Newer
Older
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
Kurt A. O'Hearn
committed
#include "reax_types.h"
Kurt A. O'Hearn
committed
#include "basic_comm.h"
#include "io_tools.h"
#include "tool_box.h"
#include "vector.h"
Kurt A. O'Hearn
committed
#if defined(HAVE_CUDA) && defined(DEBUG)
Kurt A. O'Hearn
committed
#include "cuda/cuda_validation.h"
Kurt A. O'Hearn
committed
#endif
#if defined(CG_PERFORMANCE)
real t_start, t_elapsed, matvec_time, dot_time;
#endif
void dual_Sparse_MatVec( sparse_matrix *A, rvec2 *x, rvec2 *b, int N )
{
int i, j, k, si;
real H;
for ( i = 0; i < N; ++i )
/* perform multiplication */
for ( i = 0; i < A->n; ++i )
{
si = A->start[i];
b[i][0] += A->entries[si].val * x[i][0];
b[i][1] += A->entries[si].val * x[i][1];
for ( k = si + 1; k < A->end[i]; ++k )
{
j = A->entries[k].j;
H = A->entries[k].val;
b[i][0] += H * x[j][0];
b[i][1] += H * x[j][1];
// comment out for tryQEq
//if( j < A->n ) {
b[j][0] += H * x[i][0];
b[j][1] += H * x[i][1];
//}
}
int dual_CG( reax_system *system, storage *workspace, sparse_matrix *H, rvec2
*b, real tol, rvec2 *x, mpi_datatypes* mpi_data, FILE *fout,
simulation_data *data )
Kurt A. O'Hearn
committed
int i, j, n, N, matvecs;
rvec2 tmp, alpha, beta;
rvec2 my_sum, norm_sqr, b_norm, my_dot;
rvec2 sig_old, sig_new;
MPI_Comm comm;
n = system->n;
N = system->N;
comm = mpi_data->world;
matvecs = 0;
if ( system->my_rank == MASTER_NODE )
{
matvecs = 0;
t_start = matvec_time = dot_time = 0;
t_start = Get_Time( );
}
Kurt A. O'Hearn
committed
#if defined(HAVE_CUDA) && defined(DEBUG)
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
Dist( system, mpi_data, x, RVEC2_PTR_TYPE, mpi_data->mpi_rvec2, rvec2_packer );
Kurt A. O'Hearn
committed
#if defined(HAVE_CUDA) && defined(DEBUG)
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
Coll( system, mpi_data, workspace->q2, RVEC2_PTR_TYPE,
mpi_data->mpi_rvec2, rvec2_unpacker );
if ( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &matvec_time );
{
/* residual */
workspace->r2[j][0] = b[j][0] - workspace->q2[j][0];
workspace->r2[j][1] = b[j][1] - workspace->q2[j][1];
/* apply diagonal pre-conditioner */
workspace->d2[j][0] = workspace->r2[j][0] * workspace->Hdia_inv[j];
workspace->d2[j][1] = workspace->r2[j][1] * workspace->Hdia_inv[j];
}
/* norm of b */
my_sum[0] = my_sum[1] = 0;
for ( j = 0; j < n; ++j )
{
my_sum[0] += SQR( b[j][0] );
my_sum[1] += SQR( b[j][1] );
//fprintf (stderr, "cg: my_sum[ %f, %f] \n", my_sum[0], my_sum[1]);
MPI_Allreduce( &my_sum, &norm_sqr, 2, MPI_DOUBLE, MPI_SUM, comm );
b_norm[0] = SQRT( norm_sqr[0] );
b_norm[1] = SQRT( norm_sqr[1] );
//fprintf( stderr, "bnorm = %f %f\n", b_norm[0], b_norm[1] );
for ( j = 0; j < n; ++j )
{
my_dot[0] += workspace->r2[j][0] * workspace->d2[j][0];
my_dot[1] += workspace->r2[j][1] * workspace->d2[j][1];
//fprintf( stderr, "my_dot: %f %f\n", my_dot[0], my_dot[1] );
MPI_Allreduce( &my_dot, &sig_new, 2, MPI_DOUBLE, MPI_SUM, comm );
