Newer
Older
Kurt A. O'Hearn
committed
sfree( dspls, "setup_sparse_approx_inverse::dspls" );
Kurt A. O'Hearn
committed
if ( nprocs > 1 )
Kurt A. O'Hearn
committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
{
sfree( pivotlist, "setup_sparse_approx_inverse::pivotlist" );
}
sfree( samplelist_local, "setup_sparse_approx_inverse::samplelist_local" );
if ( system->my_rank == MASTER_NODE )
{
sfree( samplelist, "setup_sparse_approx_inverse::samplelist" );
sfree( srecv, "setup_sparse_approx_inverse::srecv" );
sfree( sdispls, "setup_sparse_approx_inverse::sdispls" );
}
if ( system->my_rank == target_proc )
{
sfree( bucketlist, "setup_sparse_approx_inverse::bucketlist" );
}
}
#if defined(HAVE_LAPACKE) || defined(HAVE_LAPACKE_MKL)
#if defined(NEUTRAL_TERRITORY)
real sparse_approx_inverse( reax_system const * const system,
simulation_data * const data,
storage * const workspace, mpi_datatypes * const mpi_data,
sparse_matrix * const A, sparse_matrix * const A_spar_patt,
sparse_matrix * const A_app_inv, int nprocs )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
int i, k, pj, j_temp, ret;
Kurt A. O'Hearn
committed
int N, M, d_i, d_j;
int local_pos, atom_pos, identity_pos;
int *pos_x, *X;
Kurt A. O'Hearn
committed
int *row_nnz;
Kurt A. O'Hearn
committed
int d, count, index;
Kurt A. O'Hearn
committed
int *j_send, *j_recv[6];
real *e_j, *dense_matrix;
real *val_send, *val_recv[6];
reax_atom *atom;
real **val_list;
real start, t_start, t_comm, total_comm;
mpi_out_data *out_bufs;
Kurt A. O'Hearn
committed
neighbor_proc *nbr;
Kurt A. O'Hearn
committed
MPI_Request req[12];
MPI_Status stat[12];
Kurt A. O'Hearn
committed
lapack_int m, n, nrhs, lda, ldb, info;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
start = Get_Time( );
Kurt A. O'Hearn
committed
t_comm = 0.0;
Kurt A. O'Hearn
committed
if ( A_app_inv->allocated == FALSE )
Kurt A. O'Hearn
committed
{
//TODO: FULL_MATRIX?
Allocate_Matrix( A_app_inv, A_spar_patt->n, A->NT, A_spar_patt->m, SYM_FULL_MATRIX );
}
else /* if ( A_app_inv->m < A_spar_patt->m ) */
Kurt A. O'Hearn
committed
{
Deallocate_Matrix( A_app_inv );
Kurt A. O'Hearn
committed
Allocate_Matrix( A_app_inv, A_spar_patt->n, A->NT, A_spar_patt->m, SYM_FULL_MATRIX );
}
Kurt A. O'Hearn
committed
pos_x = NULL;
X = NULL;
Kurt A. O'Hearn
committed
row_nnz = NULL;
j_list = NULL;
val_list = NULL;
Kurt A. O'Hearn
committed
j_send = NULL;
val_send = NULL;
for ( d = 0; d < 6; ++d )
{
j_recv[d] = NULL;
val_recv[d] = NULL;
Kurt A. O'Hearn
committed
////////////////////
row_nnz = (int *) malloc( sizeof(int) * A->NT );
Kurt A. O'Hearn
committed
//TODO: allocation size
j_list = (int **) malloc( sizeof(int *) * system->N );
val_list = (real **) malloc( sizeof(real *) * system->N );
Kurt A. O'Hearn
committed
for ( i = 0; i < A->NT; ++i )
Kurt A. O'Hearn
committed
row_nnz[i] = 0;
Kurt A. O'Hearn
committed
/* mark the atoms that already have their row stored in the local matrix */
for ( i = 0; i < A->n; ++i )
Kurt A. O'Hearn
committed
row_nnz[i] = A->end[i] - A->start[i];
Kurt A. O'Hearn
committed
/* Announce the nnz's in each row that will be communicated later */
Kurt A. O'Hearn
committed
t_start = Get_Time( );
Kurt A. O'Hearn
committed
Dist( system, mpi_data, row_nnz, REAL_PTR_TYPE, MPI_INT );
Kurt A. O'Hearn
committed
t_comm += Get_Time( ) - t_start;
fprintf( stdout,"SAI after Dist call\n" );
Kurt A. O'Hearn
committed
fflush( stdout );
Kurt A. O'Hearn
committed
out_bufs = mpi_data->out_nt_buffers;
count = 0;
/* use a Dist-like approach to send the row information */
for ( d = 0; d < 6; ++d)
{
/* initiate recvs */
Kurt A. O'Hearn
committed
nbr = &system->my_nt_nbrs[d];
if ( nbr->atoms_cnt )
Kurt A. O'Hearn
committed
/* calculate the total data that will be received */
Kurt A. O'Hearn
committed
for ( i = nbr->atoms_str; i < (nbr->atoms_str + nbr->atoms_cnt); ++i )
Kurt A. O'Hearn
committed
cnt += row_nnz[i];
Kurt A. O'Hearn
committed
/* initiate Irecv */
