Newer
Older
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "reax_types.h"
Kurt A. O'Hearn
committed
#if defined(PURE_REAX)
#include "ffield.h"
#include "tool_box.h"
#include "reax_ffield.h"
#include "reax_tool_box.h"
void Read_Force_Field_File( char *ffield_file, reax_interaction *reax,
Kurt A. O'Hearn
committed
reax_system *system, control_params *control )
FILE *fp;
char *s;
char **tmp;
int c, i, j, k, l, m, n, o, p, cnt;
real val;
int __N;
int index1, index2;
/* open force field file */
fp = sfopen( ffield_file, "r", "Read_Force_Field::fp" );
Kurt A. O'Hearn
committed
s = smalloc( sizeof(char) * MAX_LINE, "Read_Force_Field::s" );
tmp = smalloc( sizeof(char *) * MAX_TOKENS, "Read_Force_Field::tmp");
Kurt A. O'Hearn
committed
tmp[i] = smalloc( sizeof(char) * MAX_TOKEN_LEN, "Read_Force_Field::tmp[i]" );
/* reading first header comment */
fgets( s, MAX_LINE, fp );
/* line 2 is number of global parameters */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
/* reading the number of global parameters */
n = atoi(tmp[0]);
Kurt A. O'Hearn
committed
fprintf( stderr, "[WARNING] p%d: number of globals in ffield file is 0!\n",
system->my_rank );
Kurt A. O'Hearn
committed
return;
Kurt A. O'Hearn
committed
reax->gp.l = smalloc( sizeof(real) * n, "Read_Force_Field::reax->gp.l" );
/* see reax_types.h for mapping between l[i] and the lambdas used in ff */
for (i = 0; i < n; i++)
{
fgets(s, MAX_LINE, fp);
c = Tokenize(s, &tmp);
val = (real) atof(tmp[0]);
reax->gp.l[i] = val;
}
control->bo_cut = 0.01 * reax->gp.l[29];
control->nonb_low = reax->gp.l[11];
control->nonb_cut = reax->gp.l[12];
/* next line is number of atom types and some comments */
reax->num_atom_types = atoi(tmp[0]);
/* 3 lines of comments */
fgets(s, MAX_LINE, fp);
fgets(s, MAX_LINE, fp);
fgets(s, MAX_LINE, fp);
/* Allocating structures in reax_interaction */
__N = reax->num_atom_types;
Kurt A. O'Hearn
committed
reax->sbp = scalloc( reax->num_atom_types, sizeof(single_body_parameters),
Kurt A. O'Hearn
committed
reax->tbp = scalloc( POW(reax->num_atom_types, 2.0), sizeof(two_body_parameters),
Kurt A. O'Hearn
committed
reax->thbp = scalloc( POW(reax->num_atom_types, 3.0), sizeof(three_body_header),
"Read_Force_Field::reax->thbp" );
Kurt A. O'Hearn
committed
reax->hbp = scalloc( POW(reax->num_atom_types, 3.0), sizeof(hbond_parameters),
Kurt A. O'Hearn
committed
reax->fbp = scalloc( POW(reax->num_atom_types, 4.0), sizeof(four_body_header),
Kurt A. O'Hearn
committed
tor_flag = scalloc( POW(reax->num_atom_types, 4.0), sizeof(char),
/* vdWaals type:
* 1: Shielded Morse, no inner-wall
* 2: inner wall, no shielding
* 3: inner wall+shielding */
reax->gp.vdw_type = 0;