//fprintf( stderr, "HOST:sig_new: %f %f\n", sig_new[0], sig_new[1] );
Kurt A. O'Hearn
committed
Dist( system, mpi_data, workspace->d2, RVEC2_PTR_TYPE,
mpi_data->mpi_rvec2, rvec2_packer );
//print_host_rvec2( workspace->d2, N );
dual_Sparse_MatVec( H, workspace->d2, workspace->q2, N );
// tryQEq
Kurt A. O'Hearn
committed
Coll( system, mpi_data, workspace->q2, RVEC2_PTR_TYPE,
mpi_data->mpi_rvec2, rvec2_unpacker );
#if defined(CG_PERFORMANCE)
if ( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &matvec_time );
#endif
/* dot product: d.q */
my_dot[0] = my_dot[1] = 0;
for ( j = 0; j < n; ++j )
{
my_dot[0] += workspace->d2[j][0] * workspace->q2[j][0];
my_dot[1] += workspace->d2[j][1] * workspace->q2[j][1];
}
MPI_Allreduce( &my_dot, &tmp, 2, MPI_DOUBLE, MPI_SUM, comm );
//fprintf( stderr, "tmp: %f %f\n", tmp[0], tmp[1] );
alpha[0] = sig_new[0] / tmp[0];
alpha[1] = sig_new[1] / tmp[1];
my_dot[0] = my_dot[1] = 0;
{
/* update x */
x[j][0] += alpha[0] * workspace->d2[j][0];
x[j][1] += alpha[1] * workspace->d2[j][1];
/* update residual */
workspace->r2[j][0] -= alpha[0] * workspace->q2[j][0];
workspace->r2[j][1] -= alpha[1] * workspace->q2[j][1];
/* apply diagonal pre-conditioner */
workspace->p2[j][0] = workspace->r2[j][0] * workspace->Hdia_inv[j];
workspace->p2[j][1] = workspace->r2[j][1] * workspace->Hdia_inv[j];
/* dot product: r.p */
my_dot[0] += workspace->r2[j][0] * workspace->p2[j][0];
my_dot[1] += workspace->r2[j][1] * workspace->p2[j][1];
}
sig_old[0] = sig_new[0];
sig_old[1] = sig_new[1];
MPI_Allreduce( &my_dot, &sig_new, 2, MPI_DOUBLE, MPI_SUM, comm );
//fprintf( stderr, "HOST:sig_new: %f %f\n", sig_new[0], sig_new[1] );
#if defined(CG_PERFORMANCE)
if ( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &dot_time );
if ( SQRT(sig_new[0]) / b_norm[0] <= tol || SQRT(sig_new[1]) / b_norm[1] <= tol )
beta[0] = sig_new[0] / sig_old[0];
beta[1] = sig_new[1] / sig_old[1];
{
/* d = p + beta * d */
workspace->d2[j][0] = workspace->p2[j][0] + beta[0] * workspace->d2[j][0];
workspace->d2[j][1] = workspace->p2[j][1] + beta[1] * workspace->d2[j][1];
}
}
if ( SQRT(sig_new[0]) / b_norm[0] <= tol )
{
for ( j = 0; j < n; ++j )
matvecs = CG( system, workspace, H, workspace->b_t, tol, workspace->t,
Kurt A. O'Hearn
committed
#if defined(DEBUG)
fprintf (stderr, " CG1: iterations --> %d \n", matvecs );
Kurt A. O'Hearn
committed
#endif
}
else if ( SQRT(sig_new[1]) / b_norm[1] <= tol )
{
for ( j = 0; j < n; ++j )
matvecs = CG( system, workspace, H, workspace->b_s, tol, workspace->s,
Kurt A. O'Hearn
committed
#if defined(DEBUG)
fprintf (stderr, " CG2: iterations --> %d \n", matvecs );
Kurt A. O'Hearn
committed
#endif
if ( system->my_rank == MASTER_NODE )
fprintf( fout, "QEq %d + %d iters. matvecs: %f dot: %f\n",
i + 1, matvecs, matvec_time, dot_time );
}
void Sparse_MatVec( sparse_matrix *A, real *x, real *b, int N )
{
int i, j, k, si;
real H;
for ( i = 0; i < N; ++i )
