Skip to content
Snippets Groups Projects
spuremd.c 40.8 KiB
Newer Older
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
/*----------------------------------------------------------------------
  SerialReax - Reax Force Field Simulator
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed

Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
  Copyright (2010) Purdue University
  Hasan Metin Aktulga, haktulga@cs.purdue.edu
  Joseph Fogarty, jcfogart@mail.usf.edu
  Sagar Pandit, pandit@usf.edu
  Ananth Y Grama, ayg@cs.purdue.edu
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed

Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
  This program is free software; you can redistribute it and/or
  modify it under the terms of the GNU General Public License as
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
  published by the Free Software Foundation; either version 2 of
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
  the License, or (at your option) any later version.
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed

Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
  See the GNU General Public License for more details:
  <http://www.gnu.org/licenses/>.
  ----------------------------------------------------------------------*/

Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
#include "analyze.h"
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
#include "forces.h"
#include "init_md.h"
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
#include "neighbors.h"
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
#include "restart.h"
#include "system_props.h"
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
#include "vector.h"


/* Handles additional entire geometry calculations after
 * perturbing atom positions during a simulation step
 */
static void Post_Evolve( reax_system * const system, control_params * const control,
        simulation_data * const data, static_storage * const workspace,
        reax_list ** const lists, output_controls * const out_control )
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
{
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    int i;
    rvec diff, cross;

    /* remove rotational and translational velocity of the center of mass */
    if ( control->ensemble != NVE && control->remove_CoM_vel > 0
            && data->step % control->remove_CoM_vel == 0 )
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    {
        /* compute velocity of the center of mass */
        Compute_Center_of_Mass( system, data );
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed

        for ( i = 0; i < system->N; i++ )
        {
            /* remove translational */
            rvec_ScaledAdd( system->atoms[i].v, -1.0, data->vcm );
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed

            /* remove rotational */
            rvec_ScaledSum( diff, 1.0, system->atoms[i].x, -1.0, data->xcm );
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
            rvec_Cross( cross, data->avcm, diff );
            rvec_ScaledAdd( system->atoms[i].v, -1.0, cross );
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
        }
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    }
    if ( control->ensemble == NVE )
    {
        Compute_Kinetic_Energy( system, data );
    }
    if ( (out_control->log_update_freq > 0
                && data->step % out_control->log_update_freq == 0)
            || (out_control->write_steps > 0
                && data->step % out_control->write_steps == 0) )
    {

    if ( control->compute_pressure == TRUE && control->ensemble != sNPT
            && control->ensemble != iNPT && control->ensemble != aNPT )
    {
        Compute_Pressure_Isotropic( system, control, data, out_control );
    }
/* Parse input files
 *
 * geo_file: file containing geometry info of the structure to simulate
 * ffield_file: file containing force field parameters
 * control_file: file containing simulation parameters
 */
static void Read_Input_Files( const char * const geo_file,
        const char * const ffield_file, const char * const control_file,
        reax_system * const system, control_params * const control,
        simulation_data * const data, static_storage * const workspace,
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
{
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    {
        Read_Force_Field( ffield_file, system, &system->reax_param );
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    }
        Read_Control_File( control_file, system, control, out_control );
        if ( control->geo_format == CUSTOM )
        {
            Read_Geo( geo_file, system, control, data, workspace );
        }
        else if ( control->geo_format == PDB )
        {
            Read_PDB( geo_file, system, control, data, workspace );
        }
        else if ( control->geo_format == BGF )
        {
            Read_BGF( geo_file, system, control, data, workspace );
        }
        else if ( control->geo_format == ASCII_RESTART )
        {
            Read_ASCII_Restart( geo_file, system, control, data, workspace );
            control->restart = TRUE;
        }
        else if ( control->geo_format == BINARY_RESTART )
        {
            Read_Binary_Restart( geo_file, system, control, data, workspace );
            control->restart = TRUE;
        }
        else
        {
            fprintf( stderr, "[ERROR] unknown geo file format. terminating!\n" );
            exit( INVALID_GEO );
        }