/* reading single atom parameters */
/* there are 4 lines of each single atom parameters in ff files. these
* parameters later determine some of the pair and triplet parameters using
* combination rules. */
for ( i = 0; i < reax->num_atom_types; i++ )
{
/* line one */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
for ( j = 0; j < (int)(strlen(tmp[0])); ++j )
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: Atom Name in the force field : %s \n",
system->my_rank, reax->sbp[i].name );
reax->sbp[i].r_s = val;
reax->sbp[i].valency = val;
reax->sbp[i].mass = val;
reax->sbp[i].r_vdw = val;
reax->sbp[i].epsilon = val;
reax->sbp[i].gamma = val;
reax->sbp[i].r_pi = val;
reax->sbp[i].valency_e = val;
reax->sbp[i].nlp_opt = 0.5 * (reax->sbp[i].valency_e - reax->sbp[i].valency);
/* line two */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
val = atof(tmp[0]);
reax->sbp[i].alpha = val;
reax->sbp[i].gamma_w = val;
val = atof(tmp[2]);
reax->sbp[i].valency_boc = val;
val = atof(tmp[3]);
reax->sbp[i].p_ovun5 = val;
reax->sbp[i].chi = val;
reax->sbp[i].eta = 2.0 * val;
/* line 3 */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
val = atof(tmp[0]);
reax->sbp[i].r_pi_pi = val;
reax->sbp[i].p_lp2 = val;
reax->sbp[i].b_o_131 = val;
reax->sbp[i].b_o_132 = val;
reax->sbp[i].b_o_133 = val;
val = atof(tmp[6]);
val = atof(tmp[7]);
/* line 4 */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
val = atof(tmp[0]);
reax->sbp[i].p_ovun2 = val;
reax->sbp[i].p_val3 = val;
val = atof(tmp[2]);
val = atof(tmp[3]);
reax->sbp[i].valency_val = val;
val = atof(tmp[4]);
reax->sbp[i].p_val5 = val;
reax->sbp[i].rcore2 = val;
reax->sbp[i].ecore2 = val;
reax->sbp[i].acore2 = val;
/* Inner-wall */
if ( reax->sbp[i].rcore2 > 0.01 && reax->sbp[i].acore2 > 0.01 )
/* Shielding vdWaals */
if ( reax->sbp[i].gamma_w > 0.5 )
{
if ( reax->gp.vdw_type != 0 && reax->gp.vdw_type != 3 )
Kurt A. O'Hearn
committed
fprintf( stderr, "[WARNING] p%d: inconsistent vdWaals-parameters\n"
"Force field parameters for element %s\n"
"indicate inner wall+shielding, but earlier\n"
"atoms indicate different vdWaals-method.\n"
"This may cause division-by-zero errors.\n"
"Keeping vdWaals-setting for earlier atoms.\n",
Kurt A. O'Hearn
committed
system->my_rank, reax->sbp[i].name );
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: vdWaals type for element %s: Shielding+inner-wall",
system->my_rank, reax->sbp[i].name );
/* No shielding vdWaals parameters present */
else
{
if ( reax->gp.vdw_type != 0 && reax->gp.vdw_type != 2 )
Kurt A. O'Hearn
committed
fprintf( stderr, "[WARNING] p%d: inconsistent vdWaals-parameters\n",
system->my_rank );
fprintf( stderr, " [INFO] Force field parameters for element %s\n", reax->sbp[i].name );