/* perform multiplication */
for ( i = 0; i < A->n; ++i )
{
si = A->start[i];
b[i] += A->entries[si].val * x[i];
for ( k = si + 1; k < A->end[i]; ++k )
{
j = A->entries[k].j;
H = A->entries[k].val;
b[i] += H * x[j];
//if( j < A->n ) // comment out for tryQEq
b[j] += H * x[i];
}
int CG( reax_system *system, storage *workspace, sparse_matrix *H, real *b,
real tol, real *x, mpi_datatypes* mpi_data )
Kurt A. O'Hearn
committed
int i, j;
real tmp, alpha, beta, b_norm;
real sig_old, sig_new, sig0;
Kurt A. O'Hearn
committed
Dist( system, mpi_data, x, REAL_PTR_TYPE, MPI_DOUBLE, real_packer );
Kurt A. O'Hearn
committed
Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
Vector_Sum( workspace->r , 1., b, -1., workspace->q, system->n );
for ( j = 0; j < system->n; ++j )
workspace->d[j] = workspace->r[j] * workspace->Hdia_inv[j]; //pre-condition
b_norm = Parallel_Norm( b, system->n, mpi_data->world );
sig_new = Parallel_Dot(workspace->r, workspace->d, system->n, mpi_data->world);
sig0 = sig_new;
for ( i = 1; i < 300 && SQRT(sig_new) / b_norm > tol; ++i )
{
Kurt A. O'Hearn
committed
Dist( system, mpi_data, workspace->d, REAL_PTR_TYPE, MPI_DOUBLE, real_packer );
Sparse_MatVec( H, workspace->d, workspace->q, system->N );
Kurt A. O'Hearn
committed
Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
tmp = Parallel_Dot(workspace->d, workspace->q, system->n, mpi_data->world);
alpha = sig_new / tmp;
Vector_Add( x, alpha, workspace->d, system->n );
Vector_Add( workspace->r, -alpha, workspace->q, system->n );
/* pre-conditioning */
for ( j = 0; j < system->n; ++j )
workspace->p[j] = workspace->r[j] * workspace->Hdia_inv[j];
sig_old = sig_new;
sig_new = Parallel_Dot(workspace->r, workspace->p, system->n, mpi_data->world);
//fprintf (stderr, "Host : sig_new: %f \n", sig_new );
beta = sig_new / sig_old;
Vector_Sum( workspace->d, 1., workspace->p, beta, workspace->d, system->n );
}
if ( i >= 300 )
{
fprintf( stderr, "CG convergence failed!\n" );
return i;
}
int CG_test( reax_system *system, storage *workspace, sparse_matrix *H, real
*b, real tol, real *x, mpi_datatypes* mpi_data, FILE *fout )
Kurt A. O'Hearn
committed
int i, j;
real tmp, alpha, beta, b_norm;
real sig_old, sig_new, sig0;
b_norm = Parallel_Norm( b, system->n, mpi_data->world );
Kurt A. O'Hearn
committed
if ( system->my_rank == MASTER_NODE )
{
fprintf( stderr, "n=%d, N=%d\n", system->n, system->N );
fprintf( stderr, "p%d CGinit: b_norm=%24.15e\n", system->my_rank, b_norm );
//Vector_Print( stderr, "d", workspace->d, system->N );
//Vector_Print( stderr, "q", workspace->q, system->N );
}
MPI_Barrier( mpi_data->world );
Kurt A. O'Hearn
committed
//Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
Vector_Sum( workspace->r , 1., b, -1., workspace->q, system->n );
for ( j = 0; j < system->n; ++j )
workspace->d[j] = workspace->r[j] * workspace->Hdia_inv[j]; //pre-condition
sig_new = Parallel_Dot( workspace->r, workspace->d, system->n,
