Newer
Older
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "reax_types.h"
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
#include "cuda_forces.h"
#include "cuda_linear_solvers.h"
#include "cuda_neighbors.h"
//#include "cuda_bond_orders.h"
#include "validation.h"
Kurt A. O'Hearn
committed
#endif
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#if defined(PURE_REAX)
#include "forces.h"
#include "bond_orders.h"
#include "bonds.h"
#include "basic_comm.h"
#include "hydrogen_bonds.h"
#include "io_tools.h"
#include "list.h"
#include "lookup.h"
#include "multi_body.h"
#include "nonbonded.h"
#include "qEq.h"
#include "tool_box.h"
#include "torsion_angles.h"
#include "valence_angles.h"
#include "vector.h"
#elif defined(LAMMPS_REAX)
#include "reax_forces.h"
#include "reax_bond_orders.h"
#include "reax_bonds.h"
#include "reax_basic_comm.h"
#include "reax_hydrogen_bonds.h"
#include "reax_io_tools.h"
#include "reax_list.h"
#include "reax_lookup.h"
#include "reax_multi_body.h"
#include "reax_nonbonded.h"
#include "reax_tool_box.h"
#include "reax_torsion_angles.h"
#include "reax_valence_angles.h"
#include "reax_vector.h"
#endif
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
void Cuda_Total_Forces (reax_system *, control_params *, simulation_data *, storage *);
void Cuda_Total_Forces_PURE (reax_system *, storage *);
Kurt A. O'Hearn
committed
#endif
interaction_function Interaction_Functions[NUM_INTRS];
void Dummy_Interaction( reax_system *system, control_params *control,
simulation_data *data, storage *workspace, reax_list **lists,
output_controls *out_control )
{
}
void Init_Force_Functions( control_params *control )
{
Interaction_Functions[0] = BO;
Interaction_Functions[1] = Bonds; //Dummy_Interaction;
Interaction_Functions[2] = Atom_Energy; //Dummy_Interaction;
Interaction_Functions[3] = Valence_Angles; //Dummy_Interaction;
Interaction_Functions[4] = Torsion_Angles; //Dummy_Interaction;
if ( control->hbond_cut > 0 )
Interaction_Functions[5] = Hydrogen_Bonds;
else Interaction_Functions[5] = Dummy_Interaction;
Interaction_Functions[6] = Dummy_Interaction; //empty
Interaction_Functions[7] = Dummy_Interaction; //empty
Interaction_Functions[8] = Dummy_Interaction; //empty
Interaction_Functions[9] = Dummy_Interaction; //empty
void Compute_Bonded_Forces( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control )
/* Mark beginning of a new timestep in bonded energy files */
Debug_Marker_Bonded( out_control, data->step );
#endif
// for( i = 0; i < NUM_INTRS; i++ ) {
//#if defined(DEBUG)
// fprintf( stderr, "p%d: starting f%d\n", system->my_rank, i );
// MPI_Barrier( MPI_COMM_WORLD );
//#endif
// (Interaction_Functions[i])( system, control, data, workspace,
// lists, out_control );
//#if defined(DEBUG)
// fprintf( stderr, "p%d: f%d done\n", system->my_rank, i );
// MPI_Barrier( MPI_COMM_WORLD );
//#endif
// }
(Interaction_Functions[0])( system, control, data, workspace, lists, out_control );
(Interaction_Functions[1])( system, control, data, workspace, lists, out_control );
(Interaction_Functions[2])( system, control, data, workspace, lists, out_control );
(Interaction_Functions[3])( system, control, data, workspace, lists, out_control );
(Interaction_Functions[4])( system, control, data, workspace, lists, out_control );
(Interaction_Functions[5])( system, control, data, workspace, lists, out_control );
}
void Compute_NonBonded_Forces( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control,
mpi_datatypes *mpi_data )
/* Mark beginning of a new timestep in nonbonded energy files */
/* van der Waals and Coulomb interactions */
if ( control->tabulate == 0 )
vdW_Coulomb_Energy( system, control, data, workspace,
lists, out_control );
else
Tabulated_vdW_Coulomb_Energy( system, control, data, workspace,
lists, out_control );
fprintf( stderr, "p%d: nonbonded forces done\n", system->my_rank );
MPI_Barrier( MPI_COMM_WORLD );
/* this version of Compute_Total_Force computes forces from
coefficients accumulated by all interaction functions.