fprintf( stderr, " [INFO] indicate inner wall without shielding, but earlier\n" );
fprintf( stderr, " [INFO] atoms indicate different vdWaals-method.\n" );
fprintf( stderr, " [INFO] This may cause division-by-zero errors.\n" );
fprintf( stderr, " [INFO] Keeping vdWaals-setting for earlier atoms.\n" );
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: vdWaals type for element%s: No Shielding,inner-wall",
system->my_rank, reax->sbp[i].name );
/* No Inner wall parameters present */
else
/* Shielding vdWaals */
if ( reax->sbp[i].gamma_w > 0.5 )
{
if ( reax->gp.vdw_type != 0 && reax->gp.vdw_type != 1 )
Kurt A. O'Hearn
committed
fprintf( stderr, "[WARNING] p%d: inconsistent vdWaals-parameters\n" \
" [INFO] Force field parameters for element %s\n" \
" [INFO] indicate shielding without inner wall, but earlier\n" \
" [INFO] atoms indicate different vdWaals-method.\n" \
" [INFO] This may cause division-by-zero errors.\n" \
" [INFO] Keeping vdWaals-setting for earlier atoms.\n",
Kurt A. O'Hearn
committed
system->my_rank, reax->sbp[i].name );
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d, vdWaals type for element%s: Shielding,no inner-wall",
system->my_rank, reax->sbp[i].name );
Kurt A. O'Hearn
committed
fprintf( stderr, "[ERROR] p%d: inconsistent vdWaals-parameters\n" \
" [INFO] No shielding or inner-wall set for element %s\n",
Kurt A. O'Hearn
committed
system->my_rank, reax->sbp[i].name );
MPI_Abort( MPI_COMM_WORLD, INVALID_INPUT );
}
}
}
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: vdWaals type: %d\n", system->my_rank, reax->gp.vdw_type );
/* Equate vval3 to valf for first-row elements (25/10/2004) */
for ( i = 0; i < reax->num_atom_types; i++ )
Kurt A. O'Hearn
committed
{
if ( reax->sbp[i].mass < 21 &&
reax->sbp[i].valency_val != reax->sbp[i].valency_boc )
{
Kurt A. O'Hearn
committed
fprintf( stderr, "[WARNING] p%d: changed valency_val to valency_boc for atom type %s\n",
system->my_rank, reax->sbp[i].name );
reax->sbp[i].valency_val = reax->sbp[i].valency_boc;
}
Kurt A. O'Hearn
committed
}
/* next line is number of two body combination and some comments */
fgets(s, MAX_LINE, fp);
c = Tokenize(s, &tmp);
l = atoi(tmp[0]);
/* a line of comments */
fgets(s, MAX_LINE, fp);
for (i = 0; i < l; i++)
{
/* line 1 */
fgets(s, MAX_LINE, fp);
c = Tokenize(s, &tmp);
j = atoi(tmp[0]) - 1;
k = atoi(tmp[1]) - 1;
index1 = j * __N + k;
index2 = k * __N + j;
if (j < reax->num_atom_types && k < reax->num_atom_types)
{
val = atof(tmp[2]);
reax->tbp[ index1 ].De_s = val;
reax->tbp[ index2 ].De_s = val;
reax->tbp[ index1 ].De_p = val;
reax->tbp[ index2 ].De_p = val;
reax->tbp[ index1 ].De_pp = val;
