Newer
Older
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
Kurt A. O'Hearn
committed
#include "reax_types.h"
#include "allocate.h"
#include "basic_comm.h"
#include "io_tools.h"
int compare_matrix_entry( const void *v1, const void *v2 )
return ((sparse_matrix_entry *) v1)->j - ((sparse_matrix_entry *) v2)->j;
}
void Sort_Matrix_Rows( sparse_matrix *A )
{
int i, si, ei;
for ( i = 0; i < A->n; ++i )
{
si = A->start[i];
ei = A->end[i];
qsort( &A->entries[si], ei - si,
sizeof(sparse_matrix_entry), compare_matrix_entry );
static void Init_Linear_Solver( reax_system *system, simulation_data *data,
control_params *control, storage *workspace, mpi_datatypes *mpi_data )
int i;
reax_atom *atom;
/* initialize solution vectors for linear solves in charge method */
switch ( control->charge_method )
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
case QEQ_CM:
for ( i = 0; i < system->n; ++i )
{
atom = &system->my_atoms[i];
workspace->b_s[i] = -1.0 * system->reax_param.sbp[ atom->type ].chi;
workspace->b_t[i] = -1.0;
workspace->b[i][0] = -1.0 * system->reax_param.sbp[ atom->type ].chi;
workspace->b[i][1] = -1.0;
}
break;
case EE_CM:
for ( i = 0; i < system->n; ++i )
{
atom = &system->my_atoms[i];
workspace->b_s[i] = -1.0 * system->reax_param.sbp[ atom->type ].chi;
//TODO: check if unused (redundant)
workspace->b[i][0] = -1.0 * system->reax_param.sbp[ atom->type ].chi;
}
if ( system->my_rank == 0 )
{
workspace->b_s[system->n] = control->cm_q_net;
workspace->b[system->n][0] = control->cm_q_net;
}
break;
case ACKS2_CM:
for ( i = 0; i < system->n; ++i )
{
atom = &system->my_atoms[i];
workspace->b_s[i] = -1.0 * system->reax_param.sbp[ atom->type ].chi;
//TODO: check if unused (redundant)
workspace->b[i][0] = -1.0 * system->reax_param.sbp[ atom->type ].chi;
}
if ( system->my_rank == 0 )
{
workspace->b_s[system->n] = control->cm_q_net;
workspace->b[system->n][0] = control->cm_q_net;
}
for ( i = system->n + 1; i < system->N_cm; ++i )
{
atom = &system->my_atoms[i];
workspace->b_s[i] = 0.0;
//TODO: check if unused (redundant)
workspace->b[i][0] = 0.0;
}
if ( system->my_rank == 0 )
{
workspace->b_s[system->n] = control->cm_q_net;
workspace->b[system->n][0] = control->cm_q_net;
}
break;
default:
fprintf( stderr, "[ERROR] Unknown charge method type. Terminating...\n" );
exit( UNKNOWN_OPTION );
break;
}
static void Extrapolate_Charges_QEq( const reax_system * const system,
const control_params * const control,
simulation_data * const data, storage * const workspace )
{
int i;
real s_tmp, t_tmp;
/* spline extrapolation for s & t */
//TODO: good candidate for vectorization, avoid moving data with head pointer and circular buffer
#ifdef _OPENMP
#pragma omp parallel for schedule(static) \
default(none) private(i, s_tmp, t_tmp)
#endif
for ( i = 0; i < system->N_cm; ++i )
{
/* no extrapolation, previous solution as initial guess */
if ( control->cm_init_guess_extrap1 == 0 )
{
s_tmp = system->my_atoms[i].s[0];
}
/* linear */
else if ( control->cm_init_guess_extrap1 == 1 )
s_tmp = 2.0 * system->my_atoms[i].s[0] - system->my_atoms[i].s[1];
}
/* quadratic */
else if ( control->cm_init_guess_extrap1 == 2 )
{
s_tmp = system->my_atoms[i].s[2] + 3.0 * (system->my_atoms[i].s[0] - system->my_atoms[i].s[1]);
}
/* cubic */
else if ( control->cm_init_guess_extrap1 == 3 )
