Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "box.h"
#include "vector.h"
void Init_Box_From_CRYST(real a, real b, real c,
real alpha, real beta, real gamma,
simulation_box* box )
{
double c_alpha, c_beta, c_gamma, s_gamma, zi;
c_alpha = cos(DEG2RAD(alpha));
c_beta = cos(DEG2RAD(beta));
c_gamma = cos(DEG2RAD(gamma));
s_gamma = sin(DEG2RAD(gamma));
zi = (c_alpha - c_beta * c_gamma)/s_gamma;
box->box[0][0] = a;
box->box[0][1] = 0.0;
box->box[0][2] = 0.0;
box->box[1][0] = b * c_gamma;
box->box[1][1] = b * s_gamma;
box->box[1][2] = 0.0;
box->box[2][0] = c * c_beta;
box->box[2][1] = c * zi;
box->box[2][2] = c * SQRT(1.0 - SQR(c_beta) - SQR(zi));
Make_Consistent( box );
#if defined(DEBUG_FOCUS)
fprintf( stderr, "box is %8.2f x %8.2f x %8.2f\n",
box->box[0][0], box->box[1][1], box->box[2][2] );
#endif
}
void Update_Box( rtensor box_tensor, simulation_box* box )
{
int i, j;
for (i=0; i < 3; i++)
for (j=0; j < 3; j++)
box->box[i][j] = box_tensor[i][j];
Make_Consistent( box );
}
void Update_Box_Isotropic( simulation_box *box, real mu )
{
/*box->box[0][0] =
POW( V_new / ( box->side_prop[1] * box->side_prop[2] ), 1.0/3.0 );
box->box[1][1] = box->box[0][0] * box->side_prop[1];
box->box[2][2] = box->box[0][0] * box->side_prop[2];
*/
rtensor_Copy( box->old_box, box->box );
box->box[0][0] *= mu;
box->box[1][1] *= mu;
box->box[2][2] *= mu;
box->volume = box->box[0][0]*box->box[1][1]*box->box[2][2];
Make_Consistent(box/*, periodic*/);
}
void Update_Box_SemiIsotropic( simulation_box *box, rvec mu )
{
/*box->box[0][0] =
POW( V_new / ( box->side_prop[1] * box->side_prop[2] ), 1.0/3.0 );
box->box[1][1] = box->box[0][0] * box->side_prop[1];
box->box[2][2] = box->box[0][0] * box->side_prop[2]; */
rtensor_Copy( box->old_box, box->box );
box->box[0][0] *= mu[0];
box->box[1][1] *= mu[1];
box->box[2][2] *= mu[2];
box->volume = box->box[0][0]*box->box[1][1]*box->box[2][2];
Make_Consistent(box);
}
void Make_Consistent(simulation_box* box)
{
real one_vol;
box->volume =
box->box[0][0] * (box->box[1][1]*box->box[2][2] -
box->box[2][1]*box->box[2][1]) +
box->box[0][1] * (box->box[2][0]*box->box[1][2] -
box->box[1][0]*box->box[2][2]) +
box->box[0][2] * (box->box[1][0]*box->box[2][1] -
box->box[2][0]*box->box[1][1]);
one_vol = 1.0/box->volume;
box->box_inv[0][0] = (box->box[1][1]*box->box[2][2] -
box->box[1][2]*box->box[2][1]) * one_vol;
box->box_inv[0][1] = (box->box[0][2]*box->box[2][1] -
box->box[0][1]*box->box[2][2]) * one_vol;
box->box_inv[0][2] = (box->box[0][1]*box->box[1][2] -
box->box[0][2]*box->box[1][1]) * one_vol;
box->box_inv[1][0] = (box->box[1][2]*box->box[2][0] -
box->box[1][0]*box->box[2][2]) * one_vol;
box->box_inv[1][1] = (box->box[0][0]*box->box[2][2] -
box->box[0][2]*box->box[2][0]) * one_vol;
box->box_inv[1][2] = (box->box[0][2]*box->box[1][0] -
box->box[0][0]*box->box[1][2]) * one_vol;
box->box_inv[2][0] = (box->box[1][0]*box->box[2][1] -
box->box[1][1]*box->box[2][0]) * one_vol;
box->box_inv[2][1] = (box->box[0][1]*box->box[2][0] -
