Newer
Older
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "reax_types.h"
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
#include "dev_alloc.h"
#include "dev_list.h"
#include "cuda_copy.h"
#include "validation.h"
Kurt A. O'Hearn
committed
#endif
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#if defined(PURE_REAX)
#include "init_md.h"
#include "allocate.h"
#include "box.h"
#include "comm_tools.h"
#include "forces.h"
#include "grid.h"
#include "integrate.h"
#include "io_tools.h"
#include "list.h"
#include "lookup.h"
#include "neighbors.h"
#include "random.h"
#include "reset_tools.h"
#include "system_props.h"
#include "tool_box.h"
#include "vector.h"
#elif defined(LAMMPS_REAX)
#include "reax_init_md.h"
#include "reax_allocate.h"
#include "reax_forces.h"
#include "reax_io_tools.h"
#include "reax_list.h"
#include "reax_lookup.h"
#include "reax_reset_tools.h"
#include "reax_system_props.h"
#include "reax_tool_box.h"
#include "reax_vector.h"
#endif
#if defined(PURE_REAX)
/************************ initialize system ************************/
int Reposition_Atoms( reax_system *system, control_params *control,
simulation_data *data, mpi_datatypes *mpi_data,
char *msg )
int i;
rvec dx;
/* reposition atoms */
if ( control->reposition_atoms == 0 ) //fit atoms to periodic box
{
rvec_MakeZero( dx );
}
else if ( control->reposition_atoms == 1 ) //put center of mass to center
{
rvec_Scale( dx, 0.5, system->big_box.box_norms );
rvec_ScaledAdd( dx, -1., data->xcm );
}
else if ( control->reposition_atoms == 2 ) //put center of mass to origin
{
rvec_Scale( dx, -1., data->xcm );
}
else
{
strcpy( msg, "reposition_atoms: invalid option" );
return FAILURE;
}
for ( i = 0; i < system->n; ++i )
// Inc_on_T3_Gen( system->my_atoms[i].x, dx, &(system->big_box) );
rvec_Add( system->my_atoms[i].x, dx );
return SUCCESS;
}
void Generate_Initial_Velocities( reax_system *system, real T )
{
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
int i;
real m, scale, norm;
if ( T <= 0.1 )
{
for ( i = 0; i < system->n; i++ )
rvec_MakeZero( system->my_atoms[i].v );
}
else
{
Randomize();
for ( i = 0; i < system->n; i++ )
{
rvec_Random( system->my_atoms[i].v );
norm = rvec_Norm_Sqr( system->my_atoms[i].v );
m = system->reax_param.sbp[ system->my_atoms[i].type ].mass;
scale = SQRT( m * norm / (3.0 * K_B * T) );
rvec_Scale( system->my_atoms[i].v, 1. / scale, system->my_atoms[i].v );
// fprintf( stderr, "v = %f %f %f\n",
// system->my_atoms[i].v[0],
// system->my_atoms[i].v[1],
// system->my_atoms[i].v[2] );
// fprintf( stderr, "scale = %f\n", scale );
// fprintf( stderr, "v = %f %f %f\n",
// system->my_atoms[i].v[0],
// system->my_atoms[i].v[1],
// system->my_atoms[i].v[2] );
}
int Init_System( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
mpi_datatypes *mpi_data, char *msg )
int i;
reax_atom *atom;
int nrecv[MAX_NBRS];
Setup_New_Grid( system, control, MPI_COMM_WORLD );
fprintf( stderr, "p%d GRID:\n", system->my_rank );
Print_Grid( &(system->my_grid), stderr );
Bin_My_Atoms( system, &(workspace->realloc) );
Reorder_My_Atoms( system, workspace );
/* estimate N and total capacity */
for ( i = 0; i < MAX_NBRS; ++i ) nrecv[i] = 0;
MPI_Barrier( MPI_COMM_WORLD );
system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
Estimate_Boundary_Atoms, Unpack_Estimate_Message, 1 );