mpi_data->world );
sig0 = sig_new;
//if( system->my_rank == MASTER_NODE ) {
fprintf( stderr, "p%d CG:sig_new=%24.15e,d_norm=%24.15e,q_norm=%24.15e\n",
Kurt A. O'Hearn
committed
system->my_rank, SQRT(sig_new),
Parallel_Norm(workspace->d, system->n, mpi_data->world),
Parallel_Norm(workspace->q, system->n, mpi_data->world) );
//Vector_Print( stderr, "d", workspace->d, system->N );
//Vector_Print( stderr, "q", workspace->q, system->N );
//}
for ( i = 1; i < 300 && SQRT(sig_new) / b_norm > tol; ++i )
{
if ( system->my_rank == MASTER_NODE )
t_start = Get_Time( );
Kurt A. O'Hearn
committed
Dist( system, mpi_data, workspace->d, REAL_PTR_TYPE, MPI_DOUBLE, real_packer );
Sparse_MatVec( H, workspace->d, workspace->q, system->N );
//tryQEq
Kurt A. O'Hearn
committed
//Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
if ( system->my_rank == MASTER_NODE )
{
t_elapsed = Get_Timing_Info( t_start );
matvec_time += t_elapsed;
}
if ( system->my_rank == MASTER_NODE )
t_start = Get_Time( );
#endif
tmp = Parallel_Dot(workspace->d, workspace->q, system->n, mpi_data->world);
alpha = sig_new / tmp;
//if( system->my_rank == MASTER_NODE ){
fprintf(stderr,
"p%d CG iter%d:d_norm=%24.15e,q_norm=%24.15e,tmp = %24.15e\n",
system->my_rank, i,
//Parallel_Norm(workspace->d, system->n, mpi_data->world),
//Parallel_Norm(workspace->q, system->n, mpi_data->world),
Norm(workspace->d, system->n), Norm(workspace->q, system->n), tmp);
//Vector_Print( stderr, "d", workspace->d, system->N );
//for( j = 0; j < system->N; ++j )
// fprintf( stdout, "%d %24.15e\n",
// system->my_atoms[j].orig_id, workspace->q[j] );
//fprintf( stdout, "\n" );
//}
MPI_Barrier( mpi_data->world );
Vector_Add( x, alpha, workspace->d, system->n );
Vector_Add( workspace->r, -alpha, workspace->q, system->n );
/* pre-conditioning */
for ( j = 0; j < system->n; ++j )
workspace->p[j] = workspace->r[j] * workspace->Hdia_inv[j];
sig_old = sig_new;
sig_new = Parallel_Dot(workspace->r, workspace->p, system->n, mpi_data->world);
beta = sig_new / sig_old;
Vector_Sum( workspace->d, 1., workspace->p, beta, workspace->d, system->n );
if ( system->my_rank == MASTER_NODE )
fprintf(stderr, "p%d CG iter%d: sig_new = %24.15e\n",
Kurt A. O'Hearn
committed
system->my_rank, i, SQRT(sig_new) );
if ( system->my_rank == MASTER_NODE )
{
t_elapsed = Get_Timing_Info( t_start );
dot_time += t_elapsed;
}
if ( system->my_rank == MASTER_NODE )
fprintf( stderr, "CG took %d iterations\n", i );
if ( system->my_rank == MASTER_NODE )
fprintf( stderr, "%f %f\n", matvec_time, dot_time );
if ( i >= 300 )
{
fprintf( stderr, "CG convergence failed!\n" );
return i;
}
return i;
}
void Forward_Subs( sparse_matrix *L, real *b, real *y )
{
int i, pj, j, si, ei;
real val;
for ( i = 0; i < L->n; ++i )
{
y[i] = b[i];
si = L->start[i];
ei = L->end[i];
for ( pj = si; pj < ei - 1; ++pj )
{
j = L->entries[pj].j;
val = L->entries[pj].val;
y[i] -= val * y[j];
}
y[i] /= L->entries[pj].val;
}
}