box->box[0][0]*box->box[2][1]) * one_vol;
box->box_inv[2][2] = (box->box[0][0]*box->box[1][1] -
box->box[0][1]*box->box[1][0]) * one_vol;
box->box_norms[0] = SQRT( SQR(box->box[0][0]) +
SQR(box->box[0][1]) +
SQR(box->box[0][2]) );
box->box_norms[1] = SQRT( SQR(box->box[1][0]) +
SQR(box->box[1][1]) +
SQR(box->box[1][2]) );
box->box_norms[2] = SQRT( SQR(box->box[2][0]) +
SQR(box->box[2][1]) +
SQR(box->box[2][2]) );
box->trans[0][0] = box->box[0][0]/box->box_norms[0];
box->trans[0][1] = box->box[1][0]/box->box_norms[0];
box->trans[0][2] = box->box[2][0]/box->box_norms[0];
box->trans[1][0] = box->box[0][1]/box->box_norms[1];
box->trans[1][1] = box->box[1][1]/box->box_norms[1];
box->trans[1][2] = box->box[2][1]/box->box_norms[1];
box->trans[2][0] = box->box[0][2]/box->box_norms[2];
box->trans[2][1] = box->box[1][2]/box->box_norms[2];
box->trans[2][2] = box->box[2][2]/box->box_norms[2];
one_vol = box->box_norms[0]*box->box_norms[1]*box->box_norms[2]*one_vol;
box->trans_inv[0][0] = (box->trans[1][1]*box->trans[2][2] -
box->trans[1][2]*box->trans[2][1]) * one_vol;
box->trans_inv[0][1] = (box->trans[0][2]*box->trans[2][1] -
box->trans[0][1]*box->trans[2][2]) * one_vol;
box->trans_inv[0][2] = (box->trans[0][1]*box->trans[1][2] -
box->trans[0][2]*box->trans[1][1]) * one_vol;
box->trans_inv[1][0] = (box->trans[1][2]*box->trans[2][0] -
box->trans[1][0]*box->trans[2][2]) * one_vol;
box->trans_inv[1][1] = (box->trans[0][0]*box->trans[2][2] -
box->trans[0][2]*box->trans[2][0]) * one_vol;
box->trans_inv[1][2] = (box->trans[0][2]*box->trans[1][0] -
box->trans[0][0]*box->trans[1][2]) * one_vol;
box->trans_inv[2][0] = (box->trans[1][0]*box->trans[2][1] -
box->trans[1][1]*box->trans[2][0]) * one_vol;
box->trans_inv[2][1] = (box->trans[0][1]*box->trans[2][0] -
box->trans[0][0]*box->trans[2][1]) * one_vol;
box->trans_inv[2][2] = (box->trans[0][0]*box->trans[1][1] -
box->trans[0][1]*box->trans[1][0]) * one_vol;
// for (i=0; i < 3; i++)
// {
// for (j=0; j < 3; j++)
// fprintf(stderr,"%lf\t",box->trans[i][j]);
// fprintf(stderr,"\n");
// }
// fprintf(stderr,"\n");
// for (i=0; i < 3; i++)
// {
// for (j=0; j < 3; j++)
// fprintf(stderr,"%lf\t",box->trans_inv[i][j]);
// fprintf(stderr,"\n");
// }
box->g[0][0] = box->box[0][0] * box->box[0][0] +
box->box[0][1] * box->box[0][1] +
box->box[0][2] * box->box[0][2];
box->g[1][0] =
box->g[0][1] = box->box[0][0] * box->box[1][0] +
box->box[0][1] * box->box[1][1] +
box->box[0][2] * box->box[1][2];
box->g[2][0] =
box->g[0][2] = box->box[0][0] * box->box[2][0] +
box->box[0][1] * box->box[2][1] +
box->box[0][2] * box->box[2][2];
box->g[1][1] = box->box[1][0] * box->box[1][0] +
box->box[1][1] * box->box[1][1] +
box->box[1][2] * box->box[1][2];
box->g[1][2] =
box->g[2][1] = box->box[1][0] * box->box[2][0] +
box->box[1][1] * box->box[2][1] +
box->box[1][2] * box->box[2][2];
box->g[2][2] = box->box[2][0] * box->box[2][0] +
box->box[2][1] * box->box[2][1] +
box->box[2][2] * box->box[2][2];
// These proportions are only used for isotropic_NPT!