{
s_tmp = 4.0 * (system->my_atoms[i].s[0] + system->my_atoms[i].s[2]) -
(6.0 * system->my_atoms[i].s[1] + system->my_atoms[i].s[3]);
}
/* 4th order */
else if ( control->cm_init_guess_extrap1 == 4 )
{
s_tmp = 5.0 * (system->my_atoms[i].s[0] - system->my_atoms[i].s[3]) +
10.0 * (-1.0 * system->my_atoms[i].s[1] + system->my_atoms[i].s[2]) + system->my_atoms[i].s[4];
}
else
{
s_tmp = 0.0;
}
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/* no extrapolation, previous solution as initial guess */
if ( control->cm_init_guess_extrap2 == 0 )
{
t_tmp = system->my_atoms[i].t[0];
}
/* linear */
else if ( control->cm_init_guess_extrap2 == 1 )
{
t_tmp = 2.0 * system->my_atoms[i].t[0] - system->my_atoms[i].t[1];
}
/* quadratic */
else if ( control->cm_init_guess_extrap2 == 2 )
{
t_tmp = system->my_atoms[i].t[2] + 3.0 * (system->my_atoms[i].t[0] - system->my_atoms[i].t[1]);
}
/* cubic */
else if ( control->cm_init_guess_extrap2 == 3 )
{
t_tmp = 4.0 * (system->my_atoms[i].t[0] + system->my_atoms[i].t[2]) -
(6.0 * system->my_atoms[i].t[1] + system->my_atoms[i].t[3]);
}
/* 4th order */
else if ( control->cm_init_guess_extrap2 == 4 )
{
t_tmp = 5.0 * (system->my_atoms[i].t[0] - system->my_atoms[i].t[3]) +
10.0 * (-1.0 * system->my_atoms[i].t[1] + system->my_atoms[i].t[2]) + system->my_atoms[i].t[4];
}
else
{
t_tmp = 0.0;
system->my_atoms[i].s[4] = system->my_atoms[i].s[3];
system->my_atoms[i].s[3] = system->my_atoms[i].s[2];
system->my_atoms[i].s[2] = system->my_atoms[i].s[1];
system->my_atoms[i].s[1] = system->my_atoms[i].s[0];
system->my_atoms[i].s[0] = s_tmp;
/* x is used as initial guess to solver */
workspace->x[i][0] = s_tmp;
system->my_atoms[i].t[4] = system->my_atoms[i].t[3];
system->my_atoms[i].t[3] = system->my_atoms[i].t[2];
system->my_atoms[i].t[2] = system->my_atoms[i].t[1];
system->my_atoms[i].t[1] = system->my_atoms[i].t[0];
system->my_atoms[i].t[0] = t_tmp;
/* x is used as initial guess to solver */
workspace->x[i][1] = t_tmp;
static void Extrapolate_Charges_EE( const reax_system * const system,
const control_params * const control,
simulation_data * const data, storage * const workspace )
int i;
real s_tmp;
/* spline extrapolation for s */
//TODO: good candidate for vectorization, avoid moving data with head pointer and circular buffer
#ifdef _OPENMP
#pragma omp parallel for schedule(static) \
default(none) private(i, s_tmp)
#endif
for ( i = 0; i < system->N_cm; ++i )
/* no extrapolation, previous solution as initial guess */
if ( control->cm_init_guess_extrap1 == 0 )
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
s_tmp = system->my_atoms[i].s[0];
}
/* linear */
else if ( control->cm_init_guess_extrap1 == 1 )
{
s_tmp = 2.0 * system->my_atoms[i].s[0] - system->my_atoms[i].s[1];
}
/* quadratic */
else if ( control->cm_init_guess_extrap1 == 2 )
{
s_tmp = system->my_atoms[i].s[2] + 3.0 * (system->my_atoms[i].s[0] - system->my_atoms[i].s[1]);
}
/* cubic */
else if ( control->cm_init_guess_extrap1 == 3 )
{
s_tmp = 4.0 * (system->my_atoms[i].s[0] + system->my_atoms[i].s[2]) -
(6.0 * system->my_atoms[i].s[1] + system->my_atoms[i].s[3]);
}
/* 4th order */
else if ( control->cm_init_guess_extrap1 == 4 )
{
s_tmp = 5.0 * (system->my_atoms[i].s[0] - system->my_atoms[i].s[3]) +