if ( cnt )
Kurt A. O'Hearn
committed
count += 2;
Kurt A. O'Hearn
committed
j_recv[d] = (int *) malloc( sizeof(int) * cnt );
val_recv[d] = (real *) malloc( sizeof(real) * cnt );
fprintf( stdout, "Dist communication receive phase direction %d will receive %d\n", d, cnt );
Kurt A. O'Hearn
committed
fflush( stdout );
Kurt A. O'Hearn
committed
t_start = Get_Time( );
ret = MPI_Irecv( j_recv + d, cnt, MPI_INT, nbr->receive_rank,
d, mpi_data->comm_mesh3D, &req[2 * d] );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
ret = MPI_Irecv( val_recv + d, cnt, MPI_DOUBLE, nbr->receive_rank,
d, mpi_data->comm_mesh3D, &req[2 * d + 1] );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
t_comm += Get_Time( ) - t_start;
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
}
/////////////////////
for( d = 0; d < 6; ++d)
{
nbr = &system->my_nt_nbrs[d];
/* send both messages in dimension d */
Kurt A. O'Hearn
committed
if ( out_bufs[d].cnt )
Kurt A. O'Hearn
committed
for ( i = 0; i < out_bufs[d].cnt; ++i )
Kurt A. O'Hearn
committed
cnt += A->end[ out_bufs[d].index[i] ] - A->start[ out_bufs[d].index[i] ];
if ( out_bufs[d].index[i] < 0 || out_bufs[d].index[i] >= A->n )
Kurt A. O'Hearn
committed
fprintf( stdout, "INDEXING ERROR %d > %d\n", out_bufs[d].index[i], A->n );
fflush( stdout );
Kurt A. O'Hearn
committed
// row_nnz[ out_bufs[d].index[i] ];
fprintf( stdout,"Dist communication send phase direction %d should send %d\n", d, cnt );
Kurt A. O'Hearn
committed
fflush( stdout );
Kurt A. O'Hearn
committed
if ( cnt )
Kurt A. O'Hearn
committed
j_send = (int *) malloc( sizeof(int) * cnt );
val_send = (real *) malloc( sizeof(real) * cnt );
Kurt A. O'Hearn
committed
cnt = 0;
for ( i = 0; i < out_bufs[d].cnt; ++i )
Kurt A. O'Hearn
committed
for ( pj = A->start[ out_bufs[d].index[i] ]; pj < A->end[ out_bufs[d].index[i] ]; ++pj )
atom = &system->my_atoms[ A->j[pj] ];
Kurt A. O'Hearn
committed
j_send[cnt] = atom->orig_id;
val_send[cnt] = A->val[pj];
cnt++;
}
}
Kurt A. O'Hearn
committed
fprintf( stdout,"Dist communication send phase direction %d will send %d\n", d, cnt );
fflush( stdout );
Kurt A. O'Hearn
committed
t_start = Get_Time( );
ret = MPI_Send( j_send, cnt, MPI_INT, nbr->rank,
d, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
fprintf( stdout,"Dist communication send phase direction %d cnt = %d\n", d, cnt );
Kurt A. O'Hearn
committed
fflush( stdout );
ret = MPI_Send( val_send, cnt, MPI_DOUBLE, nbr->rank,
d, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
fprintf( stdout,"Dist communication send phase direction %d cnt = %d\n", d, cnt );
Kurt A. O'Hearn
committed
fflush( stdout );
Kurt A. O'Hearn
committed
t_comm += Get_Time( ) - t_start;
Kurt A. O'Hearn
committed
}
fprintf( stdout," Dist communication for sending row info before waitany\n" );
Kurt A. O'Hearn
committed
fflush( stdout );
///////////////////////
for ( d = 0; d < count; ++d )
{
Kurt A. O'Hearn
committed
t_start = Get_Time( );
Kurt A. O'Hearn
committed
ret = MPI_Waitany( MAX_NT_NBRS, req, &index, stat );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
t_comm += Get_Time( ) - t_start;
Kurt A. O'Hearn
committed
nbr = &system->my_nt_nbrs[index / 2];
cnt = 0;
for ( i = nbr->atoms_str; i < (nbr->atoms_str + nbr->atoms_cnt); ++i )
Kurt A. O'Hearn
committed
if ( index % 2 == 0 )
Kurt A. O'Hearn
committed
j_list[i] = (int *) malloc( sizeof(int) * row_nnz[i] );
for ( pj = 0; pj < row_nnz[i]; ++pj )
Kurt A. O'Hearn
committed
j_list[i][pj] = j_recv[index / 2][cnt];
cnt++;
}
}
Kurt A. O'Hearn
committed
else
Kurt A. O'Hearn
committed
val_list[i] = (real *) malloc( sizeof(real) * row_nnz[i] );
for ( pj = 0; pj < row_nnz[i]; ++pj )
Kurt A. O'Hearn
committed
val_list[i][pj] = val_recv[index / 2][cnt];
cnt++;
}
}
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
//////////////////////
fprintf( stdout, "Dist communication for sending row info worked\n" );
Kurt A. O'Hearn
committed
fflush( stdout );
//TODO: size?