box->side_prop[0] = box->box[0][0] / box->box[0][0];
box->side_prop[1] = box->box[1][1] / box->box[0][0];
box->side_prop[2] = box->box[2][2] / box->box[0][0];
}
void Transform( rvec x1, simulation_box *box, char flag, rvec x2 )
{
int i, j;
real tmp;
// printf(">x1: (%lf, %lf, %lf)\n",x1[0],x1[1],x1[2]);
if (flag > 0) {
for (i=0; i < 3; i++) {
tmp = 0.0;
for (j=0; j < 3; j++)
tmp += box->trans[i][j]*x1[j];
x2[i] = tmp;
}
}
else {
for (i=0; i < 3; i++) {
tmp = 0.0;
for (j=0; j < 3; j++)
tmp += box->trans_inv[i][j]*x1[j];
x2[i] = tmp;
}
}
// printf(">x2: (%lf, %lf, %lf)\n", x2[0], x2[1], x2[2]);
}
void Transform_to_UnitBox( rvec x1, simulation_box *box, char flag, rvec x2 )
{
Transform( x1, box, flag, x2 );
x2[0] /= box->box_norms[0];
x2[1] /= box->box_norms[1];
x2[2] /= box->box_norms[2];
}
void Inc_on_T3( rvec x, rvec dx, simulation_box *box )
{
int i;
real tmp;
for (i=0; i < 3; i++) {
tmp = x[i] + dx[i];
if( tmp <= -box->box_norms[i] || tmp >= box->box_norms[i] )
tmp = fmod( tmp, box->box_norms[i] );
if( tmp < 0 ) tmp += box->box_norms[i];
x[i] = tmp;
}
}
real Sq_Distance_on_T3(rvec x1, rvec x2, simulation_box* box, rvec r)
{
real norm=0.0;
real d, tmp;
int i;
for (i=0; i < 3; i++) {
d = x2[i] - x1[i];
tmp = SQR(d);
if( tmp >= SQR( box->box_norms[i] / 2.0 ) ) {
if (x2[i] > x1[i])
d -= box->box_norms[i];
else
d += box->box_norms[i];
r[i] = d;
norm += SQR(d);
}
else {
r[i] = d;
norm += tmp;
}
}
return norm;
}
void Distance_on_T3_Gen( rvec x1, rvec x2, simulation_box* box, rvec r )
{
rvec xa, xb, ra;
Transform( x1, box, -1, xa );
Transform( x2, box, -1, xb );
//printf(">xa: (%lf, %lf, %lf)\n",xa[0],xa[1],xa[2]);
//printf(">xb: (%lf, %lf, %lf)\n",xb[0],xb[1],xb[2]);
Sq_Distance_on_T3( xa, xb, box, ra );
Transform( ra, box, 1, r );
}
void Inc_on_T3_Gen( rvec x, rvec dx, simulation_box* box )
{
rvec xa, dxa;
Transform( x, box, -1, xa );
Transform( dx, box, -1, dxa );
//printf(">xa: (%lf, %lf, %lf)\n",xa[0],xa[1],xa[2]);
//printf(">dxa: (%lf, %lf, %lf)\n",dxa[0],dxa[1],dxa[2]);
Inc_on_T3( xa, dxa, box );
//printf(">new_xa: (%lf, %lf, %lf)\n",xa[0],xa[1],xa[2]);
Transform( xa, box, 1, x );
}
real Metric_Product( rvec x1, rvec x2, simulation_box* box )
{
int i, j;
real dist=0.0, tmp;
for( i = 0; i < 3; i++ )
{
tmp = 0.0;
for( j = 0; j < 3; j++ )
tmp += box->g[i][j] * x2[j];
dist += x1[i] * tmp;
}
return dist;
}
int Are_Far_Neighbors( rvec x1, rvec x2, simulation_box *box,
real cutoff, far_neighbor_data *data )
{
real norm_sqr, d, tmp;
int i;
norm_sqr = 0;
for( i = 0; i < 3; i++ ) {
d = x2[i] - x1[i];
tmp = SQR(d);
if( tmp >= SQR( box->box_norms[i] / 2.0 ) ) {
if( x2[i] > x1[i] ) {
d -= box->box_norms[i];
data->rel_box[i] = -1;
}
else {
d += box->box_norms[i];
data->rel_box[i] = +1;
}
data->dvec[i] = d;
norm_sqr += SQR(d);
}
else {
data->dvec[i] = d;
norm_sqr += tmp;
data->rel_box[i] = 0;
}
}
if( norm_sqr <= SQR(cutoff) ){
data->d = sqrt(norm_sqr);
return 1;
}
return 0;
}
/* Determines if the distance between x1 and x2 is < vlist_cut.