10.0 * (-1.0 * system->my_atoms[i].s[1] + system->my_atoms[i].s[2]) + system->my_atoms[i].s[4];
}
else
{
s_tmp = 0.0;
system->my_atoms[i].s[4] = system->my_atoms[i].s[3];
system->my_atoms[i].s[3] = system->my_atoms[i].s[2];
system->my_atoms[i].s[2] = system->my_atoms[i].s[1];
system->my_atoms[i].s[1] = system->my_atoms[i].s[0];
system->my_atoms[i].s[0] = s_tmp;
/* x is used as initial guess to solver */
workspace->x[i][0] = s_tmp;
}
/* Compute preconditioner for QEq
*/
static void Compute_Preconditioner_QEq( const reax_system * const system,
const control_params * const control,
simulation_data * const data, storage * const workspace )
sparse_matrix *Hptr;
if ( control->cm_domain_sparsify_enabled == TRUE )
Hptr = &workspace->H_sp;
}
else
{
Hptr = &workspace->H;
switch ( control->cm_solver_pre_comp_type )
case NONE_PC:
break;
case DIAG_PC:
data->timing.cm_solver_pre_comp +=
diag_pre_comp( system, workspace->Hdia_inv );
// diag_pre_comp( Hptr, workspace->Hdia_inv );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
case ILU_SUPERLU_MT_PC:
fprintf( stderr, "[ERROR] Unsupported preconditioner computation method. Terminating...\n" );
exit( INVALID_INPUT );
break;
case SAI_PC:
#if defined(HAVE_LAPACKE) || defined(HAVE_LAPACKE_MKL)
//TODO: implement
// data->timing.cm_solver_pre_comp +=
// sparse_approx_inverse( workspace->H_full, workspace->H_spar_patt_full,
// &workspace->H_app_inv );
#else
fprintf( stderr, "[ERROR] LAPACKE support disabled. Re-compile before enabling. Terminating...\n" );
exit( INVALID_INPUT );
#endif
break;
default:
fprintf( stderr, "[ERROR] Unrecognized preconditioner computation method. Terminating...\n" );
exit( UNKNOWN_OPTION );
break;
}
/* Compute preconditioner for EE
*/
static void Compute_Preconditioner_EE( const reax_system * const system,
const control_params * const control,
simulation_data * const data, storage * const workspace )
{
sparse_matrix *Hptr;
if ( control->cm_domain_sparsify_enabled == TRUE )
Hptr = &workspace->H_sp;
}
else
{
Hptr = &workspace->H;
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
if ( control->cm_solver_pre_comp_type == ICHOLT_PC ||
control->cm_solver_pre_comp_type == ILU_PAR_PC ||
control->cm_solver_pre_comp_type == ILUT_PAR_PC )
{
Hptr->entries[Hptr->start[system->N + 1] - 1].val = 1.0;
}
switch ( control->cm_solver_pre_comp_type )
{
case NONE_PC:
break;
case DIAG_PC:
data->timing.cm_solver_pre_comp +=
diag_pre_comp( system, workspace->Hdia_inv );
// diag_pre_comp( Hptr, workspace->Hdia_inv );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
case ILU_SUPERLU_MT_PC:
fprintf( stderr, "[ERROR] Unsupported preconditioner computation method. Terminating...\n" );
exit( INVALID_INPUT );
break;
case SAI_PC:
#if defined(HAVE_LAPACKE) || defined(HAVE_LAPACKE_MKL)
//TODO: implement
// data->timing.cm_solver_pre_comp +=
// sparse_approx_inverse( workspace->H_full, workspace->H_spar_patt_full,
// &workspace->H_app_inv );
#else
fprintf( stderr, "[ERROR] LAPACKE support disabled. Re-compile before enabling. Terminating...\n" );
exit( INVALID_INPUT );
break;
default:
fprintf( stderr, "[ERROR] Unrecognized preconditioner computation method. Terminating...\n" );
exit( UNKNOWN_OPTION );
break;
}
if ( control->cm_solver_pre_comp_type == ICHOLT_PC ||
control->cm_solver_pre_comp_type == ILU_PAR_PC ||