system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP );
Bin_Boundary_Atoms( system );
/* estimate numH and Hcap */
system->numH = 0;
if ( control->hbond_cut > 0 )
for ( i = 0; i < system->n; ++i )
{
atom = &(system->my_atoms[i]);
if ( system->reax_param.sbp[ atom->type ].p_hbond == 1 )
atom->Hindex = system->numH++;
else atom->Hindex = -1;
}
//Tried fix
//system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
system->Hcap = MAX( system->n * SAFER_ZONE, MIN_CAP );
// Sudhir-style below
/*
system->numH = 0;
if ( control->hbond_cut > 0 )
for ( i = 0; i < system->n; ++i )
{
atom = &(system->my_atoms[i]);
if ( system->reax_param.sbp[ atom->type ].p_hbond == 1 )
atom->Hindex = system->numH++;
else atom->Hindex = -1;
}
system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
*/
//Sync_System (system);
//Allocate_System( system, system->local_cap, system->total_cap, msg );
fprintf( stderr, "p%d: n=%d local_cap=%d\n",
system->my_rank, system->n, system->local_cap );
fprintf( stderr, "p%d: N=%d total_cap=%d\n",
system->my_rank, system->N, system->total_cap );
fprintf( stderr, "p%d: numH=%d H_cap=%d\n",
system->my_rank, system->numH, system->Hcap );
Compute_Total_Mass( system, data, mpi_data->comm_mesh3D );
Compute_Center_of_Mass( system, data, mpi_data, mpi_data->comm_mesh3D );
// if( Reposition_Atoms( system, control, data, mpi_data, msg ) == FAILURE )
// return FAILURE;
/* initialize velocities so that desired init T can be attained */
if ( !control->restart || (control->restart && control->random_vel) )
Generate_Initial_Velocities( system, control->T_init );
Compute_Kinetic_Energy( system, data, mpi_data->comm_mesh3D );
return SUCCESS;
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
int Cuda_Init_System( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
mpi_datatypes *mpi_data, char *msg )
int i;
reax_atom *atom;
int nrecv[MAX_NBRS];
Setup_New_Grid( system, control, MPI_COMM_WORLD );
fprintf( stderr, "p%d GRID:\n", system->my_rank );
Print_Grid( &(system->my_grid), stderr );
Bin_My_Atoms( system, &(workspace->realloc) );
Reorder_My_Atoms( system, workspace );
/* estimate N and total capacity */
for ( i = 0; i < MAX_NBRS; ++i ) nrecv[i] = 0;
MPI_Barrier( MPI_COMM_WORLD );
system->max_recved = 0;
system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
Estimate_Boundary_Atoms, Unpack_Estimate_Message, 1 );
system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP );
Bin_Boundary_Atoms( system );
//MPI_ABORT( MPI_COMM_WORLD, -1);
//sudhir
#if defined(__CUDA_DEBUG_LOG__)
//fprintf (stderr, "After first SendRecv: N: %d, total_cap: %d \n",
// system->N, system->total_cap);
#endif
/* estimate numH and Hcap */
system->numH = 0;
if ( control->hbond_cut > 0 )
//TODO
//for( i = 0; i < system->n; ++i ) {
for ( i = 0; i < system->N; ++i )
{
atom = &(system->my_atoms[i]);
atom->Hindex = i;
//FIX - 4 - Added fix for HBond Issue
if ( system->reax_param.sbp[ atom->type ].p_hbond == 1 )
system->numH++;
//else atom->Hindex = -1;
}
system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
//Allocate_System( system, system->local_cap, system->total_cap, msg );
//Sync atoms here to continue the computation
//fprintf (stderr, " N:%d after sendrecv \n");
dev_alloc_system (system);
Sync_System (system);
fprintf( stderr, "p%d: n=%d local_cap=%d\n",
system->my_rank, system->n, system->local_cap );