If so, this neighborhood is added to the list of far neighbors.
Periodic boundary conditions do not apply. */
void Get_NonPeriodic_Far_Neighbors( rvec x1, rvec x2, simulation_box *box,
control_params *control,
far_neighbor_data *new_nbrs, int *count )
{
real norm_sqr;
rvec_ScaledSum( new_nbrs[0].dvec, 1.0, x2, -1.0, x1 );
norm_sqr = rvec_Norm_Sqr( new_nbrs[0].dvec );
if( norm_sqr <= SQR( control->vlist_cut ) ) {
*count = 1;
new_nbrs[0].d = SQRT( norm_sqr );
ivec_MakeZero( new_nbrs[0].rel_box );
// rvec_MakeZero( new_nbrs[0].ext_factor );
}
else *count = 0;
}
/* Finds periodic neighbors in a 'big_box'. Here 'big_box' means:
the current simulation box has all dimensions > 2 *vlist_cut.
If the periodic distance between x1 and x2 is than vlist_cut, this
neighborhood is added to the list of far neighbors. */
void Get_Periodic_Far_Neighbors_Big_Box( rvec x1, rvec x2, simulation_box *box,
control_params *control,
far_neighbor_data *periodic_nbrs,
int *count )
{
real norm_sqr, d, tmp;
int i;
norm_sqr = 0;
for( i = 0; i < 3; i++ ) {
d = x2[i] - x1[i];
tmp = SQR(d);
// fprintf(out,"Inside Sq_Distance_on_T3, %d, %lf, %lf\n",
// i,tmp,SQR(box->box_norms[i]/2.0));
if( tmp >= SQR( box->box_norms[i] / 2.0 ) ) {
if( x2[i] > x1[i] ) {
d -= box->box_norms[i];
periodic_nbrs[0].rel_box[i] = -1;
// periodic_nbrs[0].ext_factor[i] = +1;
}
else {
d += box->box_norms[i];
periodic_nbrs[0].rel_box[i] = +1;
// periodic_nbrs[0].ext_factor[i] = -1;
}
periodic_nbrs[0].dvec[i] = d;
norm_sqr += SQR(d);
}
else {
periodic_nbrs[0].dvec[i] = d;
norm_sqr += tmp;
periodic_nbrs[0].rel_box[i] = 0;
// periodic_nbrs[0].ext_factor[i] = 0;
}
}
if( norm_sqr <= SQR( control->vlist_cut ) ) {
*count = 1;
periodic_nbrs[0].d = SQRT( norm_sqr );
}
else *count = 0;
}
/* Finds all periodic far neighborhoods between x1 and x2
((dist(x1, x2') < vlist_cut, periodic images of x2 are also considered).
Here the box is 'small' meaning that at least one dimension is < 2*vlist_cut.
IMPORTANT: This part might need some improvement. In NPT, the simulation box
might get too small (such as <5 A!). In this case we have to consider the
periodic images of x2 that are two boxs away!!!