void Compute_Total_Force( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, mpi_datatypes *mpi_data )
int i, pj;
reax_list *bonds = (*lists) + BONDS;
for ( i = 0; i < system->N; ++i )
for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
if ( i < bonds->select.bond_list[pj].nbr )
{
if ( control->virial == 0 )
Add_dBond_to_Forces( i, pj, workspace, lists );
else
Add_dBond_to_Forces_NPT( i, pj, data, workspace, lists );
}
//Print_Total_Force( system, data, workspace );
/* now all forces are computed to their partially-final values
based on the neighbors information each processor has had.
final values of force on each atom needs to be computed by adding up
all partially-final pieces */
Coll( system, mpi_data, workspace->f, mpi_data->mpi_rvec,
sizeof(rvec) / sizeof(void), rvec_unpacker );
for ( i = 0; i < system->n; ++i )
rvec_Copy( system->my_atoms[i].f, workspace->f[i] );
Coll( system, mpi_data, workspace->f_ele, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_vdw, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_be, mpi_data->mpi_rvec, rvec_unpacker );
Coll( system, mpi_data, workspace->f_lp, mpi_data->mpi_rvec, rvec_unpacker );
Coll( system, mpi_data, workspace->f_ov, mpi_data->mpi_rvec, rvec_unpacker );
Coll( system, mpi_data, workspace->f_un, mpi_data->mpi_rvec, rvec_unpacker );
Coll( system, mpi_data, workspace->f_ang, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_coa, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_pen, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_hb, mpi_data->mpi_rvec, rvec_unpacker );
Coll( system, mpi_data, workspace->f_tor, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_con, mpi_data->mpi_rvec, rvec_unpacker);
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
void Cuda_Compute_Total_Force( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, mpi_datatypes *mpi_data )
rvec *f = (rvec *) host_scratch;
memset (f, 0, sizeof (rvec) * system->N );
Cuda_Total_Forces (system, control, data, workspace);
/* now all forces are computed to their partially-final values
based on the neighbors information each processor has had.
final values of force on each atom needs to be computed by adding up
all partially-final pieces */
//MVAPICH2
get_from_device (f, dev_workspace->f, sizeof (rvec) * system->N , "total_force:f:get");
Coll( system, mpi_data, f, mpi_data->mpi_rvec,
sizeof(rvec) / sizeof(void), rvec_unpacker );
put_on_device (f, dev_workspace->f, sizeof (rvec) * system->N, "total_force:f:put" );
Kurt A. O'Hearn
committed
#endif
// Essentially no-cuda copies of cuda kernels, to be used only in the mpi-not-gpu version
////////////////////////
// HBOND ISSUE
void mpi_not_gpu_update_bonds (reax_atom *my_atoms,
{
// int i = blockIdx.x * blockDim.x + threadIdx.x;
// if (i >= n) return;
int i;
for (i = 0; i < n; i++)
{
my_atoms [i].num_bonds =
MAX(Num_Entries(i, &bonds) * 2, MIN_BONDS);
}
}
void mpi_not_gpu_update_hbonds (reax_atom *my_atoms,
{
int Hindex;
int i;
//int i = blockIdx.x * blockDim.x + threadIdx.x;
//if (i >= n) return;
Hindex = my_atoms[i].Hindex;
my_atoms [i].num_hbonds =
MAX(Num_Entries(Hindex, &hbonds) * SAFER_ZONE, MIN_HBONDS);
}
}
// Essentially a copy of cuda_validate_lists, but with all cuda-dependent kernels turned into serial versions
int MPI_Not_GPU_Validate_Lists (reax_system *system, storage *workspace, reax_list **lists, control_params *control,
{
int blocks;
int i, comp, Hindex;
int *index, *end_index;
reax_list *bonds, *hbonds;
reax_atom *my_atoms;
reallocate_data *realloc;
realloc = &( workspace->realloc);
int max_sp_entries, num_hbonds, num_bonds;
int total_sp_entries;
//blocks = system->n / DEF_BLOCK_SIZE +
// ((system->n % DEF_BLOCK_SIZE == 0) ? 0 : 1);
//ker_update_bonds <<< blocks, DEF_BLOCK_SIZE >>>
// (system->d_my_atoms, *(*lists + BONDS),
//cudaThreadSynchronize ();
//cudaCheckError ();
mpi_not_gpu_update_bonds(system->my_atoms, *(*lists + BONDS), system->n);
////////////////////////
// HBOND ISSUE
//FIX - 4 - Added this check for hydrogen bond issue
if ((control->hbond_cut > 0) && (system->numH > 0))
{
//ker_update_hbonds <<< blocks, DEF_BLOCK_SIZE >>>
// (system->d_my_atoms, *(*lists + HBONDS),
// system->n);
//cudaThreadSynchronize ();
//cudaCheckError ();
mpi_not_gpu_update_hbonds(system->my_atoms, *(*lists + HBONDS), system->n);
}
//validate sparse matrix entries.