fprintf( stderr, "p%d: N=%d total_cap=%d\n",
system->my_rank, system->N, system->total_cap );
fprintf( stderr, "p%d: numH=%d H_cap=%d\n",
system->my_rank, system->numH, system->Hcap );
Cuda_Compute_Total_Mass( system, data, mpi_data->comm_mesh3D );
Cuda_Compute_Center_of_Mass( system, data, mpi_data, mpi_data->comm_mesh3D );
// if( Reposition_Atoms( system, control, data, mpi_data, msg ) == FAILURE )
// return FAILURE;
/* initialize velocities so that desired init T can be attained */
if ( !control->restart || (control->restart && control->random_vel) )
Generate_Initial_Velocities( system, control->T_init );
Cuda_Compute_Kinetic_Energy( system, data, mpi_data->comm_mesh3D );
return SUCCESS;
Kurt A. O'Hearn
committed
#endif
/************************ initialize simulation data ************************/
int Init_Simulation_Data( reax_system *system, control_params *control,
simulation_data *data, char *msg )
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Reset_Simulation_Data( data );
if ( !control->restart )
data->step = data->prev_steps = 0;
switch ( control->ensemble )
{
case NVE:
data->N_f = 3 * system->bigN;
Evolve = Velocity_Verlet_NVE;
control->virial = 0;
break;
case bNVT:
data->N_f = 3 * system->bigN + 1;
Evolve = Velocity_Verlet_Berendsen_NVT;
control->virial = 0;
break;
case nhNVT:
fprintf( stderr, "WARNING: Nose-Hoover NVT is still under testing.\n" );
//return FAILURE;
data->N_f = 3 * system->bigN + 1;
Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
control->virial = 0;
if ( !control->restart || (control->restart && control->random_vel) )
{
data->therm.G_xi = control->Tau_T *
(2.0 * data->sys_en.e_kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
}
break;
case sNPT: /* Semi-Isotropic NPT */
data->N_f = 3 * system->bigN + 4;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Reset_Pressures( data );
break;
case iNPT: /* Isotropic NPT */
data->N_f = 3 * system->bigN + 2;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Reset_Pressures( data );
break;
case NPT: /* Anisotropic NPT */
strcpy( msg, "init_simulation_data: option not yet implemented" );
return FAILURE;
data->N_f = 3 * system->bigN + 9;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
/*if( !control->restart ) {
data->therm.G_xi = control->Tau_T *
(2.0 * data->my_en.e_Kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->iso_bar.eps = 0.33333 * log(system->box.volume);
data->inv_W = 1.0 /
( data->N_f * K_B * control->T * SQR(control->Tau_P) );
Compute_Pressure( system, control, data, out_control );
}*/
break;
default:
strcpy( msg, "init_simulation_data: ensemble not recognized" );
return FAILURE;
/* initialize the timer(s) */
MPI_Barrier( MPI_COMM_WORLD ); // wait for everyone to come here
if ( system->my_rank == MASTER_NODE )
{
data->timing.start = Get_Time( );
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
int Cuda_Init_Simulation_Data( reax_system *system, control_params *control,
simulation_data *data, char *msg )
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
Reset_Simulation_Data( data );
if ( !control->restart )
data->step = data->prev_steps = 0;
switch ( control->ensemble )
{
case NVE:
data->N_f = 3 * system->bigN;
Cuda_Evolve = Velocity_Verlet_NVE;
control->virial = 0;
break;
case bNVT:
data->N_f = 3 * system->bigN + 1;