X = (int *) malloc( sizeof(int) * (system->bigN + 1) );
pos_x = (int *) malloc( sizeof(int) * (system->bigN + 1) );
for ( i = 0; i < A_spar_patt->NT; ++i )
{
N = 0;
M = 0;
Kurt A. O'Hearn
committed
for ( k = 0; k <= system->bigN; ++k )
{
X[k] = 0;
pos_x[k] = 0;
}
/* find column indices of nonzeros (which will be the columns indices of the dense matrix) */
for ( pj = A_spar_patt->start[i]; pj < A_spar_patt->end[i]; ++pj )
{
j_temp = A_spar_patt->j[pj];
Kurt A. O'Hearn
committed
atom = &system->my_atoms[j_temp];
++N;
/* for each of those indices
Kurt A. O'Hearn
committed
* search through the row of full A of that index */
/* the case where the local matrix has that index's row */
Kurt A. O'Hearn
committed
if ( j_temp < A->NT )
Kurt A. O'Hearn
committed
for ( k = A->start[ j_temp ]; k < A->end[ j_temp ]; ++k )
{
/* and accumulate the nonzero column indices to serve as the row indices of the dense matrix */
atom = &system->my_atoms[ A->j[k] ];
Kurt A. O'Hearn
committed
X[atom->orig_id] = 1;
}
}
/* the case where we communicated that index's row */
else
{
for ( k = 0; k < row_nnz[j_temp]; ++k )
{
/* and accumulate the nonzero column indices to serve as the row indices of the dense matrix */
X[ j_list[j_temp][k] ] = 1;
}
}
}
/* enumerate the row indices from 0 to (# of nonzero rows - 1) for the dense matrix */
identity_pos = M;
Kurt A. O'Hearn
committed
atom = &system->my_atoms[ i ];
atom_pos = atom->orig_id;
for ( k = 0; k <= system->bigN; k++)
{
if ( X[k] != 0 )
{
Kurt A. O'Hearn
committed
pos_x[k] = M;
if ( k == atom_pos )
{
identity_pos = M;
}
++M;
}
}
/* allocate memory for NxM dense matrix */
dense_matrix = (real *) malloc( sizeof(real) * N * M );
/* fill in the entries of dense matrix */
Kurt A. O'Hearn
committed
for ( d_j = 0; d_j < N; ++d_j)
{
/* all rows are initialized to zero */
Kurt A. O'Hearn
committed
for ( d_i = 0; d_i < M; ++d_i )
{
dense_matrix[d_i * N + d_j] = 0.0;
}
/* change the value if any of the column indices is seen */
/* it is in the original list */
local_pos = A_spar_patt->j[ A_spar_patt->start[i] + d_j ];
Kurt A. O'Hearn
committed
if ( local_pos < 0 || local_pos >= system->N )
fprintf( stderr, "THE LOCAL POSITION OF THE ATOM IS NOT VALID, STOP THE EXECUTION\n" );
Kurt A. O'Hearn
committed
fflush( stderr );
}
/////////////////////////////
if ( local_pos < A->NT )
{
for ( d_i = A->start[local_pos]; d_i < A->end[local_pos]; ++d_i )
atom = &system->my_atoms[ A->j[d_i] ];
Kurt A. O'Hearn
committed
if ( pos_x[ atom->orig_id ] >= M || d_j >= N )
{
fprintf( stderr, "CANNOT MAP IT TO THE DENSE MATRIX, STOP THE EXECUTION, orig_id = %d, i = %d, j = %d, M = %d N = %d\n", atom->orig_id, pos_x[ atom->orig_id ], d_j, M, N );
fflush( stderr );
}
if ( X[ atom->orig_id ] == 1 )
dense_matrix[ pos_x[ atom->orig_id ] * N + d_j ] = A->val[d_i];
}
}
}
else
{
Kurt A. O'Hearn
committed
for ( d_i = 0; d_i < row_nnz[ local_pos ]; ++d_i )
Kurt A. O'Hearn
committed
if ( pos_x[ j_list[local_pos][d_i] ] >= M || d_j >= N )
{
fprintf( stderr, "CANNOT MAP IT TO THE DENSE MATRIX, STOP THE EXECUTION, %d %d\n", pos_x[ j_list[local_pos][d_i] ], d_j);
fflush( stderr );
}
if ( X[ j_list[local_pos][d_i] ] == 1 )
Kurt A. O'Hearn
committed
dense_matrix[ pos_x[ j_list[local_pos][d_i] ] * N + d_j ] = val_list[local_pos][d_i];
}
}
}
}
/* create the right hand side of the linear equation
Kurt A. O'Hearn
committed
* that is the full column of the identity matrix */
e_j = (real *) malloc( sizeof(real) * M );
Kurt A. O'Hearn
committed
//////////////////////
for ( k = 0; k < M; ++k )
{
e_j[k] = 0.0;
}