#if defined(DEBUG_FOCUS)
    Print_Box( &system->box, stderr );
#endif
}


/* Allocate top-level data structures and parse input files
 * for the first simulation
 *
 * qm_num_atoms: num. atoms in the QM region
 * qm_types: element types for QM atoms
 * qm_pos_x: x-coordinate of QM atom positions, in Angstroms
 * qm_pos_y: y-coordinate of QM atom positions, in Angstroms
 * qm_pos_z: z-coordinate of QM atom positions, in Angstroms
 * mm_num_atoms: num. atoms in the MM region
 * mm_types: element types for MM atoms
 * mm_pos_x: x-coordinate of MM atom positions, in Angstroms
 * mm_pos_y: y-coordinate of MM atom positions, in Angstroms
 * mm_pos_z: z-coordinate of MM atom positions, in Angstroms
 * mm_q: charge of MM atom, in Coulombs
 * sim_box: simulation box information, where the entries are
 *  - box length per dimension (3 entries)
 *  - angles per dimension (3 entries)
 * ffield_file: file containing force field parameters
 * control_file: file containing simulation parameters
 */
void * setup_qmmm_( int qm_num_atoms, const int * const qm_types,
        const double * const qm_pos_x, const double * const qm_pos_y,
        const double * const qm_pos_z,
        int mm_num_atoms, const int * const mm_types,
        const double * const mm_pos_x, const double * const mm_pos_y,
        const double * const mm_pos_z, const double * const mm_q,
        const double * const sim_box,
        const char * const ffield_file,
        const char * const control_file )
{
    int i;
//    char atom_name[9];
    rvec x;
    spuremd_handle *spmd_handle;

    /* top-level allocation */
    spmd_handle = (spuremd_handle*) smalloc( sizeof(spuremd_handle),
            "setup::spmd_handle" );

    /* second-level allocations */
    spmd_handle->system = smalloc( sizeof(reax_system),
           "Setup::spmd_handle->system" );
    spmd_handle->system->prealloc_allocated = FALSE;
    spmd_handle->system->ffield_params_allocated = FALSE;
    spmd_handle->system->g.allocated = FALSE;

    spmd_handle->control = smalloc( sizeof(control_params),
           "Setup::spmd_handle->control" );

    spmd_handle->data = smalloc( sizeof(simulation_data),
           "Setup::spmd_handle->data" );

    spmd_handle->workspace = smalloc( sizeof(static_storage),
           "Setup::spmd_handle->workspace" );
    spmd_handle->workspace->H.allocated = FALSE;
    spmd_handle->workspace->H_full.allocated = FALSE;
    spmd_handle->workspace->H_sp.allocated = FALSE;
    spmd_handle->workspace->H_p.allocated = FALSE;
    spmd_handle->workspace->H_spar_patt.allocated = FALSE;
    spmd_handle->workspace->H_spar_patt_full.allocated = FALSE;
    spmd_handle->workspace->H_app_inv.allocated = FALSE;
    spmd_handle->workspace->L.allocated = FALSE;
    spmd_handle->workspace->U.allocated = FALSE;

    spmd_handle->lists = smalloc( sizeof(reax_list *) * LIST_N,
           "Setup::spmd_handle->lists" );
    for ( i = 0; i < LIST_N; ++i )
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    {
        spmd_handle->lists[i] = smalloc( sizeof(reax_list),
                "Setup::spmd_handle->lists[i]" );
        spmd_handle->lists[i]->allocated = FALSE;
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    }
    spmd_handle->out_control = smalloc( sizeof(output_controls),
           "Setup::spmd_handle->out_control" );

    spmd_handle->output_enabled = FALSE;
    spmd_handle->realloc = TRUE;
    spmd_handle->callback = NULL;
    spmd_handle->data->sim_id = 0;

    spmd_handle->system->N_qm = qm_num_atoms;
    spmd_handle->system->N_mm = mm_num_atoms;
    spmd_handle->system->N = qm_num_atoms + mm_num_atoms;

    PreAllocate_Space( spmd_handle->system, spmd_handle->control,
            spmd_handle->workspace, spmd_handle->system->N );

    Setup_Box( sim_box[0], sim_box[1], sim_box[2],
            sim_box[3], sim_box[4], sim_box[5],
            &spmd_handle->system->box );

    for ( i = 0; i < qm_num_atoms; ++i )
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    {
        x[0] = qm_pos_x[i];
        x[1] = qm_pos_y[i];
        x[2] = qm_pos_z[i];

        Fit_to_Periodic_Box( &spmd_handle->system->box, x );

        spmd_handle->workspace->orig_id[i] = i + 1;
//        spmd_handle->system->atoms[i].type = Get_Atom_Type( &system->reax_param,
//                element, sizeof(element) );
        spmd_handle->system->atoms[i].type = qm_types[i];
//        strncpy( spmd_handle->system->atoms[i].name, atom_name,
//                sizeof(spmd_handle->system->atoms[i].name) - 1 );
//        spmd_handle->system->atoms[i].name[sizeof(spmd_handle->system->atoms[i].name) - 1] = '\0';
        rvec_Copy( spmd_handle->system->atoms[i].x, x );
        rvec_MakeZero( spmd_handle->system->atoms[i].v );
        rvec_MakeZero( spmd_handle->system->atoms[i].f );
        spmd_handle->system->atoms[i].q = 0.0;

