Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "init_md.h"
#include "allocate.h"
#include "box.h"
#include "forces.h"
#include "grid.h"
#include "GMRES.h"
#include "integrate.h"
#include "neighbors.h"
#include "list.h"
#include "lookup.h"
#include "print_utils.h"
#include "reset_utils.h"
#include "system_props.h"
#include "traj.h"
#include "vector.h"
void Generate_Initial_Velocities( reax_system *system, real T )
{
int i;
real scale, norm;
if ( T <= 0.1 )
{
for (i = 0; i < system->N; i++)
rvec_MakeZero( system->atoms[i].v );
else
{
for ( i = 0; i < system->N; i++ )
{
rvec_Random( system->atoms[i].v );
norm = rvec_Norm_Sqr( system->atoms[i].v );
scale = SQRT( system->reaxprm.sbp[ system->atoms[i].type ].mass *
norm / (3.0 * K_B * T) );
rvec_Scale( system->atoms[i].v, 1.0 / scale, system->atoms[i].v );
/*fprintf( stderr, "v = %f %f %f\n",
system->atoms[i].v[0],system->atoms[i].v[1],system->atoms[i].v[2]);
fprintf( stderr, "scale = %f\n", scale );
fprintf( stderr, "v = %f %f %f\n",
system->atoms[i].v[0],system->atoms[i].v[1],system->atoms[i].v[2]);*/
}
}
void Init_System( reax_system *system, control_params *control,
simulation_data *data )
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
int i;
rvec dx;
if ( !control->restart )
Reset_Atoms( system );
Compute_Total_Mass( system, data );
Compute_Center_of_Mass( system, data, stderr );
/* reposition atoms */
// just fit the atoms to the periodic box
if ( control->reposition_atoms == 0 )
{
rvec_MakeZero( dx );
}
// put the center of mass to the center of the box
else if ( control->reposition_atoms == 1 )
{
rvec_Scale( dx, 0.5, system->box.box_norms );
rvec_ScaledAdd( dx, -1., data->xcm );
}
// put the center of mass to the origin
else if ( control->reposition_atoms == 2 )
{
rvec_Scale( dx, -1., data->xcm );
}
else
{
fprintf( stderr, "UNKNOWN OPTION: reposition_atoms. Terminating...\n" );
exit( UNKNOWN_OPTION );
}
for ( i = 0; i < system->N; ++i )
{
Inc_on_T3( system->atoms[i].x, dx, &(system->box) );
/*fprintf( stderr, "%6d%2d%8.3f%8.3f%8.3f\n",
i, system->atoms[i].type,
system->atoms[i].x[0], system->atoms[i].x[1], system->atoms[i].x[2] );*/
}
/* Initialize velocities so that desired init T can be attained */
if ( !control->restart || (control->restart && control->random_vel) )
Generate_Initial_Velocities( system, control->T_init );
Setup_Grid( system );
void Init_Simulation_Data( reax_system *system, control_params *control,
simulation_data *data, output_controls *out_control,
evolve_function *Evolve )
Reset_Simulation_Data( data );
if ( !control->restart )
data->step = data->prev_steps = 0;
switch ( control->ensemble )
{
case NVE:
data->N_f = 3 * system->N;
*Evolve = Velocity_Verlet_NVE;
break;
case NVT:
data->N_f = 3 * system->N + 1;
//control->Tau_T = 100 * data->N_f * K_B * control->T_final;
if ( !control->restart || (control->restart && control->random_vel) )
{
data->therm.G_xi = control->Tau_T * (2.0 * data->E_Kin -
data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
fprintf( stderr, "init_md: G_xi=%f Tau_T=%f E_kin=%f N_f=%f v_xi=%f\n",
data->therm.G_xi, control->Tau_T, data->E_Kin,
data->N_f, data->therm.v_xi );
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
}
*Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
break;
case NPT: // Anisotropic NPT
fprintf( stderr, "THIS OPTION IS NOT YET IMPLEMENTED! TERMINATING...\n" );
exit( UNKNOWN_OPTION );
data->N_f = 3 * system->N + 9;
if ( !control->restart )
{
data->therm.G_xi = control->Tau_T * (2.0 * data->E_Kin -
data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->iso_bar.eps = 0.33333 * log(system->box.volume);
//data->inv_W = 1. / (data->N_f*K_B*control->T*SQR(control->Tau_P));
//Compute_Pressure( system, data, workspace );
}
*Evolve = Velocity_Verlet_Berendsen_Isotropic_NPT;
break;
case sNPT: // Semi-Isotropic NPT
data->N_f = 3 * system->N + 4;
*Evolve = Velocity_Verlet_Berendsen_SemiIsotropic_NPT;
break;
case iNPT: // Isotropic NPT
data->N_f = 3 * system->N + 2;
*Evolve = Velocity_Verlet_Berendsen_Isotropic_NPT;
break;
case bNVT:
data->N_f = 3 * system->N + 1;
*Evolve = Velocity_Verlet_Berendsen_NVT;