e_j[identity_pos] = 1.0;
/* Solve the overdetermined system AX = B through the least-squares problem:
Kurt A. O'Hearn
committed
* min ||B - AX||_2 */
m = M;
n = N;
nrhs = 1;
lda = N;
ldb = nrhs;
Kurt A. O'Hearn
committed
info = LAPACKE_dgels( LAPACK_ROW_MAJOR, 'N', m, n, nrhs, dense_matrix, lda,
e_j, ldb );
/* Check for the full rank */
if ( info > 0 )
{
Kurt A. O'Hearn
committed
fprintf( stderr, "The diagonal element %i of the triangular factor ", info );
fprintf( stderr, "of A is zero, so that A does not have full rank;\n" );
fprintf( stderr, "the least squares solution could not be computed.\n" );
exit( INVALID_INPUT );
}
/* accumulate the resulting vector to build A_app_inv */
A_app_inv->start[i] = A_spar_patt->start[i];
A_app_inv->end[i] = A_spar_patt->end[i];
for ( k = A_app_inv->start[i]; k < A_app_inv->end[i]; ++k)
A_app_inv->j[k] = A_spar_patt->j[k];
A_app_inv->val[k] = e_j[k - A_spar_patt->start[i]];
}
free( dense_matrix );
free( e_j );
}
free( pos_x);
free( X );
Kurt A. O'Hearn
committed
/////////////////////
Kurt A. O'Hearn
committed
ret = MPI_Reduce( &t_comm, &total_comm, 1, MPI_DOUBLE, MPI_SUM,
MASTER_NODE, MPI_COMM_WORLD );
Check_MPI_Error( ret, __FILE__, __LINE__ );
Kurt A. O'Hearn
committed
if ( system->my_rank == MASTER_NODE )
{
data->timing.cm_solver_comm += total_comm / nprocs;
}
Kurt A. O'Hearn
committed
return Get_Time( ) - start;
Kurt A. O'Hearn
committed
#else
real sparse_approx_inverse( reax_system const * const system,
simulation_data * const data,
storage * const workspace, mpi_datatypes * const mpi_data,
sparse_matrix * const A, sparse_matrix * const A_spar_patt,
sparse_matrix * const A_app_inv, int nprocs )
Kurt A. O'Hearn
committed
int i, k, pj, j_temp, push, ret;
Kurt A. O'Hearn
committed
int N, M, d_i, d_j, mark;
int local_pos, atom_pos, identity_pos;
int *X, *q;
int size_e, size_dense;
int cnt;
int *row_nnz;
int **j_list;
int d;
int flag1, flag2;
int *j_send, *j_recv1, *j_recv2;
int size_send, size_recv1, size_recv2;
Kurt A. O'Hearn
committed
real *e_j, *dense_matrix;
real **val_list;
Kurt A. O'Hearn
committed
real *val_send, *val_recv1, *val_recv2;
Kurt A. O'Hearn
committed
real start, t_start, t_comm, total_comm;
reax_atom *atom;
mpi_out_data *out_bufs;
const neighbor_proc *nbr1, *nbr2;
MPI_Request req1, req2, req3, req4;
MPI_Status stat1, stat2, stat3, stat4;
lapack_int m, n, nrhs, lda, ldb, info;
Kurt A. O'Hearn
committed
start = Get_Time( );
Kurt A. O'Hearn
committed
t_comm = 0.0;
Kurt A. O'Hearn
committed
if ( A_app_inv->allocated == FALSE )
Kurt A. O'Hearn
committed
Allocate_Matrix( A_app_inv, A_spar_patt->n, system->local_cap, A_spar_patt->m,
SYM_FULL_MATRIX );
}
else /* if ( A_app_inv->m < A_spar_patt->m ) */
Kurt A. O'Hearn
committed
{
Deallocate_Matrix( A_app_inv );
Kurt A. O'Hearn
committed
Allocate_Matrix( A_app_inv, A_spar_patt->n, system->local_cap, A_spar_patt->m,
SYM_FULL_MATRIX );
Kurt A. O'Hearn
committed
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
X = NULL;
j_send = NULL;
val_send = NULL;
j_recv1 = NULL;
j_recv2 = NULL;
val_recv1 = NULL;
val_recv2 = NULL;
size_send = 0;
size_recv1 = 0;
size_recv2 = 0;
e_j = NULL;
dense_matrix = NULL;
size_e = 0;
size_dense = 0;
row_nnz = smalloc( sizeof(int) * system->total_cap,
"sparse_approx_inverse::row_nnz" );
j_list = smalloc( sizeof(int *) * system->N,
"sparse_approx_inverse::j_list" );
val_list = smalloc( sizeof(real *) * system->N,
"sparse_approx_inverse::val_list" );
for ( i = 0; i < system->total_cap; ++i )
{
row_nnz[i] = 0;
}
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