//        mask[i] = 1;
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    }

    for ( i = qm_num_atoms; i < qm_num_atoms + mm_num_atoms; ++i )
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    {
        x[0] = mm_pos_x[i - qm_num_atoms];
        x[1] = mm_pos_y[i - qm_num_atoms];
        x[2] = mm_pos_z[i - qm_num_atoms];

        Fit_to_Periodic_Box( &spmd_handle->system->box, x );

        spmd_handle->workspace->orig_id[i] = i + 1;
//        spmd_handle->system->atoms[i].type = Get_Atom_Type( &system->reax_param,
//                element, sizeof(element) );
        spmd_handle->system->atoms[i].type = mm_types[i - qm_num_atoms];
//        strncpy( spmd_handle->system->atoms[i].name, atom_name,
//                sizeof(spmd_handle->system->atoms[i].name) - 1 );
//        spmd_handle->system->atoms[i].name[sizeof(spmd_handle->system->atoms[i].name) - 1] = '\0';
        rvec_Copy( spmd_handle->system->atoms[i].x, x );
        rvec_MakeZero( spmd_handle->system->atoms[i].v );
        rvec_MakeZero( spmd_handle->system->atoms[i].f );
        spmd_handle->system->atoms[i].q = mm_q[i - qm_num_atoms];

//        mask[i] = 0;
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    }
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed

    Read_Input_Files( NULL, ffield_file, control_file,
            spmd_handle->system, spmd_handle->control,
            spmd_handle->data, spmd_handle->workspace,
            spmd_handle->out_control );
    spmd_handle->system->N_max = (int) CEIL( SAFE_ZONE * spmd_handle->system->N );

    return (void *) spmd_handle;
/* Allocate top-level data structures and parse input files
 * for the first simulation
 *
 * geo_file: file containing geometry info of the structure to simulate
 * ffield_file: file containing force field parameters
 * control_file: file containing simulation parameters
 */
void * setup( const char * const geo_file, const char * const ffield_file,
    spuremd_handle *spmd_handle;

    /* top-level allocation */
    spmd_handle = (spuremd_handle*) smalloc( sizeof(spuremd_handle),
            "setup::spmd_handle" );

    /* second-level allocations */
    spmd_handle->system = smalloc( sizeof(reax_system),
    spmd_handle->system->prealloc_allocated = FALSE;
    spmd_handle->system->ffield_params_allocated = FALSE;
    spmd_handle->control = smalloc( sizeof(control_params),
    spmd_handle->data = smalloc( sizeof(simulation_data),
    spmd_handle->workspace = smalloc( sizeof(static_storage),
    spmd_handle->workspace->H.allocated = FALSE;
    spmd_handle->workspace->H_full.allocated = FALSE;
    spmd_handle->workspace->H_sp.allocated = FALSE;
    spmd_handle->workspace->H_p.allocated = FALSE;
    spmd_handle->workspace->H_spar_patt.allocated = FALSE;
    spmd_handle->workspace->H_spar_patt_full.allocated = FALSE;
    spmd_handle->workspace->H_app_inv.allocated = FALSE;
    spmd_handle->workspace->L.allocated = FALSE;
    spmd_handle->workspace->U.allocated = FALSE;

    spmd_handle->lists = smalloc( sizeof(reax_list *) * LIST_N,
    for ( i = 0; i < LIST_N; ++i )
    {
        spmd_handle->lists[i] = smalloc( sizeof(reax_list),
                "Setup::spmd_handle->lists[i]" );
        spmd_handle->lists[i]->allocated = FALSE;
    }
    spmd_handle->out_control = smalloc( sizeof(output_controls),
           "Setup::spmd_handle->out_control" );

    spmd_handle->output_enabled = TRUE;
    Read_Input_Files( geo_file, ffield_file, control_file,
            spmd_handle->system, spmd_handle->control,
            spmd_handle->data, spmd_handle->workspace,

    spmd_handle->system->N_max = (int) CEIL( SAFE_ZONE * spmd_handle->system->N );
/* Setup callback function to be run after each simulation step
 *
 * handle: pointer to wrapper struct with top-level data structures
 * callback: function pointer to attach for callback
 *
 * returns: SPUREMD_SUCCESS upon success, SPUREMD_FAILURE otherwise
int setup_callback( const void * const handle, const callback_function callback  )
{
    int ret;
    spuremd_handle *spmd_handle;


    ret = SPUREMD_FAILURE;

    if ( handle != NULL && callback != NULL )
    {
        spmd_handle = (spuremd_handle*) handle;
        spmd_handle->callback = callback;
        ret = SPUREMD_SUCCESS;
    }

    return ret;
}


/* Run the simulation according to the prescribed parameters
 *
 * handle: pointer to wrapper struct with top-level data structures
 *
 * returns: SPUREMD_SUCCESS upon success, SPUREMD_FAILURE otherwise
int simulate( const void * const handle )
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
{
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed

Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed

Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
    {
        spmd_handle = (spuremd_handle*) handle;

        Initialize( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                spmd_handle->workspace, spmd_handle->lists,
                spmd_handle->out_control, &Evolve,
        //if( control.restart == FALSE ) {
        Reset( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                spmd_handle->workspace, spmd_handle->lists );
        Generate_Neighbor_Lists( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                spmd_handle->workspace, spmd_handle->lists, spmd_handle->out_control );

        Compute_Forces( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                spmd_handle->workspace, spmd_handle->lists, spmd_handle->out_control,
                spmd_handle->realloc );
        Compute_Kinetic_Energy( spmd_handle->system, spmd_handle->data );
        if ( spmd_handle->control->compute_pressure == TRUE && spmd_handle->control->ensemble != sNPT
                && spmd_handle->control->ensemble != iNPT && spmd_handle->control->ensemble != aNPT )
        {
            Compute_Pressure_Isotropic( spmd_handle->system, spmd_handle->control,
                    spmd_handle->data, spmd_handle->out_control );
        }

        if ( spmd_handle->output_enabled == TRUE || spmd_handle->callback != NULL )
            if ( ((spmd_handle->out_control->log_update_freq > 0
                        && spmd_handle->data->step % spmd_handle->out_control->log_update_freq == 0)
                    || (spmd_handle->out_control->write_steps > 0
                        && spmd_handle->data->step % spmd_handle->out_control->write_steps == 0))
                || spmd_handle->callback != NULL )
                Compute_Total_Energy( spmd_handle->data );
        if ( spmd_handle->output_enabled == TRUE )
        {
            Output_Results( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                    spmd_handle->workspace, spmd_handle->lists, spmd_handle->out_control );
        if ( spmd_handle->output_enabled == TRUE )
        {
            if ( spmd_handle->out_control->write_steps > 0
                    && spmd_handle->data->step % spmd_handle->out_control->write_steps == 0 )
            {
                Write_PDB( spmd_handle->system, spmd_handle->lists[BONDS], spmd_handle->data,
                        spmd_handle->control, spmd_handle->workspace, spmd_handle->out_control );
            }
        }

            spmd_handle->callback( spmd_handle->system->N, spmd_handle->system->atoms,
                    spmd_handle->data );
        for ( ++spmd_handle->data->step; spmd_handle->data->step <= spmd_handle->control->nsteps; spmd_handle->data->step++ )
            if ( spmd_handle->control->T_mode != 0 )
            {
                Temperature_Control( spmd_handle->control, spmd_handle->data,
                        spmd_handle->out_control );
            }

            Evolve( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                    spmd_handle->workspace, spmd_handle->lists, spmd_handle->out_control );
            Post_Evolve( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                    spmd_handle->workspace, spmd_handle->lists, spmd_handle->out_control );

            if ( spmd_handle->output_enabled == TRUE )
            {
                Output_Results( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                        spmd_handle->workspace, spmd_handle->lists, spmd_handle->out_control );
                steps = spmd_handle->data->step - spmd_handle->data->prev_steps;

                Analysis( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                        spmd_handle->workspace, spmd_handle->lists, spmd_handle->out_control );
                if ( spmd_handle->out_control->restart_freq > 0
                        && steps % spmd_handle->out_control->restart_freq == 0 )
                {
                    Write_Restart( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                            spmd_handle->workspace, spmd_handle->out_control );
                }

                if ( spmd_handle->out_control->write_steps > 0
                        && steps % spmd_handle->out_control->write_steps == 0 )
                {
                    Write_PDB( spmd_handle->system, spmd_handle->lists[BONDS], spmd_handle->data,
                            spmd_handle->control, spmd_handle->workspace, spmd_handle->out_control );
                }
                spmd_handle->callback( spmd_handle->system->N, spmd_handle->system->atoms,
                        spmd_handle->data );
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed

        spmd_handle->data->timing.end = Get_Time( );
        spmd_handle->data->timing.elapsed = Get_Timing_Info( spmd_handle->data->timing.start );
        if ( spmd_handle->output_enabled == TRUE )
        {
            fprintf( spmd_handle->out_control->log, "total: %.2f secs\n", spmd_handle->data->timing.elapsed );
        }
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed

Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed

/* Deallocate all data structures post-simulation
 *
 * handle: pointer to wrapper struct with top-level data structures
 *
 * returns: SPUREMD_SUCCESS upon success, SPUREMD_FAILURE otherwise
int cleanup( const void * const handle )
    spuremd_handle *spmd_handle;

    ret = SPUREMD_FAILURE;
    if ( handle != NULL )
    {
        spmd_handle = (spuremd_handle*) handle;

        Finalize( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                spmd_handle->workspace, spmd_handle->lists, spmd_handle->out_control,

        sfree( spmd_handle->out_control, "cleanup::spmd_handle->out_control" );
        for ( i = 0; i < LIST_N; ++i )
        {
            sfree( spmd_handle->lists[i], "cleanup::spmd_handle->lists[i]" );
        }
        sfree( spmd_handle->lists, "cleanup::spmd_handle->lists" );
        sfree( spmd_handle->workspace, "cleanup::spmd_handle->workspace" );
        sfree( spmd_handle->data, "cleanup::spmd_handle->data" );
        sfree( spmd_handle->control, "cleanup::spmd_handle->control" );
        sfree( spmd_handle->system, "cleanup::spmd_handle->system" );

        sfree( spmd_handle, "cleanup::spmd_handle" );

        ret = SPUREMD_SUCCESS;
    }
Kurt A. O'Hearn's avatar
Kurt A. O'Hearn committed
}
/* Reset for the next simulation by parsing input files and triggering
 * reallocation if more space is needed
 *
 * handle: pointer to wrapper struct with top-level data structures
 * qm_num_atoms: num. atoms in the QM region
 * qm_types: element types for QM atoms
 * qm_pos_x: x-coordinate of QM atom positions, in Angstroms
 * qm_pos_y: y-coordinate of QM atom positions, in Angstroms
 * qm_pos_z: z-coordinate of QM atom positions, in Angstroms
 * mm_num_atoms: num. atoms in the MM region
 * mm_types: element types for MM atoms
 * mm_pos_x: x-coordinate of MM atom positions, in Angstroms
 * mm_pos_y: y-coordinate of MM atom positions, in Angstroms
 * mm_pos_z: z-coordinate of MM atom positions, in Angstroms
 * mm_q: charge of MM atom, in Coulombs
 * sim_box: simulation box information, where the entries are
 *  - box length per dimension (3 entries)
 *  - angles per dimension (3 entries)
 * ffield_file: file containing force field parameters
 * control_file: file containing simulation parameters
 *
 * returns: SPUREMD_SUCCESS upon success, SPUREMD_FAILURE otherwise
 */
int reset_qmmm_( const void * const handle,
        int qm_num_atoms, const int * const qm_types,
        const double * const qm_pos_x, const double * const qm_pos_y,
        const double * const qm_pos_z,
        int mm_num_atoms, const int * const mm_types,
        const double * const mm_pos_x, const double * const mm_pos_y,
        const double * const mm_pos_z, const double * const mm_q,
        const double * const sim_box,
        const char * const ffield_file, const char * const control_file )
{
    int i, ret;
    rvec x;
    spuremd_handle *spmd_handle;

    ret = SPUREMD_FAILURE;

    if ( handle != NULL )
    {
        spmd_handle = (spuremd_handle*) handle;

        /* close files used in previous simulation */
        if ( spmd_handle->output_enabled == TRUE )
        {
            Finalize_Out_Controls( spmd_handle->system, spmd_handle->control,
                    spmd_handle->workspace, spmd_handle->out_control );
        }

        spmd_handle->realloc = FALSE;
        spmd_handle->data->sim_id++;

        spmd_handle->system->N_qm = qm_num_atoms;
        spmd_handle->system->N_mm = mm_num_atoms;
        spmd_handle->system->N = qm_num_atoms + mm_num_atoms;

        PreAllocate_Space( spmd_handle->system, spmd_handle->control,
                spmd_handle->workspace, spmd_handle->system->N );

        Setup_Box( sim_box[0], sim_box[1], sim_box[2],
                sim_box[3], sim_box[4], sim_box[5],
                &spmd_handle->system->box );

        for ( i = 0; i < qm_num_atoms; ++i )
        {
            x[0] = qm_pos_x[i];
            x[1] = qm_pos_y[i];
            x[2] = qm_pos_z[i];

