Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "lin_alg.h"
#include "allocate.h"
Kurt A. O'Hearn
committed
#include "tool_box.h"
Kurt A. O'Hearn
committed
#if defined(HAVE_LAPACKE_MKL)
Kurt A. O'Hearn
committed
typedef struct
{
unsigned int j;
real val;
} sparse_matrix_entry;
/* global to make OpenMP shared (Sparse_MatVec) */
#ifdef _OPENMP
Kurt A. O'Hearn
committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
real *b_local = NULL;
#endif
/* global to make OpenMP shared (apply_preconditioner) */
real *Dinv_L = NULL, *Dinv_U = NULL;
/* global to make OpenMP shared (tri_solve_level_sched) */
int levels = 1;
int levels_L = 1, levels_U = 1;
unsigned int *row_levels_L = NULL, *level_rows_L = NULL, *level_rows_cnt_L = NULL;
unsigned int *row_levels_U = NULL, *level_rows_U = NULL, *level_rows_cnt_U = NULL;
unsigned int *row_levels, *level_rows, *level_rows_cnt;
unsigned int *top = NULL;
/* global to make OpenMP shared (graph_coloring) */
unsigned int *color = NULL;
unsigned int *to_color = NULL;
unsigned int *conflict = NULL;
unsigned int *conflict_cnt = NULL;
unsigned int *temp_ptr;
unsigned int *recolor = NULL;
unsigned int recolor_cnt;
unsigned int *color_top = NULL;
/* global to make OpenMP shared (sort_colors) */
unsigned int *permuted_row_col = NULL;
unsigned int *permuted_row_col_inv = NULL;
real *y_p = NULL;
/* global to make OpenMP shared (permute_vector) */
real *x_p = NULL;
unsigned int *mapping = NULL;
sparse_matrix *H_full;
sparse_matrix *H_p;
/* global to make OpenMP shared (jacobi_iter) */
real *Dinv_b = NULL, *rp = NULL, *rp2 = NULL, *rp3 = NULL;
#if defined(TEST_MAT)
static sparse_matrix * create_test_mat( void )
{
unsigned int i, n;
sparse_matrix *H_test;
if ( Allocate_Matrix( &H_test, 3, 6 ) == FAILURE )
{
fprintf( stderr, "not enough memory for test matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
//3x3, SPD, store lower half
i = 0;
n = 0;
H_test->start[n] = i;
H_test->j[i] = 0;
H_test->val[i] = 4.;
++i;
++n;
H_test->start[n] = i;
H_test->j[i] = 0;
H_test->val[i] = 12.;
++i;
H_test->j[i] = 1;
H_test->val[i] = 37.;
++i;
++n;
H_test->start[n] = i;
H_test->j[i] = 0;
H_test->val[i] = -16.;
++i;
H_test->j[i] = 1;
H_test->val[i] = -43.;
++i;
H_test->j[i] = 2;
H_test->val[i] = 98.;
++i;
++n;
H_test->start[n] = i;
return H_test;
}
#endif
/* Routine used with qsort for sorting nonzeros within a sparse matrix row
*
* v1/v2: pointers to column indices of nonzeros within a row (unsigned int)
*/
static int compare_matrix_entry(const void *v1, const void *v2)
{
/* larger element has larger column index */
return ((sparse_matrix_entry *)v1)->j - ((sparse_matrix_entry *)v2)->j;
}
/* Routine used for sorting nonzeros within a sparse matrix row;
* internally, a combination of qsort and manual sorting is utilized
* (parallel calls to qsort when multithreading, rows mapped to threads)
*
* A: sparse matrix for which to sort nonzeros within a row, stored in CSR format
*/
void Sort_Matrix_Rows( sparse_matrix * const A )
{
unsigned int i, j, si, ei;
sparse_matrix_entry *temp;
#ifdef _OPENMP
// #pragma omp parallel default(none) private(i, j, si, ei, temp) shared(stderr)
Kurt A. O'Hearn
committed
#endif
{
if ( ( temp = (sparse_matrix_entry *) malloc( A->n * sizeof(sparse_matrix_entry)) ) == NULL )
{
fprintf( stderr, "Not enough space for matrix row sort. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
/* sort each row of A using column indices */