/* mark the atoms that already have their row stored in the local matrix */
for ( i = 0; i < system->n; ++i )
Kurt A. O'Hearn
committed
row_nnz[i] = A->end[i] - A->start[i];
Kurt A. O'Hearn
committed
/* Announce the nnz's in each row that will be communicated later */
Kurt A. O'Hearn
committed
t_start = Get_Time( );
Kurt A. O'Hearn
committed
Dist( system, mpi_data, row_nnz, INT_PTR_TYPE, MPI_INT );
Kurt A. O'Hearn
committed
t_comm += Get_Time( ) - t_start;
Kurt A. O'Hearn
committed
out_bufs = mpi_data->out_buffers;
/* use a Dist-like approach to send the row information */
for ( d = 0; d < 3; ++d)
Kurt A. O'Hearn
committed
flag1 = 0;
flag2 = 0;
cnt = 0;
/* initiate recvs */
nbr1 = &system->my_nbrs[2 * d];
if ( nbr1->atoms_cnt )
Kurt A. O'Hearn
committed
cnt = 0;
/* calculate the total data that will be received */
for( i = nbr1->atoms_str; i < (nbr1->atoms_str + nbr1->atoms_cnt); ++i )
{
cnt += row_nnz[i];
}
/* initiate Irecv */
if( cnt )
{
flag1 = 1;
if ( size_recv1 < cnt )
Kurt A. O'Hearn
committed
if ( size_recv1 )
{
sfree( j_recv1, "sparse_approx_inverse::j_recv1" );
sfree( val_recv1, "sparse_approx_inverse::val_recv1" );
}
Kurt A. O'Hearn
committed
size_recv1 = cnt * SAFE_ZONE;
Kurt A. O'Hearn
committed
j_recv1 = smalloc( sizeof(int) * size_recv1,
"sparse_approx_inverse::j_recv1" );
val_recv1 = smalloc( sizeof(real) * size_recv1,
"sparse_approx_inverse::val_recv1" );
Kurt A. O'Hearn
committed
t_start = Get_Time( );
ret = MPI_Irecv( j_recv1, cnt, MPI_INT, nbr1->rank,
2 * d + 1, mpi_data->comm_mesh3D, &req1 );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
ret = MPI_Irecv( val_recv1, cnt, MPI_DOUBLE, nbr1->rank,
2 * d + 1, mpi_data->comm_mesh3D, &req2 );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
t_comm += Get_Time( ) - t_start;
Kurt A. O'Hearn
committed
}
}
nbr2 = &system->my_nbrs[2 * d + 1];
if ( nbr2->atoms_cnt )
{
/* calculate the total data that will be received */
cnt = 0;
for( i = nbr2->atoms_str; i < (nbr2->atoms_str + nbr2->atoms_cnt); ++i )
{
cnt += row_nnz[i];
}
/* initiate Irecv */
if( cnt )
{
flag2 = 1;
if ( size_recv2 < cnt )
Kurt A. O'Hearn
committed
if ( size_recv2 )
{
sfree( j_recv2, "sparse_approx_inverse::j_recv2" );
sfree( val_recv2, "sparse_approx_inverse::val_recv2" );
}
size_recv2 = cnt * SAFE_ZONE;
j_recv2 = smalloc( sizeof(int) * size_recv2,
"sparse_approx_inverse::j_recv2" );
val_recv2 = smalloc( sizeof(real) * size_recv2,
"sparse_approx_inverse::val_recv2" );
}
Kurt A. O'Hearn
committed
t_start = Get_Time( );
ret = MPI_Irecv( j_recv2, cnt, MPI_INT, nbr2->rank,
2 * d, mpi_data->comm_mesh3D, &req3 );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
ret = MPI_Irecv( val_recv2, cnt, MPI_DOUBLE, nbr2->rank,
2 * d, mpi_data->comm_mesh3D, &req4 );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
t_comm += Get_Time( ) - t_start;
Kurt A. O'Hearn
committed
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
}
}
/* send both messages in dimension d */
if ( out_bufs[2 * d].cnt )
{
cnt = 0;
for ( i = 0; i < out_bufs[2 * d].cnt; ++i )
{
cnt += row_nnz[ out_bufs[2 * d].index[i] ];
}
if ( cnt > 0 )
{
if ( size_send < cnt )
{
if ( size_send )
{
sfree( j_send, "sparse_approx_inverse::j_send" );
sfree( val_send, "sparse_approx_inverse::val_send" );
}
size_send = cnt * SAFE_ZONE;
j_send = smalloc( sizeof(int) * size_send,
"sparse_approx_inverse::j_send" );
val_send = smalloc( sizeof(real) * size_send,
"sparse_approx_inverse::j_send" );
}
cnt = 0;
for ( i = 0; i < out_bufs[2 * d].cnt; ++i )
{
if ( out_bufs[2 * d].index[i] < A->n )