void Backward_Subs( sparse_matrix *U, real *y, real *x )
{
int i, pj, j, si, ei;
real val;
for ( i = U->n - 1; i >= 0; --i )
{
x[i] = y[i];
si = U->start[i];
ei = U->end[i];
for ( pj = si + 1; pj < ei; ++pj )
{
j = U->entries[pj].j;
val = U->entries[pj].val;
x[i] -= val * x[j];
}
x[i] /= U->entries[si].val;
int PCG( reax_system *system, storage *workspace, sparse_matrix *H, real *b,
real tol, sparse_matrix *L, sparse_matrix *U, real *x, mpi_datatypes*
mpi_data, FILE *fout )
Kurt A. O'Hearn
committed
int i, me, n, N;
real tmp, alpha, beta, b_norm, r_norm, sig_old, sig_new;
MPI_Comm world;
me = system->my_rank;
n = system->n;
N = system->N;
world = mpi_data->world;
Kurt A. O'Hearn
committed
if ( me == MASTER_NODE )
{
fprintf( stderr, "init_PCG: n=%d, N=%d\n", n, N );
fprintf( stderr, "init_PCG: |b|=%24.15e\n", b_norm );
}
MPI_Barrier( world );
Kurt A. O'Hearn
committed
//Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
Vector_Sum( workspace->r , 1., b, -1., workspace->q, n );
r_norm = Parallel_Norm( workspace->r, n, world );
Forward_Subs( L, workspace->r, workspace->d );
Backward_Subs( U, workspace->d, workspace->p );
sig_new = Parallel_Dot( workspace->r, workspace->p, n, world );
if ( me == MASTER_NODE )
{
fprintf( stderr, "init_PCG: sig_new=%.15e\n", r_norm );
fprintf( stderr, "init_PCG: |d|=%.15e |q|=%.15e\n",
Parallel_Norm(workspace->d, n, world),
Parallel_Norm(workspace->q, n, world) );
}
MPI_Barrier( world );
for ( i = 1; i < 100 && r_norm / b_norm > tol; ++i )
{
Kurt A. O'Hearn
committed
Dist( system, mpi_data, workspace->p, REAL_PTR_TYPE, MPI_DOUBLE, real_packer );
Sparse_MatVec( H, workspace->p, workspace->q, N );
// tryQEq
Kurt A. O'Hearn
committed
//Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
tmp = Parallel_Dot( workspace->q, workspace->p, n, world );
alpha = sig_new / tmp;
Vector_Add( x, alpha, workspace->p, n );
{
fprintf(stderr, "iter%d: |p|=%.15e |q|=%.15e tmp=%.15e\n", i,
Parallel_Norm(workspace->p, n, world),
Vector_Add( workspace->r, -alpha, workspace->q, n );
r_norm = Parallel_Norm( workspace->r, n, world );
Forward_Subs( L, workspace->r, workspace->d );
Backward_Subs( U, workspace->d, workspace->d );
sig_old = sig_new;
sig_new = Parallel_Dot( workspace->r, workspace->d, n, world );
beta = sig_new / sig_old;
Vector_Sum( workspace->p, 1., workspace->d, beta, workspace->p, n );
}
int sCG( reax_system *system, storage *workspace, sparse_matrix *H,
real *b, real tol, real *x, mpi_datatypes* mpi_data, FILE *fout )
int i, j;
real tmp, alpha, beta, b_norm;
real sig_old, sig_new, sig0;
if ( system->my_rank == MASTER_NODE )
{
fprintf( stderr, "n=%d, N=%d\n", system->n, system->N );
fprintf( stderr, "p%d CGinit: b_norm=%24.15e\n", system->my_rank, b_norm );
//Vector_Print( stderr, "d", workspace->d, system->N );
//Vector_Print( stderr, "q", workspace->q, system->N );
}
MPI_Barrier( mpi_data->world );
Sparse_MatVec( H, x, workspace->q, system->N );