#ifdef _OPENMP
// #pragma omp for schedule(guided)
Kurt A. O'Hearn
committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#endif
for ( i = 0; i < A->n; ++i )
{
si = A->start[i];
ei = A->start[i + 1];
for ( j = 0; j < (ei - si); ++j )
{
(temp + j)->j = A->j[si + j];
(temp + j)->val = A->val[si + j];
}
/* polymorphic sort in standard C library using column indices */
qsort( temp, ei - si, sizeof(sparse_matrix_entry), compare_matrix_entry );
for ( j = 0; j < (ei - si); ++j )
{
A->j[si + j] = (temp + j)->j;
A->val[si + j] = (temp + j)->val;
}
}
sfree( temp, "Sort_Matrix_Rows::temp" );
}
}
/* Convert a symmetric, half-sored sparse matrix into
* a full-stored sparse matrix
*
* A: symmetric sparse matrix, lower half stored in CSR
* A_full: resultant full sparse matrix in CSR
* If A_full is NULL, allocate space, otherwise do not
*
* Assumptions:
* A has non-zero diagonals
* Each row of A has at least one non-zero (i.e., no rows with all zeros) */
static void compute_full_sparse_matrix( const sparse_matrix * const A,
Kurt A. O'Hearn
committed
sparse_matrix ** A_full )
{
int count, i, pj;
sparse_matrix *A_t;
if ( *A_full == NULL )
{
if ( Allocate_Matrix( A_full, A->n, 2 * A->m - A->n ) == FAILURE )
{
fprintf( stderr, "not enough memory for full A. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
}
if ( Allocate_Matrix( &A_t, A->n, A->m ) == FAILURE )
{
fprintf( stderr, "not enough memory for full A. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
/* Set up the sparse matrix data structure for A. */
Transpose( A, A_t );
count = 0;
for ( i = 0; i < A->n; ++i )
{
Kurt A. O'Hearn
committed
if ((*A_full)->start == NULL)
{
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
(*A_full)->start[i] = count;
/* A: symmetric, lower triangular portion only stored */
for ( pj = A->start[i]; pj < A->start[i + 1]; ++pj )
{
(*A_full)->val[count] = A->val[pj];
(*A_full)->j[count] = A->j[pj];
++count;
}
/* A^T: symmetric, upper triangular portion only stored;
* skip diagonal from A^T, as included from A above */
for ( pj = A_t->start[i] + 1; pj < A_t->start[i + 1]; ++pj )
{
(*A_full)->val[count] = A_t->val[pj];
(*A_full)->j[count] = A_t->j[pj];
++count;
}
}
(*A_full)->start[i] = count;
Deallocate_Matrix( A_t );
}
/* Setup routines for sparse approximate inverse preconditioner
*
* A: symmetric sparse matrix, lower half stored in CSR
Kurt A. O'Hearn
committed
* filter:
* A_spar_patt:
*
* Assumptions:
* A has non-zero diagonals
* Each row of A has at least one non-zero (i.e., no rows with all zeros) */
void Setup_Sparsity_Pattern( const sparse_matrix * const A,
Kurt A. O'Hearn
committed
const real filter, sparse_matrix ** A_spar_patt )
real min, max, threshold, val;
min = 0.0;
max = 0.0;
if ( Allocate_Matrix( A_spar_patt, A->n, A->m ) == FAILURE )
{
fprintf( stderr, "[SAI] Not enough memory for preconditioning matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
}
else if ( ((*A_spar_patt)->m) < (A->m) )
Deallocate_Matrix( *A_spar_patt );
if ( Allocate_Matrix( A_spar_patt, A->n, A->m ) == FAILURE )
{
fprintf( stderr, "[SAI] Not enough memory for preconditioning matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
}
// find min and max element of the matrix
for ( i = 0; i < A->n; ++i )
{
for ( pj = A->start[i]; pj < A->start[i + 1]; ++pj )
{
val = A->val[pj];
if ( pj == 0 )
{
if ( min > val )
{
min = val;
}
if ( max < val )
{
max = val;
}
Kurt A. O'Hearn
committed