//memset (host_scratch, 0, 2 * system->N * sizeof (int));
//index = (int *) host_scratch;
//end_index = index + system->N;
index = workspace->H.start;
end_index = workspace->H.end;
// immediately set these to host version since there is no device version.
//memcpy(index, workspace->H.start, system->N * sizeof (int));
//memcpy(end_index, workspace->H.end, system->N * sizeof (int));
// don't need these, everything is already at host
//copy_host_device (index, dev_workspace->H.start, system->N * sizeof (int),
// cudaMemcpyDeviceToHost, "sparse_matrix:start" );
//copy_host_device (end_index, dev_workspace->H.end, system->N * sizeof (int),
// cudaMemcpyDeviceToHost, "sparse_matrix:end" );
max_sp_entries = total_sp_entries = 0;
//if (i < N-1)
// comp = index [i+1];
//else
// comp = dev_workspace->H.m;
total_sp_entries += end_index [i] - index[i];
if (end_index [i] - index[i] > system->max_sparse_entries)
{
fprintf( stderr, "step%d-sparsemat-chk failed: i=%d start(i)=%d end(i)=%d \n",
return FAILURE;
}
else if (end_index[i] >= workspace->H.m)
{
//SUDHIR_FIX_SPARSE_MATRIX
//TODO move this carver
//TODO move this carver
//TODO move this carver
fprintf (stderr, "p:%d - step%d-sparsemat-chk failed (exceed limits): i=%d start(i)=%d end(i)=%d \n",
system->my_rank, step, i, index[i], end_index[i]);
//TODO move this carver
//TODO move this carver
//TODO move this carver
return FAILURE;
if (max_sp_entries <= end_index[i] - index [i])
max_sp_entries = end_index[i] - index [i];
}
}
//if (max_sp_entries <= end_index[i] - index [i])
// max_sp_entries = end_index[i] - index [i];
//update the current step max_sp_entries;
realloc->Htop = max_sp_entries;
fprintf (stderr, "p:%d - MPI-Not-GPU Reallocate: Total H matrix entries: %d, cap: %d, used: %d \n",
system->my_rank, workspace->H.n, workspace->H.m, total_sp_entries);
if (total_sp_entries >= workspace->H.m)
{
fprintf (stderr, "p:%d - **ran out of space for sparse matrix: step: %d, allocated: %d, used: %d \n",
system->my_rank, step, workspace->H.m, total_sp_entries);
return FAILURE;
}
//validate Bond list
num_bonds = 0;
bonds = *lists + BONDS;
// memset (host_scratch, 0, 2 * bonds->n * sizeof (int));
// index = (int *) host_scratch;
// end_index = index + bonds->n;
index = bonds->index;
end_index = bonds->end_index;
// memcpy(index, bonds->index, bonds->n * sizeof (int));
// memcpy(end_index, bonds->end_index, bonds->n * sizeof (int));
/*
copy_host_device (index, bonds->index, bonds->n * sizeof (int),
cudaMemcpyDeviceToHost, "bonds:index");
copy_host_device (end_index, bonds->end_index, bonds->n * sizeof (int),
cudaMemcpyDeviceToHost, "bonds:end_index");
*/
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
/*
for (i = 0; i < N; i++) {
if (i < N-1)
comp = index [i+1];
else
comp = bonds->num_intrs;
if (end_index [i] > comp) {
fprintf( stderr, "step%d-bondchk failed: i=%d start(i)=%d end(i)=%d str(i+1)=%d\n",
step, i, index[i], end_index[i], comp );
return FAILURE;
}
num_bonds += MAX( (end_index[i] - index[i]) * 4, MIN_BONDS);
}
if (end_index[N-1] >= bonds->num_intrs) {
fprintf( stderr, "step%d-bondchk failed(end): i=N-1 start(i)=%d end(i)=%d num_intrs=%d\n",
step, index[N-1], end_index[N-1], bonds->num_intrs);
return FAILURE;
}
num_bonds = MAX( num_bonds, MIN_CAP*MIN_BONDS );
//check the condition for reallocation