//Coll_Vector( system, workspace, mpi_data, workspace->q );
Vector_Sum( workspace->r , 1., b, -1., workspace->q, system->n );
for ( j = 0; j < system->n; ++j )
workspace->d[j] = workspace->r[j] * workspace->Hdia_inv[j]; //pre-condition
sig_new = Dot( workspace->r, workspace->d, system->n );
sig0 = sig_new;
if ( system->my_rank == MASTER_NODE )
{
fprintf( stderr, "p%d CGinit:sig_new=%24.15e\n", system->my_rank, sig_new );
//Vector_Print( stderr, "d", workspace->d, system->N );
//Vector_Print( stderr, "q", workspace->q, system->N );
for ( i = 1; i < 100 && SQRT(sig_new) / b_norm > tol; ++i )
{
//Dist_Vector( system, mpi_data, workspace->d );
Sparse_MatVec( H, workspace->d, workspace->q, system->N );
//Coll_Vector( system, workspace, mpi_data, workspace->q );
tmp = Dot( workspace->d, workspace->q, system->n );
alpha = sig_new / tmp;
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
if ( system->my_rank == MASTER_NODE )
{
fprintf(stderr,
"p%d CG iter%d:d_norm=%24.15e,q_norm=%24.15e,tmp = %24.15e\n",
system->my_rank, i,
Parallel_Norm(workspace->d, system->n, mpi_data->world),
Parallel_Norm(workspace->q, system->n, mpi_data->world), tmp );
//Vector_Print( stderr, "d", workspace->d, system->N );
//Vector_Print( stderr, "q", workspace->q, system->N );
}
MPI_Barrier( mpi_data->world );
#endif
Vector_Add( x, alpha, workspace->d, system->n );
Vector_Add( workspace->r, -alpha, workspace->q, system->n );
/* pre-conditioning */
for ( j = 0; j < system->n; ++j )
workspace->p[j] = workspace->r[j] * workspace->Hdia_inv[j];
sig_old = sig_new;
sig_new = Dot( workspace->r, workspace->p, system->n );
beta = sig_new / sig_old;
Vector_Sum( workspace->d, 1., workspace->p, beta, workspace->d, system->n );
#if defined(DEBUG)
if ( system->my_rank == MASTER_NODE )
fprintf(stderr, "p%d CG iter%d: sig_new = %24.15e\n",
system->my_rank, i, sig_new );
MPI_Barrier( mpi_data->world );
if ( system->my_rank == MASTER_NODE )
fprintf( stderr, "CG took %d iterations\n", i );
if ( i >= 100 )
{
fprintf( stderr, "CG convergence failed!\n" );
return i;
}
int GMRES( reax_system *system, storage *workspace, sparse_matrix *H,
real *b, real tol, real *x, mpi_datatypes* mpi_data, FILE *fout )
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
int i, j, k, itr, N;
real cc, tmp1, tmp2, temp, bnorm;
N = system->N;
bnorm = Norm( b, N );
/* apply the diagonal pre-conditioner to rhs */
for ( i = 0; i < N; ++i )
workspace->b_prc[i] = b[i] * workspace->Hdia_inv[i];
/* GMRES outer-loop */
for ( itr = 0; itr < MAX_ITR; ++itr )
{
/* calculate r0 */
Sparse_MatVec( H, x, workspace->b_prm, N );
for ( i = 0; i < N; ++i )
workspace->b_prm[i] *= workspace->Hdia_inv[i]; // pre-conditioner
Vector_Sum( workspace->v[0],
1., workspace->b_prc, -1., workspace->b_prm, N );
workspace->g[0] = Norm( workspace->v[0], N );
Vector_Scale( workspace->v[0],
1. / workspace->g[0], workspace->v[0], N );
// fprintf( stderr, "%10.6f\n", workspace->g[0] );