Cuda_Evolve = Cuda_Velocity_Verlet_Berendsen_NVT;
control->virial = 0;
break;
case nhNVT:
fprintf( stderr, "WARNING: Nose-Hoover NVT is still under testing.\n" );
//return FAILURE;
data->N_f = 3 * system->bigN + 1;
Cuda_Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
control->virial = 0;
if ( !control->restart || (control->restart && control->random_vel) )
{
data->therm.G_xi = control->Tau_T *
(2.0 * data->sys_en.e_kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
}
break;
case sNPT: /* Semi-Isotropic NPT */
data->N_f = 3 * system->bigN + 4;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Reset_Pressures( data );
break;
case iNPT: /* Isotropic NPT */
data->N_f = 3 * system->bigN + 2;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Reset_Pressures( data );
break;
case NPT: /* Anisotropic NPT */
strcpy( msg, "init_simulation_data: option not yet implemented" );
return FAILURE;
data->N_f = 3 * system->bigN + 9;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
break;
default:
strcpy( msg, "init_simulation_data: ensemble not recognized" );
return FAILURE;
/* initialize the timer(s) */
MPI_Barrier( MPI_COMM_WORLD ); // wait for everyone to come here
if ( system->my_rank == MASTER_NODE )
{
data->timing.start = Get_Time( );
Kurt A. O'Hearn
committed
#endif
#elif defined(LAMMPS_REAX)
int Init_System( reax_system *system, char *msg )
{
system->big_box.V = 0;
system->big_box.box_norms[0] = 0;
system->big_box.box_norms[1] = 0;
system->big_box.box_norms[2] = 0;
system->local_cap = (int)(system->n * SAFE_ZONE);
system->total_cap = (int)(system->N * SAFE_ZONE);
fprintf( stderr, "p%d: local_cap=%d total_cap=%d\n",
system->my_rank, system->local_cap, system->total_cap );
Allocate_System( system, system->local_cap, system->total_cap, msg );
return SUCCESS;
int Init_Simulation_Data( reax_system *system, control_params *control,
simulation_data *data, char *msg )
//if( !control->restart )
data->step = data->prev_steps = 0;
}
#endif
/************************ initialize workspace ************************/
/* Initialize Taper params */
void Init_Taper( control_params *control, storage *workspace )
{
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
real d1, d7;
real swa, swa2, swa3;
real swb, swb2, swb3;
swa = control->nonb_low;
swb = control->nonb_cut;
if ( fabs( swa ) > 0.01 )
fprintf( stderr, "Warning: non-zero lower Taper-radius cutoff\n" );
if ( swb < 0 )
{
fprintf( stderr, "Negative upper Taper-radius cutoff\n" );
MPI_Abort( MPI_COMM_WORLD, INVALID_INPUT );
}
else if ( swb < 5 )
fprintf( stderr, "Warning: very low Taper-radius cutoff: %f\n", swb );
d1 = swb - swa;
d7 = POW( d1, 7.0 );
swa2 = SQR( swa );
swa3 = CUBE( swa );
swb2 = SQR( swb );
swb3 = CUBE( swb );
workspace->Tap[7] = 20.0 / d7;
workspace->Tap[6] = -70.0 * (swa + swb) / d7;
workspace->Tap[5] = 84.0 * (swa2 + 3.0 * swa * swb + swb2) / d7;
workspace->Tap[4] = -35.0 * (swa3 + 9.0 * swa2 * swb + 9.0 * swa * swb2 + swb3 ) / d7;
workspace->Tap[3] = 140.0 * (swa3 * swb + 3.0 * swa2 * swb2 + swa * swb3 ) / d7;
workspace->Tap[2] = -210.0 * (swa3 * swb2 + swa2 * swb3) / d7;
workspace->Tap[1] = 140.0 * swa3 * swb3 / d7;
workspace->Tap[0] = (-35.0 * swa3 * swb2 * swb2 + 21.0 * swa2 * swb3 * swb2 +
7.0 * swa * swb3 * swb3 + swb3 * swb3 * swb ) / d7;
int Init_Workspace( reax_system *system, control_params *control,