realloc->num_bonds = num_bonds;
*/
int max_bonds = 0;
for (i = 0; i < N; i++)
{
if (end_index[i] - index[i] >= system->max_bonds)
{
fprintf( stderr, "MPI-Not-GPU step%d-bondchk failed: i=%d start(i)=%d end(i)=%d max_bonds=%d\n",
step, i, index[i], end_index[i], system->max_bonds);
return FAILURE;
}
if (end_index[i] - index[i] >= max_bonds)
max_bonds = end_index[i] - index[i];
}
realloc->num_bonds = max_bonds;
}
//validate Hbonds list
num_hbonds = 0;
// FIX - 4 - added additional check here
if ((numH > 0) && (control->hbond_cut > 0))
{
hbonds = *lists + HBONDS;
memset (host_scratch, 0, 2 * hbonds->n * sizeof (int) + sizeof (reax_atom) * system->N);
index = (int *) host_scratch;
end_index = index + hbonds->n;
my_atoms = (reax_atom *)(end_index + hbonds->n);
/*
copy_host_device (index, hbonds->index, hbonds->n * sizeof (int),
cudaMemcpyDeviceToHost, "hbonds:index");
copy_host_device (end_index, hbonds->end_index, hbonds->n * sizeof (int),
cudaMemcpyDeviceToHost, "hbonds:end_index");
copy_host_device (my_atoms, system->d_my_atoms, system->N * sizeof (reax_atom),
cudaMemcpyDeviceToHost, "system:d_my_atoms");
*/
//fprintf (stderr, " Total local atoms: %d \n", n);
/*
for (i = 0; i < N-1; i++) {
Hindex = my_atoms [i].Hindex;
comp = index [Hindex + 1];
else
comp = hbonds->num_intrs;
if (end_index [Hindex] > comp) {
fprintf(stderr,"step%d-atom:%d hbondchk failed: H=%d start(H)=%d end(H)=%d str(H+1)=%d\n",
step, i, Hindex, index[Hindex], end_index[Hindex], comp );
return FAILURE;
}
num_hbonds += MAX( (end_index [Hindex] - index [Hindex]) * 2, MIN_HBONDS * 2);
}
if (end_index [my_atoms[i].Hindex] > hbonds->num_intrs) {
fprintf(stderr,"step%d-atom:%d hbondchk failed: H=%d start(H)=%d end(H)=%d num_intrs=%d\n",
step, i, Hindex, index[Hindex], end_index[Hindex], hbonds->num_intrs);
return FAILURE;
}
num_hbonds += MIN( (end_index [my_atoms[i].Hindex] - index [my_atoms[i].Hindex]) * 2,
2 * MIN_HBONDS);
num_hbonds = MAX( num_hbonds, MIN_CAP*MIN_HBONDS );
realloc->num_hbonds = num_hbonds;
*/
int max_hbonds = 0;
for (i = 0; i < N; i++)
{
if (end_index[i] - index[i] >= system->max_hbonds)
{
fprintf( stderr, "step%d-hbondchk failed: i=%d start(i)=%d end(i)=%d max_hbonds=%d\n",
step, i, index[i], end_index[i], system->max_hbonds);
return FAILURE;
}
if (end_index[i] - index[i] >= max_hbonds)
max_hbonds = end_index[i] - index[i];
}
realloc->num_hbonds = max_hbonds;
}
return SUCCESS;
}
void Validate_Lists( reax_system *system, storage *workspace, reax_list **lists,
int i, comp, Hindex;
reax_list *bonds, *hbonds;
reallocate_data *realloc;
realloc = &(workspace->realloc);
if ( N > 0 )
{
bonds = *lists + BONDS;
for ( i = 0; i < N; ++i )
{
if ( i < n )
system->my_atoms[i].num_bonds = MAX(Num_Entries(i, bonds) * 2, MIN_BONDS);
//if( End_Index(i, bonds) >= Start_Index(i+1, bonds)-2 )
//workspace->realloc.bonds = 1;
if ( i < N - 1 )
comp = Start_Index(i + 1, bonds);
else comp = bonds->num_intrs;
if ( End_Index(i, bonds) > comp )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, i, End_Index(i, bonds), comp );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
}
if ( numH > 0 )
{
hbonds = *lists + HBONDS;
for ( i = 0; i < n; ++i )
{
Hindex = system->my_atoms[i].Hindex;
if ( Hindex > -1 )
{
system->my_atoms[i].num_hbonds =
MAX( Num_Entries(Hindex, hbonds) * SAFER_ZONE, MIN_HBONDS );