control->cm_solver_pre_comp_type == ILUT_PAR_PC )
Hptr->entries[Hptr->start[system->N + 1] - 1].val = 0.0;
}
/* Compute preconditioner for ACKS2
*/
static void Compute_Preconditioner_ACKS2( const reax_system * const system,
const control_params * const control,
simulation_data * const data, storage * const workspace )
{
sparse_matrix *Hptr;
if ( control->cm_domain_sparsify_enabled == TRUE )
Hptr = &workspace->H_sp;
}
else
{
Hptr = &workspace->H;
if ( control->cm_solver_pre_comp_type == ICHOLT_PC ||
control->cm_solver_pre_comp_type == ILU_PAR_PC ||
control->cm_solver_pre_comp_type == ILUT_PAR_PC )
Hptr->entries[Hptr->start[system->N + 1] - 1].val = 1.0;
Hptr->entries[Hptr->start[system->N_cm] - 1].val = 1.0;
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
switch ( control->cm_solver_pre_comp_type )
{
case NONE_PC:
break;
case DIAG_PC:
data->timing.cm_solver_pre_comp +=
diag_pre_comp( system, workspace->Hdia_inv );
// diag_pre_comp( Hptr, workspace->Hdia_inv );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
case ILU_SUPERLU_MT_PC:
fprintf( stderr, "[ERROR] Unsupported preconditioner computation method. Terminating...\n" );
exit( INVALID_INPUT );
break;
case SAI_PC:
#if defined(HAVE_LAPACKE) || defined(HAVE_LAPACKE_MKL)
//TODO: implement
// data->timing.cm_solver_pre_comp +=
// sparse_approx_inverse( workspace->H_full, workspace->H_spar_patt_full,
// &workspace->H_app_inv );
#else
fprintf( stderr, "[ERROR] LAPACKE support disabled. Re-compile before enabling. Terminating...\n" );
exit( INVALID_INPUT );
break;
default:
fprintf( stderr, "[ERROR] Unrecognized preconditioner computation method. Terminating...\n" );
exit( UNKNOWN_OPTION );
break;
}
if ( control->cm_solver_pre_comp_type == ICHOLT_PC ||
control->cm_solver_pre_comp_type == ILU_PAR_PC ||
control->cm_solver_pre_comp_type == ILUT_PAR_PC )
{
Hptr->entries[Hptr->start[system->N + 1] - 1].val = 0.0;
Hptr->entries[Hptr->start[system->N_cm] - 1].val = 0.0;
}
static void Setup_Preconditioner_QEq( const reax_system * const system,
const control_params * const control,
simulation_data * const data, storage * const workspace )
real time;
sparse_matrix *Hptr;
if ( control->cm_domain_sparsify_enabled == TRUE )
{
Hptr = &workspace->H_sp;
}
else
{
Hptr = &workspace->H;
}
/* sort H needed for SpMV's in linear solver, H or H_sp needed for preconditioning */
time = Get_Time( );
Sort_Matrix_Rows( &workspace->H );
if ( control->cm_domain_sparsify_enabled == TRUE )
Sort_Matrix_Rows( &workspace->H_sp );
}
data->timing.cm_sort_mat_rows += Get_Timing_Info( time );
switch ( control->cm_solver_pre_comp_type )
{
case NONE_PC:
break;
case DIAG_PC:
if ( workspace->Hdia_inv == NULL )
{
// workspace->Hdia_inv = scalloc( Hptr->n, sizeof( real ),
// "Setup_Preconditioner_QEq::workspace->Hdiv_inv" );
}
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
case ILU_SUPERLU_MT_PC:
fprintf( stderr, "[ERROR] Unsupported preconditioner computation method. Terminating...\n" );
exit( INVALID_INPUT );
break;
case SAI_PC:
//TODO: implement
// setup_sparse_approx_inverse( Hptr, &workspace->H_full, &workspace->H_spar_patt,
// &workspace->H_spar_patt_full, &workspace->H_app_inv,
// control->cm_solver_pre_comp_sai_thres );
break;
default:
fprintf( stderr, "[ERROR] Unrecognized preconditioner computation method. Terminating...\n" );