storage *workspace, char *msg )
{
int ret;
ret = Allocate_Workspace( system, control, workspace,
system->local_cap, system->total_cap, msg );
if ( ret != SUCCESS )
return ret;
memset( &(workspace->realloc), 0, sizeof(reallocate_data) );
Reset_Workspace( system, workspace );
/* Initialize the Taper function */
Init_Taper( control, workspace );
return SUCCESS;
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
int Cuda_Init_Workspace( reax_system *system, control_params *control,
storage *workspace, char *msg )
{
int ret;
ret = dev_alloc_workspace ( system, control, dev_workspace,
system->local_cap, system->total_cap, msg );
if ( ret != SUCCESS )
return ret;
memset( &(workspace->realloc), 0, sizeof(reallocate_data) );
Cuda_Reset_Workspace( system, workspace );
/* Initialize the Taper function */
Init_Taper( control, dev_workspace );
return SUCCESS;
Kurt A. O'Hearn
committed
#endif
/************** setup communication data structures **************/
int Init_MPI_Datatypes( reax_system *system, storage *workspace,
mpi_datatypes *mpi_data, char *msg )
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
int i, block[11];
MPI_Aint base, disp[11];
MPI_Datatype type[11];
mpi_atom sample;
boundary_atom b_sample;
restart_atom r_sample;
rvec rvec_sample;
rvec2 rvec2_sample;
/* setup the world */
mpi_data->world = MPI_COMM_WORLD;
/* allocate mpi buffers */
//ret = Allocate_MPI_Buffers( mpi_data, system->est_recv,
// system->gcell_cap, system->my_nbrs, msg );
//tmp = 0;
//#if defined(DEBUG_FOCUS)
//for( i = 0; i < MAX_NBRS; ++i )
//if( i != MYSELF )
// tmp += system->my_nbrs[i].est_send;
//fprintf( stderr, "p%d: allocated mpi_buffers: recv=%d send=%d total=%dMB\n",
// system->my_rank, system->est_recv, tmp,
// (int)((system->est_recv+tmp)*sizeof(boundary_atom)/(1024*1024)) );
//#endif
//if( ret != SUCCESS )
// return ret;
/* mpi_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, name,
x, v, f_old, s, t] */
block[0] = block[1] = block[2] = block[3] = block[4] = 1;
block[5] = 8;
block[6] = block[7] = block[8] = 3;
block[9] = block[10] = 4;
MPI_Address( &(sample.orig_id), disp + 0 );
MPI_Address( &(sample.imprt_id), disp + 1 );
MPI_Address( &(sample.type), disp + 2 );
MPI_Address( &(sample.num_bonds), disp + 3 );
MPI_Address( &(sample.num_hbonds), disp + 4 );
MPI_Address( &(sample.name), disp + 5 );
MPI_Address( &(sample.x[0]), disp + 6 );
MPI_Address( &(sample.v[0]), disp + 7 );
MPI_Address( &(sample.f_old[0]), disp + 8 );
MPI_Address( &(sample.s[0]), disp + 9 );
MPI_Address( &(sample.t[0]), disp + 10 );
base = (MPI_Aint)(&(sample));
for ( i = 0; i < 11; ++i ) disp[i] -= base;
type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT;
type[5] = MPI_CHAR;
type[6] = type[7] = type[8] = type[9] = type[10] = MPI_DOUBLE;
MPI_Type_struct( 11, block, disp, type, &(mpi_data->mpi_atom_type) );
MPI_Type_commit( &(mpi_data->mpi_atom_type) );
/* boundary_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, x] */
block[0] = block[1] = block[2] = block[3] = block[4] = 1;
block[5] = 3;
MPI_Address( &(b_sample.orig_id), disp + 0 );
MPI_Address( &(b_sample.imprt_id), disp + 1 );
MPI_Address( &(b_sample.type), disp + 2 );
MPI_Address( &(b_sample.num_bonds), disp + 3 );
MPI_Address( &(b_sample.num_hbonds), disp + 4 );
MPI_Address( &(b_sample.x[0]), disp + 5 );
base = (MPI_Aint)(&(b_sample));