threshold = min + (max - min) * (1.0 - filter);
// calculate the nnz of the sparsity pattern
// for ( size = 0, i = 0; i < A->n; ++i )
// {
// for ( pj = A->start[i]; pj < A->start[i + 1]; ++pj )
// {
// if ( threshold <= A->val[pj] )
// size++;
// }
// }
//
// if ( Allocate_Matrix( A_spar_patt, A->n, size ) == NULL )
// {
// fprintf( stderr, "[SAI] Not enough memory for preconditioning matrices. terminating.\n" );
// exit( INSUFFICIENT_MEMORY );
// }
//(*A_spar_patt)->start[(*A_spar_patt)->n] = size;
// fill the sparsity pattern
for ( size = 0, i = 0; i < A->n; ++i )
{
(*A_spar_patt)->start[i] = size;
for ( pj = A->start[i]; pj < A->start[i + 1]; ++pj )
{
Kurt A. O'Hearn
committed
if ( ( A->val[pj] >= threshold ) || ( A->j[pj] == i ) )
(*A_spar_patt)->val[size] = A->val[pj];
(*A_spar_patt)->j[size] = A->j[pj];
(*A_spar_patt)->start[A->n] = size;
Kurt A. O'Hearn
committed
void Calculate_Droptol( const sparse_matrix * const A,
Kurt A. O'Hearn
committed
real * const droptol, const real dtol )
Kurt A. O'Hearn
committed
{
int i, j, k;
real val;
#ifdef _OPENMP
static real *droptol_local;
unsigned int tid;
#endif
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp parallel default(none) private(i, j, k, val, tid), shared(droptol_local, stderr)
Kurt A. O'Hearn
committed
#endif
{
#ifdef _OPENMP
tid = omp_get_thread_num();
Kurt A. O'Hearn
committed
#pragma omp master
Kurt A. O'Hearn
committed
{
/* keep b_local for program duration to avoid allocate/free
* overhead per Sparse_MatVec call*/
if ( droptol_local == NULL )
{
if ( (droptol_local = (real*) malloc( omp_get_num_threads() * A->n * sizeof(real))) == NULL )
{
fprintf( stderr, "Not enough space for droptol. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
}
}
Kurt A. O'Hearn
committed
#pragma omp barrier
Kurt A. O'Hearn
committed
#endif
/* init droptol to 0 */
for ( i = 0; i < A->n; ++i )
{
#ifdef _OPENMP
droptol_local[tid * A->n + i] = 0.0;
#else
droptol[i] = 0.0;
#endif
}
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp barrier
Kurt A. O'Hearn
committed
#endif
/* calculate sqaure of the norm of each row */
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp for schedule(static)
Kurt A. O'Hearn
committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
#endif
for ( i = 0; i < A->n; ++i )
{
for ( k = A->start[i]; k < A->start[i + 1] - 1; ++k )
{
j = A->j[k];
val = A->val[k];
#ifdef _OPENMP
droptol_local[tid * A->n + i] += val * val;
droptol_local[tid * A->n + j] += val * val;
#else
droptol[i] += val * val;
droptol[j] += val * val;
#endif
}
// diagonal entry
val = A->val[k];
#ifdef _OPENMP
droptol_local[tid * A->n + i] += val * val;
#else
droptol[i] += val * val;
#endif
}
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp barrier
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
#pragma omp for schedule(static)
Kurt A. O'Hearn
committed
for ( i = 0; i < A->n; ++i )
{
droptol[i] = 0.0;
for ( k = 0; k < omp_get_num_threads(); ++k )
{
droptol[i] += droptol_local[k * A->n + i];
}
}
Kurt A. O'Hearn
committed
#pragma omp barrier
Kurt A. O'Hearn
committed
#endif
/* calculate local droptol for each row */
//fprintf( stderr, "droptol: " );
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp for schedule(static)
Kurt A. O'Hearn
committed
#endif
for ( i = 0; i < A->n; ++i )
{
//fprintf( stderr, "%f-->", droptol[i] );
droptol[i] = SQRT( droptol[i] ) * dtol;
//fprintf( stderr, "%f ", droptol[i] );
}
//fprintf( stderr, "\n" );
