*time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
workspace->g[0] = Norm( workspace->v[0], N );
Vector_Scale( workspace->v[0], 1. / workspace->g[0], workspace->v[0], N );
//fprintf( stderr, "res: %.15e\n", workspace->g[0] );
/* GMRES inner-loop */
for ( j = 0; j < RESTART && fabs(workspace->g[j]) / bnorm > tol; j++ )
{
/* matvec */
gettimeofday( &start, NULL );
gettimeofday( &stop, NULL );
*spmv_time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
gettimeofday( &start, NULL );
Jacobi_Iter( L, LOWER, Dinv_L, N, workspace->v[j + 1], workspace->v[j + 1], iters );
Jacobi_Iter( U, UPPER, Dinv_U, N, workspace->v[j + 1], workspace->v[j + 1], iters );
gettimeofday( &stop, NULL );
*time += (stop.tv_sec + stop.tv_usec / 1000000.0)
- (start.tv_sec + start.tv_usec / 1000000.0);
/* apply modified Gram-Schmidt to orthogonalize the new residual */
for ( i = 0; i < j - 1; i++ )
{
workspace->h[i][j] = 0;
}
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//for( i = 0; i <= j; i++ ) {
for ( i = MAX(j - 1, 0); i <= j; i++ )
{
workspace->h[i][j] = Dot( workspace->v[i], workspace->v[j + 1], N );
Vector_Add( workspace->v[j + 1], -workspace->h[i][j], workspace->v[i], N );
}
workspace->h[j + 1][j] = Norm( workspace->v[j + 1], N );
Vector_Scale( workspace->v[j + 1],
1. / workspace->h[j + 1][j], workspace->v[j + 1], N );
// fprintf( stderr, "%d-%d: orthogonalization completed.\n", itr, j );
/* Givens rotations on the upper-Hessenberg matrix to make it U */
for ( i = MAX(j - 1, 0); i <= j; i++ )
{
if ( i == j )
{
cc = SQRT( SQR(workspace->h[j][j]) + SQR(workspace->h[j + 1][j]) );
workspace->hc[j] = workspace->h[j][j] / cc;
workspace->hs[j] = workspace->h[j + 1][j] / cc;
}
tmp1 = workspace->hc[i] * workspace->h[i][j] +
workspace->hs[i] * workspace->h[i + 1][j];
tmp2 = -workspace->hs[i] * workspace->h[i][j] +
workspace->hc[i] * workspace->h[i + 1][j];
workspace->h[i][j] = tmp1;
workspace->h[i + 1][j] = tmp2;
}
/* apply Givens rotations to the rhs as well */
tmp1 = workspace->hc[j] * workspace->g[j];
tmp2 = -workspace->hs[j] * workspace->g[j];
workspace->g[j] = tmp1;
workspace->g[j + 1] = tmp2;
//fprintf( stderr, "h: " );
//for( i = 0; i <= j+1; ++i )