//if( Num_Entries(i, hbonds) >=
//(Start_Index(i+1,hbonds)-Start_Index(i,hbonds))*0.90/*DANGER_ZONE*/){
// workspace->realloc.hbonds = 1;
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/*
//TODO
if ( Hindex < system->n - 1 )
comp = Start_Index(Hindex + 1, hbonds);
else comp = hbonds->num_intrs;
if ( End_Index(Hindex, hbonds) > comp )
{
fprintf(stderr, "step%d-hbondchk failed: H=%d end(H)=%d str(H+1)=%d\n",
step, Hindex, End_Index(Hindex, hbonds), comp );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
}
}
}
}*/
void Validate_Lists( reax_system *system, storage *workspace, reax_list **lists,
int step, int n, int N, int numH, MPI_Comm comm )
{
int i, comp, Hindex;
reax_list *bonds, *hbonds;
reallocate_data *realloc;
realloc = &(workspace->realloc);
/* bond list */
if ( N > 0 )
{
bonds = *lists + BONDS;
for ( i = 0; i < N; ++i )
{
// if( i < n ) - we need to update ghost estimates for delayed nbrings
system->my_atoms[i].num_bonds = MAX(Num_Entries(i, bonds) * 2, MIN_BONDS);
//if( End_Index(i, bonds) >= Start_Index(i+1, bonds)-2 )
//workspace->realloc.bonds = 1;
if ( i < N - 1 )
comp = Start_Index(i + 1, bonds);
else comp = bonds->num_intrs;
if ( End_Index(i, bonds) > comp )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, i, End_Index(i, bonds), comp );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
}
}
/* hbonds list */
if ( numH > 0 )
{
hbonds = *lists + HBONDS;
for ( i = 0; i < n; ++i )
{
Hindex = system->my_atoms[i].Hindex;
if ( Hindex > -1 )
{
system->my_atoms[i].num_hbonds =
(int)(MAX( Num_Entries(Hindex, hbonds) * SAFER_ZONE, MIN_HBONDS ));
//if( Num_Entries(i, hbonds) >=
//(Start_Index(i+1,hbonds)-Start_Index(i,hbonds))*0.90/*DANGER_ZONE*/){
// workspace->realloc.hbonds = 1;
if ( Hindex < numH - 1 )
comp = Start_Index(Hindex + 1, hbonds);
else comp = hbonds->num_intrs;
if ( End_Index(Hindex, hbonds) > comp )
{
fprintf(stderr, "step%d-hbondchk failed: H=%d end(H)=%d str(H+1)=%d\n",
step, Hindex, End_Index(Hindex, hbonds), comp );
MPI_Abort( comm, INSUFFICIENT_MEMORY );
}
}
/*
if ( Hindex > -1 )
{
system->my_atoms[i].num_hbonds =
MAX( Num_Entries(Hindex, hbonds) * SAFER_ZONE, MIN_HBONDS );
*/
//if( Num_Entries(i, hbonds) >=
//(Start_Index(i+1,hbonds)-Start_Index(i,hbonds))*0.90/*DANGER_ZONE*/){
// workspace->realloc.hbonds = 1;
/*
//TODO
if ( Hindex < system->n - 1 )
comp = Start_Index(Hindex + 1, hbonds);
else comp = hbonds->num_intrs;
if ( End_Index(Hindex, hbonds) > comp )
{
fprintf(stderr, "step%d-hbondchk failed: H=%d end(H)=%d str(H+1)=%d\n",
step, Hindex, End_Index(Hindex, hbonds), comp );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
}
void Validate_Lists( storage *workspace, reax_list **lists,
int step, int n, int N, int numH )
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
int i, flag;
reax_list *bonds, *hbonds;
reallocate_data *realloc;
realloc = &(workspace->realloc);
/* bond list */
if ( N > 0 )
{
flag = -1;
bonds = *lists + BONDS;
for ( i = 0; i < N - 1; ++i )
if ( End_Index(i, bonds) >= Start_Index(i + 1, bonds) - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > Start_Index(i + 1, bonds) )
flag = i;
}
if ( flag > -1 )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, bonds), Start_Index(flag + 1, bonds) );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