}
}
int Estimate_LU_Fill( const sparse_matrix * const A, const real * const droptol )
{
int i, pj;
int fillin;
real val;
fillin = 0;
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp parallel for schedule(static) \
default(none) private(i, pj, val) reduction(+: fillin)
Kurt A. O'Hearn
committed
#endif
for ( i = 0; i < A->n; ++i )
{
for ( pj = A->start[i]; pj < A->start[i + 1] - 1; ++pj )
{
val = A->val[pj];
if ( FABS(val) > droptol[i] )
{
++fillin;
}
}
}
return fillin + A->n;
}
#if defined(HAVE_SUPERLU_MT)
real SuperLU_Factorize( const sparse_matrix * const A,
Kurt A. O'Hearn
committed
sparse_matrix * const L, sparse_matrix * const U )
Kurt A. O'Hearn
committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
{
unsigned int i, pj, count, *Ltop, *Utop, r;
sparse_matrix *A_t;
SuperMatrix A_S, AC_S, L_S, U_S;
NCformat *A_S_store;
SCPformat *L_S_store;
NCPformat *U_S_store;
superlumt_options_t superlumt_options;
pxgstrf_shared_t pxgstrf_shared;
pdgstrf_threadarg_t *pdgstrf_threadarg;
int_t nprocs;
fact_t fact;
trans_t trans;
yes_no_t refact, usepr;
real u, drop_tol;
real *a, *at;
int_t *asub, *atsub, *xa, *xat;
int_t *perm_c; /* column permutation vector */
int_t *perm_r; /* row permutations from partial pivoting */
void *work;
int_t info, lwork;
int_t permc_spec, panel_size, relax;
Gstat_t Gstat;
flops_t flopcnt;
/* Default parameters to control factorization. */
#ifdef _OPENMP
//TODO: set as global parameter and use
Kurt A. O'Hearn
committed
#pragma omp parallel \
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
#pragma omp master
Kurt A. O'Hearn
committed
{
/* SuperLU_MT spawns threads internally, so set and pass parameter */
nprocs = omp_get_num_threads();
}
}
#else
nprocs = 1;
#endif
// fact = EQUILIBRATE; /* equilibrate A (i.e., scale rows & cols to have unit norm), then factorize */
Kurt A. O'Hearn
committed
fact = DOFACT; /* factor from scratch */
trans = NOTRANS;
refact = NO; /* first time factorization */
//TODO: add to control file and use the value there to set these
panel_size = sp_ienv(1); /* # consec. cols treated as unit task */
relax = sp_ienv(2); /* # cols grouped as relaxed supernode */
u = 1.0; /* diagonal pivoting threshold */
usepr = NO;
drop_tol = 0.0;
work = NULL;
lwork = 0;
Kurt A. O'Hearn
committed
fprintf( stderr, "nprocs = %d\n", nprocs );
fprintf( stderr, "Panel size = %d\n", panel_size );
fprintf( stderr, "Relax = %d\n", relax );
Kurt A. O'Hearn
committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
if ( !(perm_r = intMalloc(A->n)) )
{
SUPERLU_ABORT("Malloc fails for perm_r[].");
}
if ( !(perm_c = intMalloc(A->n)) )
{
SUPERLU_ABORT("Malloc fails for perm_c[].");
}
if ( !(superlumt_options.etree = intMalloc(A->n)) )
{
SUPERLU_ABORT("Malloc fails for etree[].");
}
if ( !(superlumt_options.colcnt_h = intMalloc(A->n)) )
{
SUPERLU_ABORT("Malloc fails for colcnt_h[].");
}
if ( !(superlumt_options.part_super_h = intMalloc(A->n)) )
{
SUPERLU_ABORT("Malloc fails for part_super__h[].");
}
if ( ( (a = (real*) malloc( (2 * A->start[A->n] - A->n) * sizeof(real))) == NULL )
|| ( (asub = (int_t*) malloc( (2 * A->start[A->n] - A->n) * sizeof(int_t))) == NULL )
|| ( (xa = (int_t*) malloc( (A->n + 1) * sizeof(int_t))) == NULL )
|| ( (Ltop = (unsigned int*) malloc( (A->n + 1) * sizeof(unsigned int))) == NULL )
|| ( (Utop = (unsigned int*) malloc( (A->n + 1) * sizeof(unsigned int))) == NULL ) )
{