for ( i = 0; i < 6; ++i ) disp[i] -= base;
type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT;
type[5] = MPI_DOUBLE;
MPI_Type_struct( 6, block, disp, type, &(mpi_data->boundary_atom_type) );
MPI_Type_commit( &(mpi_data->boundary_atom_type) );
/* mpi_rvec */
block[0] = 3;
MPI_Address( &(rvec_sample[0]), disp + 0 );
base = disp[0];
for ( i = 0; i < 1; ++i ) disp[i] -= base;
type[0] = MPI_DOUBLE;
MPI_Type_struct( 1, block, disp, type, &(mpi_data->mpi_rvec) );
MPI_Type_commit( &(mpi_data->mpi_rvec) );
/* mpi_rvec2 */
block[0] = 2;
MPI_Address( &(rvec2_sample[0]), disp + 0 );
base = disp[0];
for ( i = 0; i < 1; ++i ) disp[i] -= base;
type[0] = MPI_DOUBLE;
MPI_Type_struct( 1, block, disp, type, &(mpi_data->mpi_rvec2) );
MPI_Type_commit( &(mpi_data->mpi_rvec2) );
/* restart_atom - [orig_id, type, name[8], x, v] */
block[0] = block[1] = 1 ;
block[2] = 8;
block[3] = block[4] = 3;
MPI_Address( &(r_sample.orig_id), disp + 0 );
MPI_Address( &(r_sample.type), disp + 1 );
MPI_Address( &(r_sample.name), disp + 2 );
MPI_Address( &(r_sample.x[0]), disp + 3 );
MPI_Address( &(r_sample.v[0]), disp + 4 );
base = (MPI_Aint)(&(r_sample));
for ( i = 0; i < 5; ++i ) disp[i] -= base;
type[0] = type[1] = MPI_INT;
type[2] = MPI_CHAR;
type[3] = type[4] = MPI_DOUBLE;
MPI_Type_struct( 5, block, disp, type, &(mpi_data->restart_atom_type) );
MPI_Type_commit( &(mpi_data->restart_atom_type) );
return SUCCESS;
}
/********************** allocate lists *************************/
int Init_Lists( reax_system *system, control_params *control,
simulation_data *data, storage *workspace, reax_list **lists,
mpi_datatypes *mpi_data, char *msg )
int i, num_nbrs;
int total_hbonds, total_bonds, bond_cap, num_3body, cap_3body, Htop;
int *hb_top, *bond_top;
int nrecv[MAX_NBRS];
//for( i = 0; i < MAX_NBRS; ++i ) nrecv[i] = system->my_nbrs[i].est_recv;
//system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
// Sort_Boundary_Atoms, Unpack_Exchange_Message, 1 );
num_nbrs = Estimate_NumNeighbors( system, lists );
if (!Make_List(system->total_cap, num_nbrs, TYP_FAR_NEIGHBOR, *lists + FAR_NBRS))
{
fprintf(stderr, "Problem in initializing far nbrs list. Terminating!\n");
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated far_nbrs: num_far=%d, space=%dMB\n",
system->my_rank, num_nbrs,
(int)(num_nbrs * sizeof(far_neighbor_data) / (1024 * 1024)) );
Generate_Neighbor_Lists( system, data, workspace, lists );
bond_top = (int*) calloc( system->total_cap, sizeof(int) );
hb_top = (int*) calloc( system->local_cap, sizeof(int) );
//hb_top = (int*) calloc( system->Hcap, sizeof(int) );
Estimate_Storages( system, control, lists,
&Htop, hb_top, bond_top, &num_3body );
//Host_Estimate_Sparse_Matrix( system, control, lists, system->local_cap, system->total_cap,
// &Htop, hb_top, bond_top, &num_3body );
Allocate_Matrix( &(workspace->H), system->local_cap, Htop );
//MATRIX CHANGES
//workspace->L = NULL;
//workspace->U = NULL;
fprintf( stderr, "p%d: allocated H matrix: Htop=%d, space=%dMB\n",
system->my_rank, Htop,
(int)(Htop * sizeof(sparse_matrix_entry) / (1024 * 1024)) );
// init H indexes
total_hbonds = 0;
for ( i = 0; i < system->n; ++i )
{
system->my_atoms[i].num_hbonds = hb_top[i];
total_hbonds += hb_top[i];
}
total_hbonds = MAX( total_hbonds * SAFER_ZONE, MIN_CAP * MIN_HBONDS );
// DANIEL, to make Mpi_Not_Gpu_Validate_Lists() not complain that system->max_bonds is 0