if ( End_Index(i, bonds) >= bonds->num_intrs - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > bonds->num_intrs )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d bond_end=%d\n",
step, flag, End_Index(i, bonds), bonds->num_intrs );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
}
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
/* hbonds list */
if ( numH > 0 )
{
flag = -1;
hbonds = *lists + HBONDS;
for ( i = 0; i < numH - 1; ++i )
if ( Num_Entries(i, hbonds) >=
(Start_Index(i + 1, hbonds) - Start_Index(i, hbonds)) * 0.90/*DANGER_ZONE*/ )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > Start_Index(i + 1, hbonds) )
flag = i;
}
if ( flag > -1 )
{
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, hbonds), Start_Index(flag + 1, hbonds) );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
if ( Num_Entries(i, hbonds) >=
(hbonds->num_intrs - Start_Index(i, hbonds)) * 0.90/*DANGER_ZONE*/ )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > hbonds->num_intrs )
{
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d hbondend=%d\n",
step, flag, End_Index(i, hbonds), hbonds->num_intrs );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
}
}
}
#endif
inline real Compute_H( real r, real gamma, real *ctap )
{
real taper, dr3gamij_1, dr3gamij_3;
taper = ctap[7] * r + ctap[6];
taper = taper * r + ctap[5];
taper = taper * r + ctap[4];
taper = taper * r + ctap[3];
taper = taper * r + ctap[2];
taper = taper * r + ctap[1];
taper = taper * r + ctap[0];
dr3gamij_1 = ( r * r * r + gamma );
dr3gamij_3 = POW( dr3gamij_1 , 0.33333333333333 );
return taper * EV_to_KCALpMOL / dr3gamij_3;
}
inline real Compute_tabH( real r_ij, int ti, int tj, int num_atom_types )
{
int r, tmin, tmax;
real val, dif, base;
LR_lookup_table *t;
tmin = MIN( ti, tj );
tmax = MAX( ti, tj );
//SUDHIR
//t = &( LR[tmin][tmax] );
t = &( LR[index_lr (tmin, tmax, num_atom_types)] );
/* cubic spline interpolation */
r = (int)(r_ij * t->inv_dx);
if ( r == 0 ) ++r;
base = (real)(r + 1) * t->dx;
dif = r_ij - base;
val = ((t->ele[r].d * dif + t->ele[r].c) * dif + t->ele[r].b) * dif +
t->ele[r].a;
val *= EV_to_KCALpMOL / C_ele;
return val;
void Init_Forces( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control )
{
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int Htop, btop_i, btop_j, num_bonds, num_hbonds;
int ihb, jhb, ihb_top, jhb_top;
int local, flag, renbr;
real r_ij, cutoff;
sparse_matrix *H;
reax_list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
far_nbrs = *lists + FAR_NBRS;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
for ( i = 0; i < system->n; ++i )
workspace->bond_mark[i] = 0;
for ( i = system->n; i < system->N; ++i )
{
workspace->bond_mark[i] = 1000; // put ghost atoms to an infinite distance
//workspace->done_after[i] = Start_Index( i, far_nbrs );
H = &(workspace->H); //MATRIX CHANGES
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
H->n = system->n;
Htop = 0;
num_bonds = 0;
num_hbonds = 0;
btop_i = btop_j = 0;
renbr = (data->step - data->prev_steps) % control->reneighbor == 0;
for ( i = 0; i < system->N; ++i )
{
atom_i = &(system->my_atoms[i]);
type_i = atom_i->type;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
btop_i = End_Index( i, bonds );
sbp_i = &(system->reax_param.sbp[type_i]);
if ( i < system->n )
{
local = 1;
cutoff = control->nonb_cut;