fprintf (stderr, " Initializing Velocity_Verlet_Berendsen_NVT .... \n");
break;
default:
break;
Compute_Kinetic_Energy( system, data );
/* init timing info */
data->timing.start = Get_Time( );
data->timing.total = data->timing.start;
data->timing.nbrs = 0;
data->timing.init_forces = 0;
data->timing.bonded = 0;
data->timing.nonb = 0;
data->timing.QEq = 0;
data->timing.matvecs = 0;
data->timing.pre_comp = ZERO;
data->timing.pre_app = ZERO;
data->timing.spmv = ZERO;
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
void Init_Workspace( reax_system *system, control_params *control,
static_storage *workspace )
{
int i;
/* Allocate space for hydrogen bond list */
workspace->hbond_index = (int *) malloc( system->N * sizeof( int ) );
/* bond order related storage */
workspace->total_bond_order = (real *) malloc( system->N * sizeof( real ) );
workspace->Deltap = (real *) malloc( system->N * sizeof( real ) );
workspace->Deltap_boc = (real *) malloc( system->N * sizeof( real ) );
workspace->dDeltap_self = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->Delta = (real *) malloc( system->N * sizeof( real ) );
workspace->Delta_lp = (real *) malloc( system->N * sizeof( real ) );
workspace->Delta_lp_temp = (real *) malloc( system->N * sizeof( real ) );
workspace->dDelta_lp = (real *) malloc( system->N * sizeof( real ) );
workspace->dDelta_lp_temp = (real *) malloc( system->N * sizeof( real ) );
workspace->Delta_e = (real *) malloc( system->N * sizeof( real ) );
workspace->Delta_boc = (real *) malloc( system->N * sizeof( real ) );
workspace->nlp = (real *) malloc( system->N * sizeof( real ) );
workspace->nlp_temp = (real *) malloc( system->N * sizeof( real ) );
workspace->Clp = (real *) malloc( system->N * sizeof( real ) );
workspace->CdDelta = (real *) malloc( system->N * sizeof( real ) );
workspace->vlpex = (real *) malloc( system->N * sizeof( real ) );
/* QEq storage */
workspace->H = NULL;
workspace->H_sp = NULL;
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
workspace->L = NULL;
workspace->U = NULL;
workspace->droptol = (real *) calloc( system->N, sizeof( real ) );
workspace->w = (real *) calloc( system->N, sizeof( real ) );
workspace->b = (real *) calloc( system->N * 2, sizeof( real ) );
workspace->b_s = (real *) calloc( system->N, sizeof( real ) );
workspace->b_t = (real *) calloc( system->N, sizeof( real ) );
workspace->b_prc = (real *) calloc( system->N * 2, sizeof( real ) );
workspace->b_prm = (real *) calloc( system->N * 2, sizeof( real ) );
workspace->s_t = (real *) calloc( system->N * 2, sizeof( real ) );
workspace->s = (real**) calloc( 5, sizeof( real* ) );
workspace->t = (real**) calloc( 5, sizeof( real* ) );
for ( i = 0; i < 5; ++i )
{
workspace->s[i] = (real *) calloc( system->N, sizeof( real ) );
workspace->t[i] = (real *) calloc( system->N, sizeof( real ) );
}
// workspace->s_old = (real *) calloc( system->N, sizeof( real ) );
// workspace->t_old = (real *) calloc( system->N, sizeof( real ) );
// workspace->s_oldest = (real *) calloc( system->N, sizeof( real ) );
// workspace->t_oldest = (real *) calloc( system->N, sizeof( real ) );
for ( i = 0; i < system->N; ++i )
{
workspace->b_s[i] = -system->reaxprm.sbp[ system->atoms[i].type ].chi;
workspace->b_t[i] = -1.0;
workspace->b[i] = -system->reaxprm.sbp[ system->atoms[i].type ].chi;
workspace->b[i + system->N] = -1.0;
}
/* GMRES storage */
workspace->y = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->z = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->g = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->h = (real **) calloc( RESTART + 1, sizeof( real*) );
workspace->hs = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->hc = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->rn = (real **) calloc( RESTART + 1, sizeof( real*) );
workspace->v = (real **) calloc( RESTART + 1, sizeof( real*) );
for ( i = 0; i < RESTART + 1; ++i )
workspace->h[i] = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->rn[i] = (real *) calloc( system->N * 2, sizeof( real ) );
workspace->v[i] = (real *) calloc( system->N, sizeof( real ) );