fprintf( stderr, "Not enough space for SuperLU factorization. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
if ( Allocate_Matrix( &A_t, A->n, A->m ) == FAILURE )
{
fprintf( stderr, "not enough memory for preconditioning matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
/* Set up the sparse matrix data structure for A. */
Transpose( A, A_t );
count = 0;
for ( i = 0; i < A->n; ++i )
{
xa[i] = count;
for ( pj = A->start[i]; pj < A->start[i + 1]; ++pj )
{
a[count] = A->entries[pj].val;
asub[count] = A->entries[pj].j;
++count;
}
for ( pj = A_t->start[i] + 1; pj < A_t->start[i + 1]; ++pj )
{
a[count] = A_t->entries[pj].val;
asub[count] = A_t->entries[pj].j;
++count;
}
}
xa[i] = count;
dCompRow_to_CompCol( A->n, A->n, 2 * A->start[A->n] - A->n, a, asub, xa,
Kurt A. O'Hearn
committed
&at, &atsub, &xat );
Kurt A. O'Hearn
committed
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
for ( i = 0; i < (2 * A->start[A->n] - A->n); ++i )
fprintf( stderr, "%6d", asub[i] );
fprintf( stderr, "\n" );
for ( i = 0; i < (2 * A->start[A->n] - A->n); ++i )
fprintf( stderr, "%6.1f", a[i] );
fprintf( stderr, "\n" );
for ( i = 0; i <= A->n; ++i )
fprintf( stderr, "%6d", xa[i] );
fprintf( stderr, "\n" );
for ( i = 0; i < (2 * A->start[A->n] - A->n); ++i )
fprintf( stderr, "%6d", atsub[i] );
fprintf( stderr, "\n" );
for ( i = 0; i < (2 * A->start[A->n] - A->n); ++i )
fprintf( stderr, "%6.1f", at[i] );
fprintf( stderr, "\n" );
for ( i = 0; i <= A->n; ++i )
fprintf( stderr, "%6d", xat[i] );
fprintf( stderr, "\n" );
A_S.Stype = SLU_NC; /* column-wise, no supernode */
A_S.Dtype = SLU_D; /* double-precision */
A_S.Mtype = SLU_GE; /* full (general) matrix -- required for parallel factorization */
A_S.nrow = A->n;
A_S.ncol = A->n;
A_S.Store = (void *) SUPERLU_MALLOC( sizeof(NCformat) );
A_S_store = (NCformat *) A_S.Store;
A_S_store->nnz = 2 * A->start[A->n] - A->n;
A_S_store->nzval = at;
A_S_store->rowind = atsub;
A_S_store->colptr = xat;
/* ------------------------------------------------------------
Allocate storage and initialize statistics variables.
------------------------------------------------------------*/
StatAlloc( A->n, nprocs, panel_size, relax, &Gstat );
StatInit( A->n, nprocs, &Gstat );
/* ------------------------------------------------------------
Get column permutation vector perm_c[], according to permc_spec:
permc_spec = 0: natural ordering
permc_spec = 1: minimum degree ordering on structure of A'*A
permc_spec = 2: minimum degree ordering on structure of A'+A
permc_spec = 3: approximate minimum degree for unsymmetric matrices
------------------------------------------------------------*/
permc_spec = 0;
get_perm_c( permc_spec, &A_S, perm_c );
/* ------------------------------------------------------------
Initialize the option structure superlumt_options using the
user-input parameters;
Apply perm_c to the columns of original A to form AC.
------------------------------------------------------------*/
pdgstrf_init( nprocs, fact, trans, refact, panel_size, relax,
Kurt A. O'Hearn
committed
u, usepr, drop_tol, perm_c, perm_r,
work, lwork, &A_S, &AC_S, &superlumt_options, &Gstat );
Kurt A. O'Hearn
committed
for ( i = 0; i < ((NCPformat*)AC_S.Store)->nnz; ++i )
fprintf( stderr, "%6.1f", ((real*)(((NCPformat*)AC_S.Store)->nzval))[i] );
fprintf( stderr, "\n" );
/* ------------------------------------------------------------
Compute the LU factorization of A.
The following routine will create nprocs threads.