reax->tbp[ index2 ].De_pp = val;
reax->tbp[ index1 ].p_be1 = val;
reax->tbp[ index2 ].p_be1 = val;
reax->tbp[ index1 ].p_bo5 = val;
reax->tbp[ index2 ].p_bo5 = val;
reax->tbp[ index1 ].v13cor = val;
reax->tbp[ index2 ].v13cor = val;
reax->tbp[ index1 ].p_bo6 = val;
reax->tbp[ index2 ].p_bo6 = val;
val = atof(tmp[9]);
reax->tbp[ index1 ].p_ovun1 = val;
reax->tbp[ index2 ].p_ovun1 = val;
/* line 2 */
fgets(s, MAX_LINE, fp);
c = Tokenize(s, &tmp);
val = atof(tmp[0]);
reax->tbp[ index1 ].p_be2 = val;
reax->tbp[ index2 ].p_be2 = val;
reax->tbp[ index1 ].p_bo3 = val;
reax->tbp[ index2 ].p_bo3 = val;
reax->tbp[ index1 ].p_bo4 = val;
reax->tbp[ index2 ].p_bo4 = val;
reax->tbp[ index1 ].p_bo1 = val;
reax->tbp[ index2 ].p_bo1 = val;
reax->tbp[ index1 ].p_bo2 = val;
reax->tbp[ index2 ].p_bo2 = val;
reax->tbp[ index1 ].ovc = val;
reax->tbp[ index2 ].ovc = val;
/* calculating combination rules and filling up remaining fields. */
for (i = 0; i < reax->num_atom_types; i++)
for (j = i; j < reax->num_atom_types; j++)
{
index1 = i * __N + j;
index2 = j * __N + i;
reax->tbp[index1].r_s =
0.5 * (reax->sbp[i].r_s + reax->sbp[j].r_s);
reax->tbp[index2].r_s =
0.5 * (reax->sbp[j].r_s + reax->sbp[i].r_s);
reax->tbp[index1].r_p =
0.5 * (reax->sbp[i].r_pi + reax->sbp[j].r_pi);
reax->tbp[index2].r_p =
0.5 * (reax->sbp[j].r_pi + reax->sbp[i].r_pi);
reax->tbp[index1].r_pp =
0.5 * (reax->sbp[i].r_pi_pi + reax->sbp[j].r_pi_pi);
reax->tbp[index2].r_pp =
0.5 * (reax->sbp[j].r_pi_pi + reax->sbp[i].r_pi_pi);
SQRT(reax->sbp[i].b_o_132 * reax->sbp[j].b_o_132);
SQRT(reax->sbp[j].b_o_132 * reax->sbp[i].b_o_132);
SQRT(reax->sbp[i].b_o_131 * reax->sbp[j].b_o_131);
SQRT(reax->sbp[j].b_o_131 * reax->sbp[i].b_o_131);
SQRT(reax->sbp[i].b_o_133 * reax->sbp[j].b_o_133);
SQRT(reax->sbp[j].b_o_133 * reax->sbp[i].b_o_133);
SQRT(reax->sbp[i].epsilon * reax->sbp[j].epsilon);
SQRT(reax->sbp[j].epsilon * reax->sbp[i].epsilon);
SQRT(reax->sbp[i].alpha * reax->sbp[j].alpha);
SQRT(reax->sbp[j].alpha * reax->sbp[i].alpha);
2.0 * SQRT(reax->sbp[i].r_vdw * reax->sbp[j].r_vdw);
2.0 * SQRT(reax->sbp[j].r_vdw * reax->sbp[i].r_vdw);
SQRT(reax->sbp[i].gamma_w * reax->sbp[j].gamma_w);
SQRT(reax->sbp[j].gamma_w * reax->sbp[i].gamma_w);
POW(reax->sbp[i].gamma * reax->sbp[j].gamma, -1.5);
POW(reax->sbp[j].gamma * reax->sbp[i].gamma, -1.5);
/* additions for additional vdWaals interaction types - inner core */
SQRT( reax->sbp[i].rcore2 * reax->sbp[j].rcore2 );
reax->tbp[index1].ecore = reax->tbp[index2].ecore =
SQRT( reax->sbp[i].ecore2 * reax->sbp[j].ecore2 );
reax->tbp[index1].acore = reax->tbp[index2].acore =
SQRT( reax->sbp[i].acore2 * reax->sbp[j].acore2 );