            Fit_to_Periodic_Box( &spmd_handle->system->box, x );

            spmd_handle->workspace->orig_id[i] = i + 1;
//            spmd_handle->system->atoms[i].type = Get_Atom_Type( &system->reax_param,
//                    element, sizeof(element) );
            spmd_handle->system->atoms[i].type = qm_types[i];
//            strncpy( spmd_handle->system->atoms[i].name, atom_name,
//                    sizeof(spmd_handle->system->atoms[i].name) - 1 );
//            spmd_handle->system->atoms[i].name[sizeof(spmd_handle->system->atoms[i].name) - 1] = '\0';
            rvec_Copy( spmd_handle->system->atoms[i].x, x );
            rvec_MakeZero( spmd_handle->system->atoms[i].v );
            rvec_MakeZero( spmd_handle->system->atoms[i].f );
            spmd_handle->system->atoms[i].q = 0.0;

//            mask[i] = 1;
        }

        for ( i = qm_num_atoms; i < qm_num_atoms + mm_num_atoms; ++i )
        {
            x[0] = mm_pos_x[i - qm_num_atoms];
            x[1] = mm_pos_y[i - qm_num_atoms];
            x[2] = mm_pos_z[i - qm_num_atoms];

            Fit_to_Periodic_Box( &spmd_handle->system->box, x );

            spmd_handle->workspace->orig_id[i] = i + 1;
//            spmd_handle->system->atoms[i].type = Get_Atom_Type( &system->reax_param,
//                    element, sizeof(element) );
            spmd_handle->system->atoms[i].type = mm_types[i - qm_num_atoms];
//            strncpy( spmd_handle->system->atoms[i].name, atom_name,
//                    sizeof(spmd_handle->system->atoms[i].name) - 1 );
//            spmd_handle->system->atoms[i].name[sizeof(spmd_handle->system->atoms[i].name) - 1] = '\0';
            rvec_Copy( spmd_handle->system->atoms[i].x, x );
            rvec_MakeZero( spmd_handle->system->atoms[i].v );
            rvec_MakeZero( spmd_handle->system->atoms[i].f );
            spmd_handle->system->atoms[i].q = mm_q[i - qm_num_atoms];

//            mask[i] = 0;
        }

        Read_Input_Files( NULL, ffield_file, control_file,
                spmd_handle->system, spmd_handle->control,
                spmd_handle->data, spmd_handle->workspace,
                spmd_handle->out_control );

        if ( spmd_handle->system->N > spmd_handle->system->N_max )
        {
            /* deallocate everything which needs more space
             * (i.e., structures whose space is a function of the number of atoms),
             * except for data structures allocated while parsing input files */
            Finalize( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                    spmd_handle->workspace, spmd_handle->lists, spmd_handle->out_control,
                    spmd_handle->output_enabled, TRUE );

            spmd_handle->system->N_max = (int) CEIL( SAFE_ZONE * spmd_handle->system->N );
            spmd_handle->realloc = TRUE;
        }

        ret = SPUREMD_SUCCESS;
    }

    return ret;
}


/* Reset for the next simulation by parsing input files and triggering
 * reallocation if more space is needed
 *
 * handle: pointer to wrapper struct with top-level data structures
 * geo_file: file containing geometry info of the structure to simulate
 * ffield_file: file containing force field parameters
 * control_file: file containing simulation parameters
 *
 * returns: SPUREMD_SUCCESS upon success, SPUREMD_FAILURE otherwise
 */
int reset( const void * const handle, const char * const geo_file,
        const char * const ffield_file, const char * const control_file )
{
    int ret;
    spuremd_handle *spmd_handle;

    ret = SPUREMD_FAILURE;

    if ( handle != NULL )
    {
        spmd_handle = (spuremd_handle*) handle;

        /* close files used in previous simulation */
        if ( spmd_handle->output_enabled == TRUE )
        {
            Finalize_Out_Controls( spmd_handle->system, spmd_handle->control,
                    spmd_handle->workspace, spmd_handle->out_control );
        }

        spmd_handle->realloc = FALSE;
        spmd_handle->data->sim_id++;

        Read_Input_Files( geo_file, ffield_file, control_file,
                spmd_handle->system, spmd_handle->control,
                spmd_handle->data, spmd_handle->workspace,

        if ( spmd_handle->system->N > spmd_handle->system->N_max )
        {
            /* deallocate everything which needs more space
             * (i.e., structures whose space is a function of the number of atoms),
             * except for data structures allocated while parsing input files */
            Finalize( spmd_handle->system, spmd_handle->control, spmd_handle->data,
                    spmd_handle->workspace, spmd_handle->lists, spmd_handle->out_control,
                    spmd_handle->output_enabled, TRUE );

            spmd_handle->system->N_max = (int) CEIL( SAFE_ZONE * spmd_handle->system->N );
            spmd_handle->realloc = TRUE;
        }