------------------------------------------------------------*/
pdgstrf( &superlumt_options, &AC_S, perm_r, &L_S, &U_S, &Gstat, &info );
fprintf( stderr, "INFO: %d\n", info );
flopcnt = 0;
for (i = 0; i < nprocs; ++i)
{
flopcnt += Gstat.procstat[i].fcops;
}
Gstat.ops[FACT] = flopcnt;
Kurt A. O'Hearn
committed
printf("\n** Result of sparse LU **\n");
L_S_store = (SCPformat *) L_S.Store;
U_S_store = (NCPformat *) U_S.Store;
printf( "No of nonzeros in factor L = " IFMT "\n", L_S_store->nnz );
printf( "No of nonzeros in factor U = " IFMT "\n", U_S_store->nnz );
fflush( stdout );
Kurt A. O'Hearn
committed
/* convert L and R from SuperLU formats to CSR */
memset( Ltop, 0, (A->n + 1) * sizeof(int) );
memset( Utop, 0, (A->n + 1) * sizeof(int) );
memset( L->start, 0, (A->n + 1) * sizeof(int) );
memset( U->start, 0, (A->n + 1) * sizeof(int) );
for ( i = 0; i < 2 * L_S_store->nnz; ++i )
fprintf( stderr, "%6.1f", ((real*)(L_S_store->nzval))[i] );
fprintf( stderr, "\n" );
for ( i = 0; i < 2 * U_S_store->nnz; ++i )
fprintf( stderr, "%6.1f", ((real*)(U_S_store->nzval))[i] );
fprintf( stderr, "\n" );
printf( "No of supernodes in factor L = " IFMT "\n", L_S_store->nsuper );
for ( i = 0; i < A->n; ++i )
{
fprintf( stderr, "nzval_col_beg[%5d] = %d\n", i, L_S_store->nzval_colbeg[i] );
fprintf( stderr, "nzval_col_end[%5d] = %d\n", i, L_S_store->nzval_colend[i] );
//TODO: correct for SCPformat for L?
//for( pj = L_S_store->rowind_colbeg[i]; pj < L_S_store->rowind_colend[i]; ++pj )
// for( pj = 0; pj < L_S_store->rowind_colend[i] - L_S_store->rowind_colbeg[i]; ++pj )
// {
// ++Ltop[L_S_store->rowind[L_S_store->rowind_colbeg[i] + pj] + 1];
// }
Kurt A. O'Hearn
committed
fprintf( stderr, "col_beg[%5d] = %d\n", i, U_S_store->colbeg[i] );
fprintf( stderr, "col_end[%5d] = %d\n", i, U_S_store->colend[i] );
for ( pj = U_S_store->colbeg[i]; pj < U_S_store->colend[i]; ++pj )
{
++Utop[U_S_store->rowind[pj] + 1];
fprintf( stderr, "Utop[%5d] = %d\n", U_S_store->rowind[pj] + 1, Utop[U_S_store->rowind[pj] + 1] );
}
}
for ( i = 1; i <= A->n; ++i )
{
// Ltop[i] = L->start[i] = Ltop[i] + Ltop[i - 1];
Kurt A. O'Hearn
committed
Utop[i] = U->start[i] = Utop[i] + Utop[i - 1];
// fprintf( stderr, "Utop[%5d] = %d\n", i, Utop[i] );
// fprintf( stderr, "U->start[%5d] = %d\n", i, U->start[i] );
Kurt A. O'Hearn
committed
}
for ( i = 0; i < A->n; ++i )
{
// for( pj = 0; pj < L_S_store->nzval_colend[i] - L_S_store->nzval_colbeg[i]; ++pj )
// {
// r = L_S_store->rowind[L_S_store->rowind_colbeg[i] + pj];
// L->entries[Ltop[r]].j = r;
// L->entries[Ltop[r]].val = ((real*)L_S_store->nzval)[L_S_store->nzval_colbeg[i] + pj];
// ++Ltop[r];
// }
Kurt A. O'Hearn
committed
for ( pj = U_S_store->colbeg[i]; pj < U_S_store->colend[i]; ++pj )
{
r = U_S_store->rowind[pj];
U->entries[Utop[r]].j = i;
U->entries[Utop[r]].val = ((real*)U_S_store->nzval)[pj];
++Utop[r];
}
}
/* ------------------------------------------------------------
Deallocate storage after factorization.