/* CG storage */
workspace->r = (real *) calloc( system->N, sizeof( real ) );
workspace->d = (real *) calloc( system->N, sizeof( real ) );
workspace->q = (real *) calloc( system->N, sizeof( real ) );
workspace->p = (real *) calloc( system->N, sizeof( real ) );
/* integrator storage */
workspace->a = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_old = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->v_const = (rvec *) malloc( system->N * sizeof( rvec ) );
/* storage for analysis */
if ( control->molec_anal || control->diffusion_coef )
workspace->mark = (int *) calloc( system->N, sizeof(int) );
workspace->old_mark = (int *) calloc( system->N, sizeof(int) );
else
workspace->mark = workspace->old_mark = NULL;
if ( control->diffusion_coef )
workspace->x_old = (rvec *) calloc( system->N, sizeof( rvec ) );
else workspace->x_old = NULL;
workspace->dDelta = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_ele = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_vdw = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_bo = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_be = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_lp = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_ov = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_un = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_ang = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_coa = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_pen = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_hb = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_tor = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_con = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->realloc.num_far = -1;
workspace->realloc.Htop = -1;
workspace->realloc.hbonds = -1;
workspace->realloc.bonds = -1;
workspace->realloc.num_3body = -1;
workspace->realloc.gcell_atoms = -1;
void Init_Lists( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
int i, num_nbrs, num_hbonds, num_bonds, num_3body, Htop;
int *hb_top, *bond_top;
num_nbrs = Estimate_NumNeighbors( system, control, workspace, lists );
if ( !Make_List(system->N, num_nbrs, TYP_FAR_NEIGHBOR, (*lists) + FAR_NBRS) )
{
fprintf(stderr, "Problem in initializing far nbrs list. Terminating!\n");
exit( INIT_ERR );
}
fprintf( stderr, "memory allocated: far_nbrs = %ldMB\n",
num_nbrs * sizeof(far_neighbor_data) / (1024 * 1024) );
Generate_Neighbor_Lists(system, control, data, workspace, lists, out_control);
Htop = 0;
hb_top = (int*) calloc( system->N, sizeof(int) );
bond_top = (int*) calloc( system->N, sizeof(int) );
num_3body = 0;
Estimate_Storage_Sizes( system, control, lists,
&Htop, hb_top, bond_top, &num_3body );
Allocate_Matrix( &(workspace->H), system->N, Htop );
/* TODO: better estimate for H_sp?
* If so, need to refactor Estimate_Storage_Sizes
* to use various cut-off distances as parameters
* (non-bonded, hydrogen, 3body, etc.) */
Allocate_Matrix( &(workspace->H_sp), system->N, Htop );
fprintf( stderr, "estimated storage - Htop: %d\n", Htop );
fprintf( stderr, "memory allocated: H = %ldMB\n",
Htop * sizeof(sparse_matrix_entry) / (1024 * 1024) );
workspace->num_H = 0;
if ( control->hb_cut > 0 )
{
/* init H indexes */
for ( i = 0; i < system->N; ++i )
if ( system->reaxprm.sbp[ system->atoms[i].type ].p_hbond == 1 ) // H atom
workspace->hbond_index[i] = workspace->num_H++;
else workspace->hbond_index[i] = -1;
Allocate_HBond_List( system->N, workspace->num_H, workspace->hbond_index,
hb_top, (*lists) + HBONDS );
num_hbonds = hb_top[system->N - 1];
fprintf( stderr, "estimated storage - num_hbonds: %d\n", num_hbonds );
fprintf( stderr, "memory allocated: hbonds = %ldMB\n",
num_hbonds * sizeof(hbond_data) / (1024 * 1024) );
}
/* bonds list */
Allocate_Bond_List( system->N, bond_top, (*lists) + BONDS );
num_bonds = bond_top[system->N - 1];
fprintf( stderr, "estimated storage - num_bonds: %d\n", num_bonds );
fprintf( stderr, "memory allocated: bonds = %ldMB\n",
num_bonds * sizeof(bond_data) / (1024 * 1024) );
#endif
//fprintf (stderr, " **** sizeof 3 body : %d \n", sizeof (three_body_interaction_data));