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/* next line is number of two body offdiagonal combinations and comments */
/* these are two body offdiagonal terms that are different from the
combination rules defined above */
fgets(s, MAX_LINE, fp);
c = Tokenize(s, &tmp);
l = atoi(tmp[0]);
for (i = 0; i < l; i++)
{
fgets(s, MAX_LINE, fp);
c = Tokenize(s, &tmp);
j = atoi(tmp[0]) - 1;
k = atoi(tmp[1]) - 1;
index1 = j * __N + k;
index2 = k * __N + j;
if (j < reax->num_atom_types && k < reax->num_atom_types)
{
val = atof(tmp[2]);
if (val > 0.0)
{
reax->tbp[index1].D = val;
reax->tbp[index2].D = val;
}
val = atof(tmp[3]);
if (val > 0.0)
{
reax->tbp[index1].r_vdW = 2 * val;
reax->tbp[index2].r_vdW = 2 * val;
}
val = atof(tmp[4]);
if (val > 0.0)
{
reax->tbp[index1].alpha = val;
reax->tbp[index2].alpha = val;
}
val = atof(tmp[5]);
if (val > 0.0)
{
reax->tbp[index1].r_s = val;
reax->tbp[index2].r_s = val;
}
val = atof(tmp[6]);
if (val > 0.0)
{
reax->tbp[index1].r_p = val;
reax->tbp[index2].r_p = val;
}
val = atof(tmp[7]);
if (val > 0.0)
{
reax->tbp[index1].r_pp = val;
reax->tbp[index2].r_pp = val;
}
}
}
/* 3-body parameters -
supports multi-well potentials (upto MAX_3BODY_PARAM in mytypes.h) */
/* clear entries first */
for ( i = 0; i < reax->num_atom_types; ++i )
/* next line is number of 3-body params and some comments */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
l = atoi( tmp[0] );
for ( i = 0; i < l; i++ )
{
fgets(s, MAX_LINE, fp);
c = Tokenize(s, &tmp);
j = atoi(tmp[0]) - 1;
k = atoi(tmp[1]) - 1;
m = atoi(tmp[2]) - 1;
index1 = j * __N * __N + k * __N + m;
index2 = m * __N * __N + k * __N + j;
if (j < reax->num_atom_types && k < reax->num_atom_types &&
m < reax->num_atom_types)
{
cnt = reax->thbp[index1].cnt;
reax->thbp[index1].cnt++;
reax->thbp[index2].cnt++;
val = atof(tmp[3]);
reax->thbp[index1].prm[cnt].theta_00 = val;
reax->thbp[index2].prm[cnt].theta_00 = val;
val = atof(tmp[4]);
reax->thbp[index1].prm[cnt].p_val1 = val;
reax->thbp[index2].prm[cnt].p_val1 = val;
val = atof(tmp[5]);
reax->thbp[index1].prm[cnt].p_val2 = val;
reax->thbp[index2].prm[cnt].p_val2 = val;
val = atof(tmp[6]);
reax->thbp[index1].prm[cnt].p_coa1 = val;
reax->thbp[index2].prm[cnt].p_coa1 = val;
val = atof(tmp[7]);
reax->thbp[index1].prm[cnt].p_val7 = val;
reax->thbp[index2].prm[cnt].p_val7 = val;
val = atof(tmp[8]);
reax->thbp[index1].prm[cnt].p_pen1 = val;
reax->thbp[index2].prm[cnt].p_pen1 = val;
val = atof(tmp[9]);
reax->thbp[index1].prm[cnt].p_val4 = val;
reax->thbp[index2].prm[cnt].p_val4 = val;
}
/* 4-body parameters are entered in compact form. i.e. 0-X-Y-0
* correspond to any type of pair of atoms in 1 and 4
* position. However, explicit X-Y-Z-W takes precedence over the
* default description.