------------------------------------------------------------*/
Kurt A. O'Hearn
committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
pxgstrf_finalize( &superlumt_options, &AC_S );
Deallocate_Matrix( A_t );
sfree( xa, "SuperLU_Factorize::xa" );
sfree( asub, "SuperLU_Factorize::asub" );
sfree( a, "SuperLU_Factorize::a" );
SUPERLU_FREE( perm_r );
SUPERLU_FREE( perm_c );
SUPERLU_FREE( ((NCformat *)A_S.Store)->rowind );
SUPERLU_FREE( ((NCformat *)A_S.Store)->colptr );
SUPERLU_FREE( ((NCformat *)A_S.Store)->nzval );
SUPERLU_FREE( A_S.Store );
if ( lwork == 0 )
{
Destroy_SuperNode_SCP(&L_S);
Destroy_CompCol_NCP(&U_S);
}
else if ( lwork > 0 )
{
SUPERLU_FREE(work);
}
StatFree(&Gstat);
sfree( Utop, "SuperLU_Factorize::Utop" );
sfree( Ltop, "SuperLU_Factorize::Ltop" );
//TODO: return iters
return 0.;
}
#endif
/* Diagonal (Jacobi) preconditioner computation */
real diag_pre_comp( const sparse_matrix * const H, real * const Hdia_inv )
{
unsigned int i;
real start;
start = Get_Time( );
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp parallel for schedule(static) \
Kurt A. O'Hearn
committed
#endif
for ( i = 0; i < H->n; ++i )
{
if ( H->val[H->start[i + 1] - 1] != 0.0 )
{
Hdia_inv[i] = 1.0 / H->val[H->start[i + 1] - 1];
}
else
{
Hdia_inv[i] = 1.0;
}
}
return Get_Timing_Info( start );
}
/* Incomplete Cholesky factorization with dual thresholding */
real ICHOLT( const sparse_matrix * const A, const real * const droptol,
Kurt A. O'Hearn
committed
sparse_matrix * const L, sparse_matrix * const U )
Kurt A. O'Hearn
committed
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
{
int *tmp_j;
real *tmp_val;
int i, j, pj, k1, k2, tmptop, Ltop;
real val, start;
unsigned int *Utop;
start = Get_Time( );
if ( ( Utop = (unsigned int*) malloc((A->n + 1) * sizeof(unsigned int)) ) == NULL ||
( tmp_j = (int*) malloc(A->n * sizeof(int)) ) == NULL ||
( tmp_val = (real*) malloc(A->n * sizeof(real)) ) == NULL )
{
fprintf( stderr, "[ICHOLT] Not enough memory for preconditioning matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
// clear variables
Ltop = 0;
tmptop = 0;
memset( L->start, 0, (A->n + 1) * sizeof(unsigned int) );
memset( U->start, 0, (A->n + 1) * sizeof(unsigned int) );
memset( Utop, 0, A->n * sizeof(unsigned int) );
for ( i = 0; i < A->n; ++i )
{
L->start[i] = Ltop;
tmptop = 0;
for ( pj = A->start[i]; pj < A->start[i + 1] - 1; ++pj )
{
j = A->j[pj];
val = A->val[pj];
if ( FABS(val) > droptol[i] )
{
k1 = 0;
k2 = L->start[j];
while ( k1 < tmptop && k2 < L->start[j + 1] )
{
if ( tmp_j[k1] < L->j[k2] )
{
++k1;
}
else if ( tmp_j[k1] > L->j[k2] )
{
++k2;
}
else
{
val -= (tmp_val[k1++] * L->val[k2++]);
}
}
// L matrix is lower triangular,
// so right before the start of next row comes jth diagonal
val /= L->val[L->start[j + 1] - 1];
tmp_j[tmptop] = j;
tmp_val[tmptop] = val;
++tmptop;
}
}
// sanity check
if ( A->j[pj] != i )
{
fprintf( stderr, "[ICHOLT] badly built A matrix!\n (i = %d) ", i );