{
for ( pj = A->start[ out_bufs[2 * d].index[i] ]; pj < A->end[ out_bufs[2 * d].index[i] ]; ++pj )
atom = &system->my_atoms[ A->j[pj] ];
Kurt A. O'Hearn
committed
j_send[cnt] = atom->orig_id;
val_send[cnt] = A->val[pj];
Kurt A. O'Hearn
committed
cnt++;
Kurt A. O'Hearn
committed
}
else
{
for ( pj = 0; pj < row_nnz[ out_bufs[2 * d].index[i] ]; ++pj )
Kurt A. O'Hearn
committed
j_send[cnt] = j_list[ out_bufs[2 * d].index[i] ][pj];
val_send[cnt] = val_list[ out_bufs[2 * d].index[i] ][pj];
cnt++;
Kurt A. O'Hearn
committed
}
}
Kurt A. O'Hearn
committed
t_start = Get_Time( );
ret = MPI_Send( j_send, cnt, MPI_INT, nbr1->rank,
2 * d, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
ret = MPI_Send( val_send, cnt, MPI_DOUBLE, nbr1->rank,
2 * d, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
t_comm += Get_Time( ) - t_start;
Kurt A. O'Hearn
committed
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
}
}
if ( out_bufs[2 * d + 1].cnt )
{
cnt = 0;
for ( i = 0; i < out_bufs[2 * d + 1].cnt; ++i )
{
cnt += row_nnz[ out_bufs[2 * d + 1].index[i] ];
}
if ( cnt > 0 )
{
if ( size_send < cnt )
{
if ( size_send )
{
sfree( j_send, "sparse_approx_inverse::j_send" );
sfree( val_send, "sparse_approx_inverse::j_send" );
}
size_send = cnt * SAFE_ZONE;
j_send = smalloc( sizeof(int) * size_send,
"sparse_approx_inverse::j_send" );
val_send = smalloc( sizeof(real) * size_send,
"sparse_approx_inverse::val_send" );
}
cnt = 0;
for ( i = 0; i < out_bufs[2 * d + 1].cnt; ++i )
{
if ( out_bufs[2 * d + 1].index[i] < A->n )
{
for ( pj = A->start[ out_bufs[2 * d + 1].index[i] ]; pj < A->end[ out_bufs[2 * d + 1].index[i] ]; ++pj )
atom = &system->my_atoms[ A->j[pj] ];
Kurt A. O'Hearn
committed
j_send[cnt] = atom->orig_id;
val_send[cnt] = A->val[pj];
Kurt A. O'Hearn
committed
cnt++;
Kurt A. O'Hearn
committed
}
else
{
for ( pj = 0; pj < row_nnz[ out_bufs[2 * d + 1].index[i] ]; ++pj )
Kurt A. O'Hearn
committed
j_send[cnt] = j_list[ out_bufs[2 * d + 1].index[i] ][pj];
val_send[cnt] = val_list[ out_bufs[2 * d + 1].index[i] ][pj];
cnt++;
Kurt A. O'Hearn
committed
}
}
Kurt A. O'Hearn
committed
t_start = Get_Time( );
ret = MPI_Send( j_send, cnt, MPI_INT, nbr2->rank,
2 * d + 1, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
ret = MPI_Send( val_send, cnt, MPI_DOUBLE, nbr2->rank,
2 * d + 1, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
Check_MPI_Error( ret, __FILE__, __LINE__ );
t_comm += Get_Time( ) - t_start;
Kurt A. O'Hearn
committed
}
}
if ( flag1 )
{
Kurt A. O'Hearn
committed
t_start = Get_Time( );
ret = MPI_Wait( &req1, &stat1 );
Check_MPI_Error( ret, __FILE__, __LINE__ );
ret = MPI_Wait( &req2, &stat2 );
Check_MPI_Error( ret, __FILE__, __LINE__ );
t_comm += Get_Time( ) - t_start;
Kurt A. O'Hearn
committed
cnt = 0;
for ( i = nbr1->atoms_str; i < (nbr1->atoms_str + nbr1->atoms_cnt); ++i )
{
j_list[i] = smalloc( sizeof(int) * row_nnz[i],
"sparse_approx_inverse::j_list[i]" );
val_list[i] = smalloc( sizeof(real) * row_nnz[i],
"sparse_approx_inverse::val_list[i]" );
Kurt A. O'Hearn
committed
for ( pj = 0; pj < row_nnz[i]; ++pj )
{
j_list[i][pj] = j_recv1[cnt];
val_list[i][pj] = val_recv1[cnt];
cnt++;
Kurt A. O'Hearn
committed
}
}
if ( flag2 )
{
Kurt A. O'Hearn
committed
t_start = Get_Time( );
ret = MPI_Wait( &req3, &stat3 );
Check_MPI_Error( ret, __FILE__, __LINE__ );
ret = MPI_Wait( &req4, &stat4 );
Check_MPI_Error( ret, __FILE__, __LINE__ );
t_comm += Get_Time( ) - t_start;
Kurt A. O'Hearn
committed
cnt = 0;
for ( i = nbr2->atoms_str; i < (nbr2->atoms_str + nbr2->atoms_cnt); ++i )
{