system->max_hbonds = total_hbonds * SAFER_ZONE;
if ( !Make_List( system->Hcap, total_hbonds, TYP_HBOND, *lists + HBONDS) )
{
fprintf( stderr, "not enough space for hbonds list. terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated hbonds: total_hbonds=%d, space=%dMB\n",
system->my_rank, total_hbonds,
(int)(total_hbonds * sizeof(hbond_data) / (1024 * 1024)) );
}
/* bonds list */
//Allocate_Bond_List( system->N, bond_top, (*lists)+BONDS );
//num_bonds = bond_top[system->N-1];
total_bonds = 0;
for ( i = 0; i < system->N; ++i )
{
system->my_atoms[i].num_bonds = bond_top[i];
total_bonds += bond_top[i];
}
bond_cap = MAX( total_bonds * SAFE_ZONE, MIN_CAP * MIN_BONDS );
// DANIEL, to make Mpi_Not_Gpu_Validate_Lists() not complain that system->max_bonds is 0
system->max_bonds = total_bonds * SAFER_ZONE;
if ( !Make_List( system->total_cap, bond_cap, TYP_BOND, *lists + BONDS) )
{
fprintf( stderr, "not enough space for bonds list. terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated bonds: total_bonds=%d, space=%dMB\n",
system->my_rank, bond_cap,
(int)(bond_cap * sizeof(bond_data) / (1024 * 1024)) );
/* 3bodies list */
cap_3body = MAX( num_3body * SAFE_ZONE, MIN_3BODIES );
if ( !Make_List(bond_cap, cap_3body, TYP_THREE_BODY, *lists + THREE_BODIES) )
{
fprintf( stderr, "Problem in initializing angles list. Terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated 3-body list: num_3body=%d, space=%dMB\n",
system->my_rank, cap_3body,
(int)(cap_3body * sizeof(three_body_interaction_data) / (1024 * 1024)) );
if (!Make_List(system->total_cap, bond_cap * 8, TYP_DDELTA, (*lists) + DDELTAS))
{
fprintf( stderr, "Problem in initializing dDelta list. Terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated dDelta list: num_ddelta=%d space=%ldMB\n",
system->my_rank, bond_cap * 30,
bond_cap * 8 * sizeof(dDelta_data) / (1024 * 1024) );
if ( !Make_List( bond_cap, bond_cap * 50, TYP_DBO, (*lists) + DBOS) )
{
fprintf( stderr, "Problem in initializing dBO list. Terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated dbond list: num_dbonds=%d space=%ldMB\n",
system->my_rank, bond_cap * MAX_BONDS * 3,
bond_cap * MAX_BONDS * 3 * sizeof(dbond_data) / (1024 * 1024) );
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
int Cuda_Init_Lists( reax_system *system, control_params *control,
simulation_data *data, storage *workspace, reax_list **lists,
mpi_datatypes *mpi_data, char *msg )
int i, num_nbrs;
int total_hbonds, total_bonds, bond_cap, num_3body, cap_3body, Htop;
int *hb_top, *bond_top;
int nrecv[MAX_NBRS];
//num_nbrs = Estimate_NumNeighbors( system, lists );
Cuda_Estimate_Neighbors (system, nbr_indices);
num_nbrs = 0;
//for (i = 0; i < 20; i++)
//fprintf (stderr, "atom: %d -- %d \n", i, nbr_indices[i]);
for (i = 0; i < system->N; i++)
num_nbrs += nbr_indices [i] ;
//fprintf (stderr, "DEVICE Total Neighbors: %d (%d)\n", num_nbrs, (int)(num_nbrs*SAFE_ZONE));
for (i = 0; i < system->N; i++)
nbr_indices[i] = MAX (nbr_indices [i] * SAFER_ZONE, MIN_NBRS);
num_nbrs = 0;
num_nbrs += nbr_indices [0] ;
for (i = 1; i < system->N; i++)
{
num_nbrs += nbr_indices [i] ;
nbr_indices [i] += nbr_indices [i - 1];
}
//fprintf (stderr, "DEVICE total neighbors entries: %d \n", nbr_indices [system->N - 1] );
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