exit( NUMERIC_BREAKDOWN );
}
// compute the ith diagonal in L
val = A->val[pj];
for ( k1 = 0; k1 < tmptop; ++k1 )
{
val -= (tmp_val[k1] * tmp_val[k1]);
}
#if defined(DEBUG)
if ( val < 0.0 )
{
fprintf( stderr, "[ICHOLT] Numeric breakdown (SQRT of negative on diagonal i = %d). Terminating.\n", i );
exit( NUMERIC_BREAKDOWN );
}
#endif
tmp_j[tmptop] = i;
tmp_val[tmptop] = SQRT( val );
// apply the dropping rule once again
//fprintf( stderr, "row%d: tmptop: %d\n", i, tmptop );
//for( k1 = 0; k1<= tmptop; ++k1 )
// fprintf( stderr, "%d(%f) ", tmp[k1].j, tmp[k1].val );
//fprintf( stderr, "\n" );
//fprintf( stderr, "row(%d): droptol=%.4f\n", i+1, droptol[i] );
for ( k1 = 0; k1 < tmptop; ++k1 )
{
if ( FABS(tmp_val[k1]) > droptol[i] / tmp_val[tmptop] )
{
L->j[Ltop] = tmp_j[k1];
L->val[Ltop] = tmp_val[k1];
U->start[tmp_j[k1] + 1]++;
++Ltop;
//fprintf( stderr, "%d(%.4f) ", tmp[k1].j+1, tmp[k1].val );
}
}
// keep the diagonal in any case
L->j[Ltop] = tmp_j[k1];
L->val[Ltop] = tmp_val[k1];
++Ltop;
//fprintf( stderr, "%d(%.4f)\n", tmp[k1].j+1, tmp[k1].val );
}
L->start[i] = Ltop;
// fprintf( stderr, "nnz(L): %d, max: %d\n", Ltop, L->n * 50 );
Kurt A. O'Hearn
committed
/* U = L^T (Cholesky factorization) */
Transpose( L, U );
// for ( i = 1; i <= U->n; ++i )
// {
// Utop[i] = U->start[i] = U->start[i] + U->start[i - 1] + 1;
// }
// for ( i = 0; i < L->n; ++i )
// {
// for ( pj = L->start[i]; pj < L->start[i + 1]; ++pj )
// {
// j = L->j[pj];
// U->j[Utop[j]] = i;
// U->val[Utop[j]] = L->val[pj];
// Utop[j]++;
// }
// }
// fprintf( stderr, "nnz(U): %d, max: %d\n", Utop[U->n], U->n * 50 );
Kurt A. O'Hearn
committed
sfree( tmp_val, "ICHOLT::tmp_val" );
sfree( tmp_j, "ICHOLT::tmp_j" );
sfree( Utop, "ICHOLT::Utop" );
return Get_Timing_Info( start );
}
/* Fine-grained (parallel) incomplete Cholesky factorization
*
* Reference:
* Edmond Chow and Aftab Patel
* Fine-Grained Parallel Incomplete LU Factorization
* SIAM J. Sci. Comp. */
#if defined(TESTING)
real ICHOL_PAR( const sparse_matrix * const A, const unsigned int sweeps,
Kurt A. O'Hearn
committed
sparse_matrix * const U_t, sparse_matrix * const U )
Kurt A. O'Hearn
committed
{
unsigned int i, j, k, pj, x = 0, y = 0, ei_x, ei_y;
real *D, *D_inv, sum, start;
sparse_matrix *DAD;
int *Utop;
start = Get_Time( );
if ( Allocate_Matrix( &DAD, A->n, A->m ) == FAILURE ||
( D = (real*) malloc(A->n * sizeof(real)) ) == NULL ||
( D_inv = (real*) malloc(A->n * sizeof(real)) ) == NULL ||
( Utop = (int*) malloc((A->n + 1) * sizeof(int)) ) == NULL )
{
fprintf( stderr, "not enough memory for ICHOL_PAR preconditioning matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp parallel for schedule(static) \
default(none) shared(D_inv, D) private(i)
Kurt A. O'Hearn
committed
#endif
for ( i = 0; i < A->n; ++i )
{
D_inv[i] = SQRT( A->val[A->start[i + 1] - 1] );
D[i] = 1. / D_inv[i];
}
memset( U->start, 0, sizeof(unsigned int) * (A->n + 1) );
memset( Utop, 0, sizeof(unsigned int) * (A->n + 1) );