j_list[i] = smalloc( sizeof(int) * row_nnz[i],
"sparse_approx_inverse::j_list[i]" );
val_list[i] = smalloc( sizeof(real) * row_nnz[i],
"sparse_approx_inverse::val_list[i]" );
for ( pj = 0; pj < row_nnz[i]; ++pj )
{
j_list[i][pj] = j_recv2[cnt];
val_list[i][pj] = val_recv2[cnt];
cnt++;
}
}
Kurt A. O'Hearn
committed
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
sfree( j_send, "sparse_approx_inverse::j_send" );
sfree( val_send, "sparse_approx_inverse::val_send" );
sfree( j_recv1, "sparse_approx_inverse::j_recv1" );
sfree( j_recv2, "sparse_approx_inverse::j_recv2" );
sfree( val_recv1, "sparse_approx_inverse::val_recv1" );
sfree( val_recv2, "sparse_approx_inverse::val_recv2" );
X = smalloc( sizeof(int) * (system->bigN + 1),
"sparse_approx_inverse::X" );
//size of q should be equal to the maximum possible cardinalty
//of the set formed by neighbors of neighbors of an atom
//i.e, maximum number of rows of dense matrix
//for water systems, this number is 34000
//for silica systems, it is 12000
q = smalloc( sizeof(int) * 50000,
"sparse_approx_inverse::q" );
for ( i = 0; i <= system->bigN; ++i )
{
X[i] = -1;
}
for ( i = 0; i < A_spar_patt->n; ++i )
{
N = 0;
M = 0;
push = 0;
mark = i + system->bigN;
/* find column indices of nonzeros (which will be the columns indices of the dense matrix) */
for ( pj = A_spar_patt->start[i]; pj < A_spar_patt->end[i]; ++pj )
{
j_temp = A_spar_patt->j[pj];
Kurt A. O'Hearn
committed
atom = &system->my_atoms[j_temp];
++N;
Kurt A. O'Hearn
committed
/* for each of those indices
* search through the row of full A of that index */
Kurt A. O'Hearn
committed
/* the case where the local matrix has that index's row */
if( j_temp < A->n )
{
for ( k = A->start[ j_temp ]; k < A->end[ j_temp ]; ++k )
{
/* and accumulate the nonzero column indices to serve as the row indices of the dense matrix */
atom = &system->my_atoms[ A->j[k] ];
Kurt A. O'Hearn
committed
X[atom->orig_id] = mark;
q[push++] = atom->orig_id;
}
}
Kurt A. O'Hearn
committed
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
/* the case where we communicated that index's row */
else
{
for ( k = 0; k < row_nnz[j_temp]; ++k )
{
/* and accumulate the nonzero column indices to serve as the row indices of the dense matrix */
X[ j_list[j_temp][k] ] = mark;
q[push++] = j_list[j_temp][k];
}
}
}
/* enumerate the row indices from 0 to (# of nonzero rows - 1) for the dense matrix */
identity_pos = M;
atom = &system->my_atoms[ i ];
atom_pos = atom->orig_id;
for ( k = 0; k < push; k++)
{
if ( X[ q[k] ] == mark )
{
X[ q[k] ] = M;
++M;
}
}
identity_pos = X[atom_pos];
/* allocate memory for NxM dense matrix */
if ( size_dense < N * M )
{
if ( size_dense )
{
sfree( dense_matrix, "sparse_approx_inverse::dense_matrix" );
}
size_dense = N * M * SAFE_ZONE;
dense_matrix = smalloc( sizeof(real) * size_dense,
"sparse_approx_inverse::dense_matrix" );
}
/* fill in the entries of dense matrix */
for ( d_j = 0; d_j < N; ++d_j)
{
/* all rows are initialized to zero */
for ( d_i = 0; d_i < M; ++d_i )
{
dense_matrix[d_i * N + d_j] = 0.0;
}
/* change the value if any of the column indices is seen */
/* it is in the original list */
local_pos = A_spar_patt->j[ A_spar_patt->start[i] + d_j ];
Kurt A. O'Hearn
committed
if ( local_pos < A->n )
{
for ( d_i = A->start[local_pos]; d_i < A->end[local_pos]; ++d_i )
{
atom = &system->my_atoms[ A->j[d_i] ];
dense_matrix[ X[ atom->orig_id ] * N + d_j ] = A->val[d_i];
Kurt A. O'Hearn
committed
}
}
else
{
for ( d_i = 0; d_i < row_nnz[ local_pos ]; ++d_i )
{
dense_matrix[ X[ j_list[local_pos][d_i] ] * N + d_j ] = val_list[local_pos][d_i];