if (!Dev_Make_List(system->total_cap, num_nbrs, TYP_FAR_NEIGHBOR, *dev_lists + FAR_NBRS))
{
fprintf(stderr, "Problem in initializing far nbrs list. Terminating!\n");
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated far_nbrs: num_far=%d, space=%dMB\n",
system->my_rank, num_nbrs,
(int)(num_nbrs * sizeof(far_neighbor_data) / (1024 * 1024)) );
#endif
//fprintf (stderr, "N: %d and total_cap: %d \n", system->N, system->total_cap);
Cuda_Init_Neighbors_Indices (nbr_indices, system->N);
Cuda_Generate_Neighbor_Lists( system, data, workspace, lists );
bond_top = (int*) calloc( system->total_cap, sizeof(int) );
//hb_top = (int*) calloc( system->local_cap, sizeof(int) );
hb_top = (int*) calloc( system->total_cap, sizeof(int) );
Cuda_Estimate_Storages( system, control, lists, system->local_cap, system->total_cap,
&Htop, hb_top, bond_top, &num_3body );
//TODO - CARVER FIX
//TODO - CARVER FIX
//TODO - CARVER FIX
//TODO - CARVER FIX
//TODO - CARVER FIX
//TODO - CARVER FIX
Cuda_Estimate_Sparse_Matrix (system, control, data, lists);
//dev_alloc_matrix ( &(dev_workspace->H), system->local_cap, system->n * system->max_sparse_entries);
//dev_alloc_matrix ( &(dev_workspace->H), system->total_cap, system->N * system->max_sparse_entries);
dev_alloc_matrix ( &(dev_workspace->H), system->total_cap, system->total_cap * system->max_sparse_entries);
dev_workspace->H.n = system->n;
//THIS IS INITIALIZED in the init_forces function to system->n
//but this is never used in the code.
//GPU maintains the H matrix to be (NXN) symmetric matrix.
//TODO - CARVER FIX
//TODO - CARVER FIX
//TODO - CARVER FIX
//TODO - CARVER FIX
//TODO - CARVER FIX
//MATRIX CHANGES
//workspace->L = NULL;
//workspace->U = NULL;
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
fprintf (stderr, "p:%d - allocated H matrix: max_entries: %d, cap: %d \n",
system->my_rank, system->max_sparse_entries, dev_workspace->H.m);
fprintf( stderr, "p%d: allocated H matrix: Htop=%d, space=%dMB\n",
system->my_rank, Htop,
(int)(Htop * sizeof(sparse_matrix_entry) / (1024 * 1024)) );
#endif
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
// FIX - 4 - Added addition check here for hydrogen Bonds
if (( control->hbond_cut > 0 ) && (system->numH))
{
/* init H indexes */
total_hbonds = 0;
int count = 0;
//TODO
//for( i = 0; i < system->n; ++i ) {
for ( i = 0; i < system->N; ++i )
{
//system->my_atoms[i].num_hbonds = hb_top[i];
//TODO
hb_top [i] = MAX( hb_top[i] * 4, MIN_HBONDS * 4);
total_hbonds += hb_top[i];
if (hb_top [i] > 0) count ++;
}
total_hbonds = MAX( total_hbonds, MIN_CAP * MIN_HBONDS );
//fprintf (stderr, "HCap value is --> %d, system->n is : %d (%d)\n", system->Hcap, system->n, count);
//fprintf (stderr, "Total Hydrogen Bonds --> %d ** misc %d \n", total_hbonds, hb_top[4021] );
//if( !Dev_Make_List( system->local_cap, total_hbonds, TYP_HBOND, *dev_lists+HBONDS) ) {
/*************/
//CHANGE ORIGINAL
//if( !Dev_Make_List( system->total_cap, total_hbonds, TYP_HBOND, *dev_lists+HBONDS) ) {
if ( !Dev_Make_List( system->total_cap, system->total_cap * system->max_hbonds, TYP_HBOND, *dev_lists + HBONDS) )
{
/**************/
fprintf( stderr, "not enough space for hbonds list. terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
fprintf (stderr, "**** Total HBonds allocated --> %d total_cap: %d per atom: %d, max_hbonds: %d \n",