* supports multi-well potentials (upto MAX_4BODY_PARAM in mytypes.h)
* IMPORTANT: for now, directions on how to read multi-entries from ffield
* is not clear */
/* clear all entries first */
for ( i = 0; i < reax->num_atom_types; ++i )
for ( m = 0; m < reax->num_atom_types; ++m )
{
reax->fbp[i * __N * __N * __N + j * __N * __N + k * __N + m].cnt = 0;
tor_flag[i * __N * __N * __N + j * __N * __N + k * __N + m] = 0;
}
/* next line is number of 4-body params and some comments */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
l = atoi( tmp[0] );
for ( i = 0; i < l; i++ )
{
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
j = atoi(tmp[0]) - 1;
k = atoi(tmp[1]) - 1;
m = atoi(tmp[2]) - 1;
n = atoi(tmp[3]) - 1;
index1 = j * __N * __N * __N + k * __N * __N + m * __N + n;
index2 = n * __N * __N * __N + m * __N * __N + k * __N + j;
/* this means the entry is not in compact form */
Kurt A. O'Hearn
committed
if ( j >= 0 && n >= 0 )
if ( j < reax->num_atom_types && k < reax->num_atom_types &&
m < reax->num_atom_types && n < reax->num_atom_types )
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
{
/* these flags ensure that this entry take precedence
over the compact form entries */
tor_flag[index1] = 1;
tor_flag[index2] = 1;
reax->fbp[index1].cnt = 1;
reax->fbp[index2].cnt = 1;
val = atof(tmp[4]);
reax->fbp[index1].prm[0].V1 = val;
reax->fbp[index2].prm[0].V1 = val;
val = atof(tmp[5]);
reax->fbp[index1].prm[0].V2 = val;
reax->fbp[index2].prm[0].V2 = val;
val = atof(tmp[6]);
reax->fbp[index1].prm[0].V3 = val;
reax->fbp[index2].prm[0].V3 = val;
val = atof(tmp[7]);
reax->fbp[index1].prm[0].p_tor1 = val;
reax->fbp[index2].prm[0].p_tor1 = val;
val = atof(tmp[8]);
reax->fbp[index1].prm[0].p_cot1 = val;
reax->fbp[index2].prm[0].p_cot1 = val;
}
}
/* This means the entry is of the form 0-X-Y-0 */
else
{
if ( k < reax->num_atom_types && m < reax->num_atom_types )
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
for ( o = 0; o < reax->num_atom_types; o++ )
{
index1 = p * __N * __N * __N + k * __N * __N + m * __N + o;
index2 = o * __N * __N * __N + m * __N * __N + k * __N + p;
reax->fbp[index1].cnt = 1;
reax->fbp[index2].cnt = 1;
if (tor_flag[index1] == 0)
{
reax->fbp[index1].prm[0].V1 = atof(tmp[4]);
reax->fbp[index1].prm[0].V2 = atof(tmp[5]);
reax->fbp[index1].prm[0].V3 = atof(tmp[6]);
reax->fbp[index1].prm[0].p_tor1 = atof(tmp[7]);
reax->fbp[index1].prm[0].p_cot1 = atof(tmp[8]);
}
if (tor_flag[index2] == 0)
{
reax->fbp[index2].prm[0].V1 = atof(tmp[4]);
reax->fbp[index2].prm[0].V2 = atof(tmp[5]);
reax->fbp[index2].prm[0].V3 = atof(tmp[6]);
reax->fbp[index2].prm[0].p_tor1 = atof(tmp[7]);
reax->fbp[index2].prm[0].p_cot1 = atof(tmp[8]);
}
}
}
}
/* next line is number of hydrogen bond params and some comments */
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
l = atoi( tmp[0] );
for ( i = 0; i < l; i++ )
{
fgets( s, MAX_LINE, fp );
c = Tokenize( s, &tmp );
j = atoi(tmp[0]) - 1;
k = atoi(tmp[1]) - 1;
m = atoi(tmp[2]) - 1;
index1 = j * __N * __N + k * __N + m;
if ( j < reax->num_atom_types && m < reax->num_atom_types )
{
val = atof(tmp[3]);
reax->hbp[index1].r0_hb = val;
val = atof(tmp[4]);
reax->hbp[index1].p_hb1 = val;
val = atof(tmp[5]);
reax->hbp[index1].p_hb2 = val;
val = atof(tmp[6]);
reax->hbp[index1].p_hb3 = val;
}
/* deallocate helper storage */
for ( i = 0; i < MAX_TOKENS; i++ )
Kurt A. O'Hearn
committed
sfree( tmp[i], "Read_Force_Field::tmp[i]" );
Kurt A. O'Hearn
committed
sfree( tmp, "Read_Force_Field::tmp" );
sfree( s, "Read_Force_Field::s" );
sfree( tor_flag, "Read_Force_Field::tor_flag" );
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: force field read\n", system->my_rank );