        ret = SPUREMD_SUCCESS;
    }

    return ret;
}


/* Getter for atom positions in QMMM mode
 *
 * handle: pointer to wrapper struct with top-level data structures
 * qm_pos_x: x-coordinate of QM atom positions, in Angstroms (allocated by caller)
 * qm_pos_y: y-coordinate of QM atom positions, in Angstroms (allocated by caller)
 * qm_pos_z: z-coordinate of QM atom positions, in Angstroms (allocated by caller)
 * mm_pos_x: x-coordinate of MM atom positions, in Angstroms (allocated by caller)
 * mm_pos_y: y-coordinate of MM atom positions, in Angstroms (allocated by caller)
 * mm_pos_z: z-coordinate of MM atom positions, in Angstroms (allocated by caller)
 *
 * returns: SPUREMD_SUCCESS upon success, SPUREMD_FAILURE otherwise
 */
int get_atom_positions_qmmm_( const void * const handle, double * const qm_pos_x,
        double * const qm_pos_y, double * const qm_pos_z, double * const mm_pos_x,
        double * const mm_pos_y, double * const mm_pos_z )
{
    int i, ret;
    spuremd_handle *spmd_handle;

    ret = SPUREMD_FAILURE;

    if ( handle != NULL )
    {
        spmd_handle = (spuremd_handle*) handle;

        for ( i = 0; i < spmd_handle->system->N_qm; ++i )
        {
            qm_pos_x[i] = spmd_handle->system->atoms[i].x[0];
            qm_pos_y[i] = spmd_handle->system->atoms[i].x[1];
            qm_pos_z[i] = spmd_handle->system->atoms[i].x[2];
        }

        for ( i = spmd_handle->system->N_qm; i < spmd_handle->system->N; ++i )
        {
            mm_pos_x[i - spmd_handle->system->N_qm] = spmd_handle->system->atoms[i].x[0];
            mm_pos_y[i - spmd_handle->system->N_qm] = spmd_handle->system->atoms[i].x[1];
            mm_pos_z[i - spmd_handle->system->N_qm] = spmd_handle->system->atoms[i].x[2];
        }

        ret = SPUREMD_SUCCESS;
    }

    return ret;
}


/* Getter for atom velocities in QMMM mode
 *
 * handle: pointer to wrapper struct with top-level data structures
 * qm_vel_x: x-coordinate of QM atom velocities, in Angstroms / ps (allocated by caller)
 * qm_vel_y: y-coordinate of QM atom velocities, in Angstroms / ps (allocated by caller)
 * qm_vel_z: z-coordinate of QM atom velocities, in Angstroms / ps (allocated by caller)
 * mm_vel_x: x-coordinate of MM atom velocities, in Angstroms / ps (allocated by caller)
 * mm_vel_y: y-coordinate of MM atom velocities, in Angstroms / ps (allocated by caller)
 * mm_vel_z: z-coordinate of MM atom velocities, in Angstroms / ps (allocated by caller)
 *
 * returns: SPUREMD_SUCCESS upon success, SPUREMD_FAILURE otherwise
 */
int get_atom_velocities_qmmm_( const void * const handle, double * const qm_vel_x,
        double * const qm_vel_y, double * const qm_vel_z, double * const mm_vel_x,
        double * const mm_vel_y, double * const mm_vel_z )
{
    int i, ret;
    spuremd_handle *spmd_handle;

    ret = SPUREMD_FAILURE;

    if ( handle != NULL )
    {
        spmd_handle = (spuremd_handle*) handle;

        for ( i = 0; i < spmd_handle->system->N_qm; ++i )
        {
            qm_vel_x[i] = spmd_handle->system->atoms[i].v[0];
            qm_vel_y[i] = spmd_handle->system->atoms[i].v[1];
            qm_vel_z[i] = spmd_handle->system->atoms[i].v[2];
        }

        for ( i = spmd_handle->system->N_qm; i < spmd_handle->system->N; ++i )
        {
            mm_vel_x[i - spmd_handle->system->N_qm] = spmd_handle->system->atoms[i].v[0];
            mm_vel_y[i - spmd_handle->system->N_qm] = spmd_handle->system->atoms[i].v[1];
            mm_vel_z[i - spmd_handle->system->N_qm] = spmd_handle->system->atoms[i].v[2];
        }