exit( UNKNOWN_OPTION );
break;
}
/* Setup routines before computing the preconditioner for EE
*/
static void Setup_Preconditioner_EE( const reax_system * const system,
const control_params * const control,
simulation_data * const data, storage * const workspace )
{
real time;
sparse_matrix *Hptr;
if ( control->cm_domain_sparsify_enabled == TRUE )
Hptr = &workspace->H_sp;
}
else
{
Hptr = &workspace->H;
}
/* sorted H needed for SpMV's in linear solver, H or H_sp needed for preconditioning */
time = Get_Time( );
Sort_Matrix_Rows( &workspace->H );
if ( control->cm_domain_sparsify_enabled == TRUE )
{
Sort_Matrix_Rows( &workspace->H_sp );
}
data->timing.cm_sort_mat_rows += Get_Timing_Info( time );
if ( control->cm_solver_pre_comp_type == ICHOLT_PC ||
control->cm_solver_pre_comp_type == ILU_PAR_PC ||
control->cm_solver_pre_comp_type == ILUT_PAR_PC )
{
Hptr->entries[Hptr->start[system->N + 1] - 1].val = 1.0;
}
switch ( control->cm_solver_pre_comp_type )
{
case NONE_PC:
case DIAG_PC:
if ( workspace->Hdia_inv == NULL )
// workspace->Hdia_inv = scalloc( system->N_cm, sizeof( real ),
// "Setup_Preconditioner_QEq::workspace->Hdiv_inv" );
}
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
case ILU_SUPERLU_MT_PC:
fprintf( stderr, "[ERROR] Unsupported preconditioner computation method. Terminating...\n" );
exit( INVALID_INPUT );
break;
case SAI_PC:
//TODO: implement
// setup_sparse_approx_inverse( Hptr, &workspace->H_full, &workspace->H_spar_patt,
// &workspace->H_spar_patt_full, &workspace->H_app_inv,
// control->cm_solver_pre_comp_sai_thres );
break;
default:
fprintf( stderr, "[ERROR] Unrecognized preconditioner computation method. Terminating...\n" );
exit( UNKNOWN_OPTION );
}
if ( control->cm_solver_pre_comp_type == ICHOLT_PC ||
control->cm_solver_pre_comp_type == ILU_PAR_PC ||
control->cm_solver_pre_comp_type == ILUT_PAR_PC )
{
Hptr->entries[Hptr->start[system->N + 1] - 1].val = 0.0;
}
}
/* Setup routines before computing the preconditioner for ACKS2
*/
static void Setup_Preconditioner_ACKS2( const reax_system * const system,
const control_params * const control,
simulation_data * const data, storage * const workspace )
{
real time;
sparse_matrix *Hptr;
if ( control->cm_domain_sparsify_enabled == TRUE )
{
Hptr = &workspace->H_sp;
}
else
{
Hptr = &workspace->H;
}
/* sort H needed for SpMV's in linear solver, H or H_sp needed for preconditioning */
time = Get_Time( );
Sort_Matrix_Rows( &workspace->H );
if ( control->cm_domain_sparsify_enabled == TRUE )
{
Sort_Matrix_Rows( &workspace->H_sp );
}
data->timing.cm_sort_mat_rows += Get_Timing_Info( time );
if ( control->cm_solver_pre_comp_type == ICHOLT_PC ||
control->cm_solver_pre_comp_type == ILU_PAR_PC ||
control->cm_solver_pre_comp_type == ILUT_PAR_PC )
{
Hptr->entries[Hptr->start[system->N + 1] - 1].val = 1.0;
Hptr->entries[Hptr->start[system->N_cm] - 1].val = 1.0;
}
switch ( control->cm_solver_pre_comp_type )
{
case NONE_PC:
break;
case DIAG_PC:
if ( workspace->Hdia_inv == NULL )
// workspace->Hdia_inv = scalloc( Hptr->n, sizeof( real ),
// "Setup_Preconditioner_QEq::workspace->Hdiv_inv" );
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
case ILU_SUPERLU_MT_PC:
fprintf( stderr, "[ERROR] Unsupported preconditioner computation method. Terminating...\n" );