}
else
{
local = 0;
cutoff = control->bond_cut;
}
ihb = -1;
ihb_top = -1;
if ( local )
{
H->start[i] = Htop;
H->entries[Htop].j = i;
H->entries[Htop].val = sbp_i->eta;
++Htop;
if ( control->hbond_cut > 0 )
{
ihb = sbp_i->p_hbond;
if ( ihb == 1 )
ihb_top = End_Index( atom_i->Hindex, hbonds );
else ihb_top = -1;
}
}
/* update i-j distance - check if j is within cutoff */
for ( pj = start_i; pj < end_i; ++pj )
{
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
atom_j = &(system->my_atoms[j]);
//fprintf( stderr, "%d%d i=%d x_i: %f %f %f,j=%d x_j: %f %f %f, d=%f\n",
// MIN(atom_i->orig_id, atom_j->orig_id),
// MAX(atom_i->orig_id, atom_j->orig_id),
// i, atom_i->x[0], atom_i->x[1], atom_i->x[2],
// j, atom_j->x[0], atom_j->x[1], atom_j->x[2], nbr_pj->d );
if ( renbr )
{
if (nbr_pj->d <= cutoff)
flag = 1;
else flag = 0;
}
else
{
nbr_pj->dvec[0] = atom_j->x[0] - atom_i->x[0];
nbr_pj->dvec[1] = atom_j->x[1] - atom_i->x[1];
nbr_pj->dvec[2] = atom_j->x[2] - atom_i->x[2];
nbr_pj->d = rvec_Norm_Sqr( nbr_pj->dvec );
if ( nbr_pj->d <= SQR(cutoff) )
{
nbr_pj->d = sqrt(nbr_pj->d);
flag = 1;
}
else
{
flag = 0;
}
}
if ( flag )
{
type_j = atom_j->type;
r_ij = nbr_pj->d;
sbp_j = &(system->reax_param.sbp[type_j]);
//SUDHIR
//twbp = &(system->reax_param.tbp[type_i][type_j]);
twbp = &(system->reax_param.tbp[ index_tbp (type_i, type_j, system->reax_param.num_atom_types)]);
if ( local )
{
/* H matrix entry */
if ( j < system->n || atom_i->orig_id < atom_j->orig_id ) //tryQEq||1
{
H->entries[Htop].j = j;
//fprintf( stdout, "%d%d %d %d\n",
// MIN(atom_i->orig_id, atom_j->orig_id),
// MAX(atom_i->orig_id, atom_j->orig_id),
// MIN(atom_i->orig_id, atom_j->orig_id),
// MAX(atom_i->orig_id, atom_j->orig_id) );
if ( control->tabulate == 0 )
H->entries[Htop].val = Compute_H(r_ij, twbp->gamma, workspace->Tap);
else
H->entries[Htop].val = Compute_tabH(r_ij, type_i, type_j, system->reax_param.num_atom_types);
++Htop;
}
/* hydrogen bond lists */
if ( control->hbond_cut > 0 && (ihb == 1 || ihb == 2) &&
nbr_pj->d <= control->hbond_cut )
{
// fprintf( stderr, "%d %d\n", atom1, atom2 );
jhb = sbp_j->p_hbond;
if ( ihb == 1 && jhb == 2 )
{
hbonds->select.hbond_list[ihb_top].nbr = j;
hbonds->select.hbond_list[ihb_top].scl = 1;
hbonds->select.hbond_list[ihb_top].ptr = nbr_pj;
++ihb_top;
++num_hbonds;
}
else if ( j < system->n && ihb == 2 && jhb == 1 )
{
jhb_top = End_Index( atom_j->Hindex, hbonds );
hbonds->select.hbond_list[jhb_top].nbr = i;
hbonds->select.hbond_list[jhb_top].scl = -1;
hbonds->select.hbond_list[jhb_top].ptr = nbr_pj;
Set_End_Index( atom_j->Hindex, jhb_top + 1, hbonds );
++num_hbonds;
}
}
}
/* uncorrected bond orders */
if ( //(workspace->bond_mark[i] < 3 || workspace->bond_mark[j] < 3) &&
nbr_pj->d <= control->bond_cut &&
BOp( workspace, bonds, control->bo_cut,
i , btop_i, nbr_pj, sbp_i, sbp_j, twbp ) )
{
num_bonds += 2;
++btop_i;
if ( workspace->bond_mark[j] > workspace->bond_mark[i] + 1 )
workspace->bond_mark[j] = workspace->bond_mark[i] + 1;
else if ( workspace->bond_mark[i] > workspace->bond_mark[j] + 1 )
{
workspace->bond_mark[i] = workspace->bond_mark[j] + 1;
//if( workspace->bond_mark[i] == 1000 )
// workspace->done_after[i] = pj;
}
//fprintf( stdout, "%d%d - %d(%d) %d(%d)\n",
// i , j, i, workspace->bond_mark[i], j, workspace->bond_mark[j] );
}
}
}