        ret = SPUREMD_SUCCESS;
    }

    return ret;
}


/* Getter for atom forces in QMMM mode
 *
 * handle: pointer to wrapper struct with top-level data structures
 * qm_f_x: x-coordinate of QM atom forces, in Angstroms * Daltons / ps^2 (allocated by caller)
 * qm_f_y: y-coordinate of QM atom forces, in Angstroms * Daltons / ps^2 (allocated by caller)
 * qm_f_z: z-coordinate of QM atom forces, in Angstroms * Daltons / ps^2 (allocated by caller)
 * mm_f_x: x-coordinate of MM atom forces, in Angstroms * Daltons / ps^2 (allocated by caller)
 * mm_f_y: y-coordinate of MM atom forces, in Angstroms * Daltons / ps^2 (allocated by caller)
 * mm_f_z: z-coordinate of MM atom forces, in Angstroms * Daltons / ps^2 (allocated by caller)
 *
 * returns: SPUREMD_SUCCESS upon success, SPUREMD_FAILURE otherwise
 */
int get_atom_forces_qmmm_( const void * const handle, double * const qm_f_x,
        double * const qm_f_y, double * const qm_f_z, double * const mm_f_x,
        double * const mm_f_y, double * const mm_f_z )
{
    int i, ret;
    spuremd_handle *spmd_handle;

    ret = SPUREMD_FAILURE;

    if ( handle != NULL )
    {
        spmd_handle = (spuremd_handle*) handle;

        for ( i = 0; i < spmd_handle->system->N_qm; ++i )
        {
            qm_f_x[i] = spmd_handle->system->atoms[i].f[0];
            qm_f_y[i] = spmd_handle->system->atoms[i].f[1];
            qm_f_z[i] = spmd_handle->system->atoms[i].f[2];
        }

        for ( i = spmd_handle->system->N_qm; i < spmd_handle->system->N; ++i )
        {
            mm_f_x[i - spmd_handle->system->N_qm] = spmd_handle->system->atoms[i].f[0];
            mm_f_y[i - spmd_handle->system->N_qm] = spmd_handle->system->atoms[i].f[1];
            mm_f_z[i - spmd_handle->system->N_qm] = spmd_handle->system->atoms[i].f[2];
        }

        ret = SPUREMD_SUCCESS;
    }

    return ret;
}


/* Getter for atom charges in QMMM mode
 *
 * handle: pointer to wrapper struct with top-level data structures
 * qm_q: QM atom charges, in Coulombs (allocated by caller)
 * mm_q: MM atom charges, in Coulombs (allocated by caller)
 *
 * returns: SPUREMD_SUCCESS upon success, SPUREMD_FAILURE otherwise
 */
int get_atom_charges_qmmm_( const void * const handle, double * const qm_q,
        double * const mm_q )
{
    int i, ret;
    spuremd_handle *spmd_handle;

    ret = SPUREMD_FAILURE;

    if ( handle != NULL )
    {
        spmd_handle = (spuremd_handle*) handle;

        for ( i = 0; i < spmd_handle->system->N_qm; ++i )
        {
            qm_q[i] = spmd_handle->system->atoms[i].q;
        }

        for ( i = spmd_handle->system->N_qm; i < spmd_handle->system->N; ++i )
        {
            mm_q[i - spmd_handle->system->N_qm] = spmd_handle->system->atoms[i].q;
        }

        ret = SPUREMD_SUCCESS;
    }

    return ret;
}


 *
 * handle: pointer to wrapper struct with top-level data structures
 * pos_x: x-coordinate of atom positions, in Angstroms (allocated by caller)
 * pos_y: y-coordinate of atom positions, in Angstroms (allocated by caller)
 * pos_z: z-coordinate of atom positions, in Angstroms (allocated by caller)
 *
 * returns: SPUREMD_SUCCESS upon success, SPUREMD_FAILURE otherwise
int get_atom_positions( const void * const handle, double * const pos_x,
        double * const pos_y, double * const pos_z )

    if ( handle != NULL )
    {
        spmd_handle = (spuremd_handle*) handle;

        for ( i = 0; i < spmd_handle->system->N; ++i )
        {
            pos_x[i] = spmd_handle->system->atoms[i].x[0];
            pos_y[i] = spmd_handle->system->atoms[i].x[1];
            pos_z[i] = spmd_handle->system->atoms[i].x[2];
        }

        ret = SPUREMD_SUCCESS;
/* Getter for atom velocities
 *
 * handle: pointer to wrapper struct with top-level data structures
 * vel_x: x-coordinate of atom velocities, in Angstroms / ps (allocated by caller)
 * vel_y: y-coordinate of atom velocities, in Angstroms / ps (allocated by caller)
 * vel_z: z-coordinate of atom velocities, in Angstroms / ps (allocated by caller)
 *
 * returns: SPUREMD_SUCCESS upon success, SPUREMD_FAILURE otherwise
 */
int get_atom_velocities( const void * const handle, double * const vel_x,
        double * const vel_y, double * const vel_z )
{
    int i, ret;
    spuremd_handle *spmd_handle;