}
}
}
Kurt A. O'Hearn
committed
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
/* create the right hand side of the linear equation
* that is the full column of the identity matrix */
if ( size_e < M )
{
if ( size_e )
{
sfree( e_j, "sparse_approx_inverse::e_j" );
}
size_e = M * SAFE_ZONE;
e_j = smalloc( sizeof(real) * size_e, "sparse_approx_inverse::e_j" );
}
for ( k = 0; k < M; ++k )
{
e_j[k] = 0.0;
}
e_j[identity_pos] = 1.0;
/* Solve the overdetermined system AX = B through the least-squares problem:
* min ||B - AX||_2 */
m = M;
n = N;
nrhs = 1;
lda = N;
ldb = nrhs;
info = LAPACKE_dgels( LAPACK_ROW_MAJOR, 'N', m, n, nrhs, dense_matrix, lda,
e_j, ldb );
/* Check for the full rank */
if ( info > 0 )
{
fprintf( stderr, "[ERROR] The diagonal element %i of the triangular factor ", info );
fprintf( stderr, "of A is zero, so that A does not have full rank;\n" );
fprintf( stderr, "the least squares solution could not be computed.\n" );
MPI_Abort( MPI_COMM_WORLD, RUNTIME_ERROR );
}
/* accumulate the resulting vector to build A_app_inv */
A_app_inv->start[i] = A_spar_patt->start[i];
A_app_inv->end[i] = A_spar_patt->end[i];
for ( k = A_app_inv->start[i]; k < A_app_inv->end[i]; ++k)
Kurt A. O'Hearn
committed
{
A_app_inv->j[k] = A_spar_patt->j[k];
A_app_inv->val[k] = e_j[k - A_spar_patt->start[i]];
Kurt A. O'Hearn
committed
}
}
sfree( dense_matrix, "sparse_approx_inverse::dense_matrix" );
sfree( e_j, "sparse_approx_inverse::e_j" );
sfree( X, "sparse_approx_inverse::X" );
/*for ( i = 0; i < system->N; ++i )
{
sfree( j_list[i], "sparse_approx_inverse::j_list" );
sfree( val_list[i], "sparse_approx_inverse::val_list" );
}
sfree( j_list, "sparse_approx_inverse::j_list" );
sfree( val_list, "sparse_approx_inverse::val_list" );*/
sfree( row_nnz, "sparse_approx_inverse::row_nnz" );
Kurt A. O'Hearn
committed
ret = MPI_Reduce( &t_comm, &total_comm, 1, MPI_DOUBLE, MPI_SUM,
MASTER_NODE, MPI_COMM_WORLD );
Check_MPI_Error( ret, __FILE__, __LINE__ );
Kurt A. O'Hearn
committed
if ( system->my_rank == MASTER_NODE )
{
data->timing.cm_solver_comm += total_comm / nprocs;
}
Kurt A. O'Hearn
committed
return Get_Time( ) - start;
Kurt A. O'Hearn
committed
}
#endif
#endif
Kurt A. O'Hearn
committed
/* Apply left-sided preconditioning while solving M^{-1}AX = M^{-1}B
*
* system:
* workspace: data struct containing matrices and vectors, stored in CSR
* control: data struct containing parameters
* data: struct containing timing simulation data (including performance data)
* y: vector to which to apply preconditioning,
* specific to internals of iterative solver being used
* x (output): preconditioned vector
* fresh_pre: parameter indicating if this is a newly computed (fresh) preconditioner
* side: used in determining how to apply preconditioner if the preconditioner is
* factorized as M = M_{1}M_{2} (e.g., incomplete LU, A \approx LU)
*
* Assumptions:
* Matrices have non-zero diagonals
* Each row of a matrix has at least one non-zero (i.e., no rows with all zeros) */
static void dual_apply_preconditioner( reax_system const * const system,
storage const * const workspace, control_params const * const control,
simulation_data * const data, mpi_datatypes * const mpi_data,
rvec2 const * const y, rvec2 * const x, int fresh_pre, int side )
Kurt A. O'Hearn
committed
{
// int i, si;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
/* no preconditioning */
if ( control->cm_solver_pre_comp_type == NONE_PC )
{
if ( x != y )
{
Kurt A. O'Hearn
committed
Vector_Copy_rvec2( x, y, system->n );