exit( INVALID_INPUT );
break;
case SAI_PC:
//TODO: implement
// setup_sparse_approx_inverse( Hptr, &workspace->H_full, &workspace->H_spar_patt,
// &workspace->H_spar_patt_full, &workspace->H_app_inv,
// control->cm_solver_pre_comp_sai_thres );
break;
default:
fprintf( stderr, "[ERROR] Unrecognized preconditioner computation method. Terminating...\n" );
exit( UNKNOWN_OPTION );
break;
}
if ( control->cm_solver_pre_comp_type == ICHOLT_PC ||
control->cm_solver_pre_comp_type == ILU_PAR_PC ||
control->cm_solver_pre_comp_type == ILUT_PAR_PC )
{
Hptr->entries[Hptr->start[system->N + 1] - 1].val = 0.0;
Hptr->entries[Hptr->start[system->N_cm] - 1].val = 0.0;
/* Combine ficticious charges s and t to get atomic charge q for QEq method
*/
static void Calculate_Charges_QEq( const reax_system * const system,
storage * const workspace, const mpi_datatypes * const mpi_data )
Kurt A. O'Hearn
committed
int i;
real u;
Kurt A. O'Hearn
committed
rvec2 my_sum, all_sum;
q = smalloc( sizeof(real) * system->N, "Calculate_Charges_QEq::q" );
my_sum[0] = 0.0;
my_sum[1] = 0.0;
for ( i = 0; i < system->n; ++i )
{
my_sum[0] += workspace->x[i][0];
my_sum[1] += workspace->x[i][1];
}
Kurt A. O'Hearn
committed
MPI_Allreduce( &my_sum, &all_sum, 2, MPI_DOUBLE, MPI_SUM, mpi_data->world );
u = all_sum[0] / all_sum[1];
for ( i = 0; i < system->n; ++i )
{
q[i] = workspace->x[i][0] - u * workspace->x[i][1];
system->my_atoms[i].q = q[i];
Kurt A. O'Hearn
committed
Dist( system, mpi_data, q, REAL_PTR_TYPE, MPI_DOUBLE, real_packer );
sfree( q, "Calculate_Charges_QEq::q" );
Kurt A. O'Hearn
committed
/* Get atomic charge q for EE method
*/
static void Calculate_Charges_EE( const reax_system * const system,
storage * const workspace, const mpi_datatypes * const mpi_data )
int i;
for ( i = 0; i < system->N; ++i )
{
system->my_atoms[i].q = workspace->s[i];
}
}
/* Main driver method for QEq kernel
* 1) init / setup routines for preconditioning of linear solver
* 2) compute preconditioner
* 3) extrapolate charges
* 4) perform 2 linear solves
* 5) compute atomic charges based on output of (4)
*/
static void QEq( reax_system * const system, control_params * const control,
simulation_data * const data, storage * const workspace,
const output_controls * const out_control,
const mpi_datatypes * const mpi_data )
{
int iters;
Init_Linear_Solver( system, data, control, workspace, mpi_data );
if ( control->cm_solver_pre_comp_refactor > 0 &&
((data->step - data->prev_steps) % control->cm_solver_pre_comp_refactor == 0) )
{
Setup_Preconditioner_QEq( system, control, data, workspace );
Compute_Preconditioner_QEq( system, control, data, workspace );
}
Extrapolate_Charges_QEq( system, control, data, workspace );
switch ( control->cm_solver_type )
{
case CG_S:
iters = dual_CG( system, workspace, &workspace->H, workspace->b,
control->cm_solver_q_err, workspace->x, mpi_data, out_control->log, data );
// iters = CG( system, workspace, workspace->H, workspace->b_s, //newQEq sCG
// control->cm_solver_q_err, workspace->s, mpi_data, out_control->log );
// iters += PCG( system, workspace, workspace->H, workspace->b_s,
// control->cm_solver_q_err, workspace->L, workspace->U, workspace->s,
// mpi_data, out_control->log );
break;
case GMRES_S:
case GMRES_H_S:
case SDM_S:
case BiCGStab_S:
default:
fprintf( stderr, "[ERROR] Unrecognized QEq solver selection. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
data->timing.cm_solver_iters += iters;
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
Calculate_Charges_QEq( system, workspace, mpi_data );
}
/* Main driver method for EE kernel
* 1) init / setup routines for preconditioning of linear solver
* 2) compute preconditioner
* 3) extrapolate charges
* 4) perform 1 linear solve
* 5) compute atomic charges based on output of (4)
*/
static void EE( reax_system * const system, control_params * const control,
simulation_data * const data, storage * const workspace,
const output_controls * const out_control,
const mpi_datatypes * const mpi_data )
{
int iters;
Init_Linear_Solver( system, data, control, workspace, mpi_data );
if ( control->cm_solver_pre_comp_refactor > 0 &&
((data->step - data->prev_steps) % control->cm_solver_pre_comp_refactor == 0) )
{
Setup_Preconditioner_EE( system, control, data, workspace );
Compute_Preconditioner_EE( system, control, data, workspace );
}
Extrapolate_Charges_EE( system, control, data, workspace );
switch ( control->cm_solver_type )
{
case GMRES_S:
case GMRES_H_S:
case CG_S:
case SDM_S:
case BiCGStab_S:
default:
fprintf( stderr, "[ERROR] Unrecognized EE solver selection. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
data->timing.cm_solver_iters += iters;
Calculate_Charges_EE( system, workspace, mpi_data );
}
/* Main driver method for ACKS2 kernel
* 1) init / setup routines for preconditioning of linear solver
* 2) compute preconditioner
* 3) extrapolate charges
* 4) perform 1 linear solve
* 5) compute atomic charges based on output of (4)
*/
static void ACKS2( reax_system * const system, control_params * const control,
simulation_data * const data, storage * const workspace,
const output_controls * const out_control,
const mpi_datatypes * const mpi_data )
{
int iters;
Init_Linear_Solver( system, data, control, workspace, mpi_data );
if ( control->cm_solver_pre_comp_refactor > 0 &&
((data->step - data->prev_steps) % control->cm_solver_pre_comp_refactor == 0) )
{
Setup_Preconditioner_ACKS2( system, control, data, workspace );
Compute_Preconditioner_ACKS2( system, control, data, workspace );
}
Extrapolate_Charges_EE( system, control, data, workspace );
switch ( control->cm_solver_type )
{
case GMRES_S:
case GMRES_H_S:
case CG_S:
case SDM_S:
case BiCGStab_S:
default:
fprintf( stderr, "[ERROR] Unrecognized ACKS2 solver selection. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
data->timing.cm_solver_iters += iters;
Calculate_Charges_EE( system, workspace, mpi_data );
}
void Compute_Charges( reax_system * const system, control_params * const control,
simulation_data * const data, storage * const workspace,
const output_controls * const out_control,
const mpi_datatypes * const mpi_data )
{
switch ( control->charge_method )
{
case QEQ_CM:
QEq( system, control, data, workspace, out_control, mpi_data );
break;
case EE_CM:
EE( system, control, data, workspace, out_control, mpi_data );
break;
case ACKS2_CM:
ACKS2( system, control, data, workspace, out_control, mpi_data );
break;
default:
fprintf( stderr, "[ERROR] Invalid charge method. Terminating...\n" );
exit( UNKNOWN_OPTION );
break;
}