/* GMRES inner-loop */
Kurt A. O'Hearn
committed
for ( j = 0; j < RESTART && FABS(workspace->g[j]) / bnorm > tol; j++ )
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
{
/* matvec */
Sparse_MatVec( H, workspace->v[j], workspace->v[j + 1], N );
for ( k = 0; k < N; ++k )
workspace->v[j + 1][k] *= workspace->Hdia_inv[k]; // pre-conditioner
// fprintf( stderr, "%d-%d: matvec done.\n", itr, j );
/* apply modified Gram-Schmidt to orthogonalize the new residual */
for ( i = 0; i <= j; i++ )
{
workspace->h[i][j] = Dot(workspace->v[i], workspace->v[j + 1], N);
Vector_Add( workspace->v[j + 1],
-workspace->h[i][j], workspace->v[i], N );
}
workspace->h[j + 1][j] = Norm( workspace->v[j + 1], N );
Vector_Scale( workspace->v[j + 1],
1. / workspace->h[j + 1][j], workspace->v[j + 1], N );
// fprintf(stderr, "%d-%d: orthogonalization completed.\n", itr, j);
/* Givens rotations on the H matrix to make it U */
for ( i = 0; i <= j; i++ )
{
if ( i == j )
{
cc = SQRT(SQR(workspace->h[j][j]) + SQR(workspace->h[j + 1][j]));
workspace->hc[j] = workspace->h[j][j] / cc;
workspace->hs[j] = workspace->h[j + 1][j] / cc;
}
tmp1 = workspace->hc[i] * workspace->h[i][j] +
workspace->hs[i] * workspace->h[i + 1][j];
tmp2 = -workspace->hs[i] * workspace->h[i][j] +
workspace->hc[i] * workspace->h[i + 1][j];
workspace->h[i][j] = tmp1;
workspace->h[i + 1][j] = tmp2;
}
/* apply Givens rotations to the rhs as well */
tmp1 = workspace->hc[j] * workspace->g[j];
tmp2 = -workspace->hs[j] * workspace->g[j];
workspace->g[j] = tmp1;
workspace->g[j + 1] = tmp2;
Kurt A. O'Hearn
committed
// fprintf( stderr, "%10.6f\n", FABS(workspace->g[j+1]) );
}
/* solve Hy = g.
H is now upper-triangular, do back-substitution */
for ( i = j - 1; i >= 0; i-- )
{
temp = workspace->g[i];
for ( k = j - 1; k > i; k-- )
temp -= workspace->h[i][k] * workspace->y[k];
workspace->y[i] = temp / workspace->h[i][i];
}
/* update x = x_0 + Vy */
for ( i = 0; i < j; i++ )
Vector_Add( x, workspace->y[i], workspace->v[i], N );
/* stopping condition */
Kurt A. O'Hearn
committed
if ( FABS(workspace->g[j]) / bnorm <= tol )
/*Sparse_MatVec( system, H, x, workspace->b_prm, mpi_data );
for( i = 0; i < N; ++i )
workspace->b_prm[i] *= workspace->Hdia_inv[i];
fprintf( fout, "\n%10s%15s%15s\n", "b_prc", "b_prm", "x" );
for( i = 0; i < N; ++i )
fprintf( fout, "%10.5f%15.12f%15.12f\n",
workspace->b_prc[i], workspace->b_prm[i], x[i] );*/
fprintf( fout, "GMRES outer: %d, inner: %d - |rel residual| = %15.10f\n",
Kurt A. O'Hearn
committed
itr, j, FABS( workspace->g[j] ) / bnorm );
if ( itr >= MAX_ITR )
{
fprintf( stderr, "GMRES convergence failed\n" );
return FAILURE;
int GMRES_HouseHolder( reax_system *system, storage *workspace,
sparse_matrix *H, real *b, real tol, real *x,
mpi_datatypes* mpi_data, FILE *fout )
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
int i, j, k, itr, N;
real cc, tmp1, tmp2, temp, bnorm;
real v[10000], z[RESTART + 2][10000], w[RESTART + 2];