*/
void Get_Periodic_Far_Neighbors_Small_Box( rvec x1, rvec x2, simulation_box *box,
control_params *control,
far_neighbor_data *periodic_nbrs,
int *count )
{
int i, j, k;
int imax, jmax, kmax;
real sqr_norm, d_i, d_j, d_k;
*count = 0;
/* determine the max stretch of imaginary boxs in each direction
to handle periodic boundary conditions correctly. */
imax = (int)(control->vlist_cut / box->box_norms[0] + 1);
jmax = (int)(control->vlist_cut / box->box_norms[1] + 1);
kmax = (int)(control->vlist_cut / box->box_norms[2] + 1);
/*if( imax > 1 || jmax > 1 || kmax > 1 )
fprintf( stderr, "box %8.3f x %8.3f x %8.3f --> %2d %2d %2d\n",
box->box_norms[0], box->box_norms[1], box->box_norms[2],
imax, jmax, kmax ); */
for( i = -imax; i <= imax; ++i )
if(fabs(d_i=((x2[0]+i*box->box_norms[0])-x1[0]))<=control->vlist_cut) {
for( j = -jmax; j <= jmax; ++j )
if(fabs(d_j=((x2[1]+j*box->box_norms[1])-x1[1]))<=control->vlist_cut) {
for( k = -kmax; k <= kmax; ++k )
if(fabs(d_k=((x2[2]+k*box->box_norms[2])-x1[2]))<=control->vlist_cut) {
sqr_norm = SQR(d_i) + SQR(d_j) + SQR(d_k);
if( sqr_norm <= SQR(control->vlist_cut) ) {
periodic_nbrs[ *count ].d = SQRT( sqr_norm );
periodic_nbrs[ *count ].dvec[0] = d_i;
periodic_nbrs[ *count ].dvec[1] = d_j;
periodic_nbrs[ *count ].dvec[2] = d_k;
periodic_nbrs[ *count ].rel_box[0] = i;
periodic_nbrs[ *count ].rel_box[1] = j;
periodic_nbrs[ *count ].rel_box[2] = k;
/* if( i || j || k ) {
fprintf(stderr, "x1: %.2f %.2f %.2f\n", x1[0], x1[1], x1[2]);
fprintf(stderr, "x2: %.2f %.2f %.2f\n", x2[0], x2[1], x2[2]);
fprintf( stderr, "d : %8.2f%8.2f%8.2f\n\n", d_i, d_j, d_k );
} */
/* if(i) periodic_nbrs[*count].ext_factor[0] = (real)i/-abs(i);
else periodic_nbrs[*count].ext_factor[0] = 0;
if(j) periodic_nbrs[*count].ext_factor[1] = (real)j/-abs(j);
else periodic_nbrs[*count].ext_factor[1] = 0;
if(k) periodic_nbrs[*count].ext_factor[2] = (real)k/-abs(k);
else periodic_nbrs[*count].ext_factor[2] = 0; */
/* if( i == 0 && j == 0 && k == 0 )
* periodic_nbrs[ *count ].imaginary = 0;
* else periodic_nbrs[ *count ].imaginary = 1;
*/
++(*count);
}
}
}
}
}
/* Returns the mapping for the neighbor box pointed by (ix,iy,iz) */
/*int Get_Nbr_Box( simulation_box *box, int ix, int iy, int iz )
{
return (9 * ix + 3 * iy + iz + 13);
// 13 is to handle negative indexes properly
}*/
/* Returns total pressure vector for the neighbor box pointed by (ix,iy,iz) */
/*rvec Get_Nbr_Box_Press( simulation_box *box, int ix, int iy, int iz )
{
int map;
map = 9 * ix + 3 * iy + iz + 13;
// 13 is to adjust -1,-1,-1 correspond to index 0
return box->nbr_box_press[map];
}*/
/* Increments total pressure vector for the nbr box pointed by (ix,iy,iz) */
/*void Inc_Nbr_Box_Press( simulation_box *box, int ix, int iy, int iz, rvec v )
{
int map;
map = 9 * ix + 3 * iy + iz + 13;
// 13 is to adjust -1,-1,-1 correspond to index 0
rvec_Add( box->nbr_box_press[map], v );
}*/
/* Increments the total pressure vector for the neighbor box mapped to 'map' */
/*void Inc_Nbr_Box_Press( simulation_box *box, int map, rvec v )
{
rvec_Add( box->nbr_box_press[map], v );
}*/
void Print_Box_Information( simulation_box* box, FILE *out )
{
int i, j;
fprintf( out, "box: {" );
for( i = 0; i < 3; ++i )
{
fprintf( out, "{" );
for( j = 0; j < 3; ++j )
fprintf( out, "%8.3f ", box->box[i][j] );
fprintf( out, "}" );
}
fprintf( out, "}\n" );
fprintf( out, "V: %8.3f\tdims: {%8.3f, %8.3f, %8.3f}\n",
box->volume,
box->box_norms[0], box->box_norms[1], box->box_norms[2] );
fprintf( out, "box_trans: {" );
for( i = 0; i < 3; ++i )
{
fprintf( out, "{" );
for( j = 0; j < 3; ++j )
fprintf( out, "%8.3f ", box->trans[i][j] );
fprintf( out, "}" );
}
fprintf( out, "}\n" );
fprintf( out, "box_trinv: {" );
for( i = 0; i < 3; ++i )
{
fprintf( out, "{" );
for( j = 0; j < 3; ++j )
fprintf( out, "%8.3f ", box->trans_inv[i][j] );
fprintf( out, "}" );
}
fprintf( out, "}\n" );
}