real u[RESTART + 2][10000];
N = system->N;
bnorm = Norm( b, N );
/* apply the diagonal pre-conditioner to rhs */
for ( i = 0; i < N; ++i )
workspace->b_prc[i] = b[i] * workspace->Hdia_inv[i];
/* GMRES outer-loop */
for ( itr = 0; itr < MAX_ITR; ++itr )
{
/* compute z = r0 */
Sparse_MatVec( H, x, workspace->b_prm, N );
for ( i = 0; i < N; ++i )
workspace->b_prm[i] *= workspace->Hdia_inv[i]; /* pre-conditioner */
Vector_Sum( z[0], 1., workspace->b_prc, -1., workspace->b_prm, N );
Vector_MakeZero( w, RESTART + 1 );
w[0] = Norm( z[0], N );
Vector_Copy( u[0], z[0], N );
u[0][0] += ( u[0][0] < 0.0 ? -1 : 1 ) * w[0];
Vector_Scale( u[0], 1 / Norm( u[0], N ), u[0], N );
w[0] *= ( u[0][0] < 0.0 ? 1 : -1 );
// fprintf( stderr, "\n\n%12.6f\n", w[0] );
/* GMRES inner-loop */
Kurt A. O'Hearn
committed
for ( j = 0; j < RESTART && FABS( w[j] ) / bnorm > tol; j++ )
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
{
/* compute v_j */
Vector_Scale( z[j], -2 * u[j][j], u[j], N );
z[j][j] += 1.; /* due to e_j */
for ( i = j - 1; i >= 0; --i )
Vector_Add( z[j] + i, -2 * Dot( u[i] + i, z[j] + i, N - i ), u[i] + i, N - i );
/* matvec */
Sparse_MatVec( H, z[j], v, N );
for ( k = 0; k < N; ++k )
v[k] *= workspace->Hdia_inv[k]; /* pre-conditioner */
for ( i = 0; i <= j; ++i )
Vector_Add( v + i, -2 * Dot( u[i] + i, v + i, N - i ), u[i] + i, N - i );
if ( !Vector_isZero( v + (j + 1), N - (j + 1) ) )
{
/* compute the HouseHolder unit vector u_j+1 */
for ( i = 0; i <= j; ++i )
u[j + 1][i] = 0;
Vector_Copy( u[j + 1] + (j + 1), v + (j + 1), N - (j + 1) );
u[j + 1][j + 1] +=
( v[j + 1] < 0.0 ? -1 : 1 ) * Norm( v + (j + 1), N - (j + 1) );
Vector_Scale( u[j + 1], 1 / Norm( u[j + 1], N ), u[j + 1], N );
/* overwrite v with P_m+1 * v */
v[j + 1] -=
2 * Dot( u[j + 1] + (j + 1), v + (j + 1), N - (j + 1) ) * u[j + 1][j + 1];
Vector_MakeZero( v + (j + 2), N - (j + 2) );
}
/* previous Givens rotations on H matrix to make it U */
for ( i = 0; i < j; i++ )
{
tmp1 = workspace->hc[i] * v[i] + workspace->hs[i] * v[i + 1];
tmp2 = -workspace->hs[i] * v[i] + workspace->hc[i] * v[i + 1];
v[i] = tmp1;
v[i + 1] = tmp2;
}
/* apply the new Givens rotation to H and right-hand side */
Kurt A. O'Hearn
committed
if ( FABS(v[j + 1]) >= ALMOST_ZERO )
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
cc = SQRT( SQR( v[j] ) + SQR( v[j + 1] ) );
workspace->hc[j] = v[j] / cc;
workspace->hs[j] = v[j + 1] / cc;
tmp1 = workspace->hc[j] * v[j] + workspace->hs[j] * v[j + 1];
tmp2 = -workspace->hs[j] * v[j] + workspace->hc[j] * v[j + 1];
v[j] = tmp1;
v[j + 1] = tmp2;
/* Givens rotations to rhs */
tmp1 = workspace->hc[j] * w[j];
tmp2 = -workspace->hs[j] * w[j];
w[j] = tmp1;
w[j + 1] = tmp2;
}
/* extend R */
for ( i = 0; i <= j; ++i )
workspace->h[i][j] = v[i];
// fprintf( stderr, "h:" );
// for( i = 0; i <= j+1 ; ++i )
// fprintf( stderr, "%.6f ", h[i][j] );
// fprintf( stderr, "\n" );
// fprintf( stderr, "%12.6f\n", w[j+1] );