//fprintf (stderr, " **** num_3body : %d \n", num_3body);
//fprintf (stderr, " **** num_bonds : %d \n", num_bonds);
/* 3bodies list */
if (!Make_List(num_bonds, num_3body, TYP_THREE_BODY, (*lists) + THREE_BODIES))
{
fprintf( stderr, "Problem in initializing angles list. Terminating!\n" );
exit( INIT_ERR );
}
fprintf( stderr, "estimated storage - num_3body: %d\n", num_3body );
fprintf( stderr, "memory allocated: 3-body = %ldMB\n",
num_3body * sizeof(three_body_interaction_data) / (1024 * 1024) );
if (!Make_List( system->N, num_bonds * 8, TYP_DDELTA, (*lists) + DDELTA ))
{
fprintf( stderr, "Problem in initializing dDelta list. Terminating!\n" );
exit( INIT_ERR );
}
if ( !Make_List( num_bonds, num_bonds * MAX_BONDS * 3, TYP_DBO, (*lists) + DBO ) )
{
fprintf( stderr, "Problem in initializing dBO list. Terminating!\n" );
exit( INIT_ERR );
}
void Init_Out_Controls(reax_system *system, control_params *control,
static_storage *workspace, output_controls *out_control)
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/* Init trajectory file */
if ( out_control->write_steps > 0 )
{
strcpy( temp, control->sim_name );
strcat( temp, ".trj" );
out_control->trj = fopen( temp, "w" );
out_control->write_header( system, control, workspace, out_control );
}
if ( out_control->energy_update_freq > 0 )
{
/* Init out file */
strcpy( temp, control->sim_name );
strcat( temp, ".out" );
out_control->out = fopen( temp, "w" );
fprintf( out_control->out, "%-6s%16s%16s%16s%11s%11s%13s%13s%13s\n",
"step", "total energy", "poten. energy", "kin. energy",
"temp.", "target", "volume", "press.", "target" );
fflush( out_control->out );
/* Init potentials file */
strcpy( temp, control->sim_name );
strcat( temp, ".pot" );
out_control->pot = fopen( temp, "w" );
fprintf( out_control->pot,
"%-6s%13s%13s%13s%13s%13s%13s%13s%13s%13s%13s%13s\n",
"step", "ebond", "eatom", "elp", "eang", "ecoa", "ehb",
"etor", "econj", "evdw", "ecoul", "epol" );
fflush( out_control->pot );
/* Init log file */
strcpy( temp, control->sim_name );
strcat( temp, ".log" );
out_control->log = fopen( temp, "w" );
fprintf( out_control->log, "%-6s%10s%10s%10s%10s%10s%10s%10s%10s%10s%10s\n",
"nonbonded", "QEq", "matvec", "pre comp", "pre app", "spmv" );
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
}
/* Init pressure file */
if ( control->ensemble == NPT ||
control->ensemble == iNPT ||
control->ensemble == sNPT )
{
strcpy( temp, control->sim_name );
strcat( temp, ".prs" );
out_control->prs = fopen( temp, "w" );
fprintf( out_control->prs, "%-6s%13s%13s%13s%13s%13s%13s%13s%13s\n",
"step", "norm_x", "norm_y", "norm_z",
"press_x", "press_y", "press_z", "target_p", "volume" );
fflush( out_control->prs );
}
/* Init molecular analysis file */
if ( control->molec_anal )
{
sprintf( temp, "%s.mol", control->sim_name );
out_control->mol = fopen( temp, "w" );
if ( control->num_ignored )
{
sprintf( temp, "%s.ign", control->sim_name );
out_control->ign = fopen( temp, "w" );
}
}
/* Init electric dipole moment analysis file */
if ( control->dipole_anal )
{
strcpy( temp, control->sim_name );
strcat( temp, ".dpl" );
out_control->dpl = fopen( temp, "w" );
fprintf( out_control->dpl,
"Step Molecule Count Avg. Dipole Moment Norm\n" );
fflush( out_control->dpl );
}
/* Init diffusion coef analysis file */
if ( control->diffusion_coef )
{
strcpy( temp, control->sim_name );
strcat( temp, ".drft" );
out_control->drft = fopen( temp, "w" );
fprintf( out_control->drft, "Step Type Count Avg Squared Disp\n" );
fflush( out_control->drft );
}
#ifdef TEST_ENERGY
/* open bond energy file */
strcat( temp, ".ebond" );
out_control->ebond = fopen( temp, "w" );
strcat( temp, ".elp" );
out_control->elp = fopen( temp, "w" );
/* open overcoordination energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".eov" );
out_control->eov = fopen( temp, "w" );
/* open undercoordination energy file */
strcat( temp, ".eun" );
out_control->eun = fopen( temp, "w" );
/* open angle energy file */
strcat( temp, ".eval" );
out_control->eval = fopen( temp, "w" );
/* open penalty energy file */
strcat( temp, ".epen" );
out_control->epen = fopen( temp, "w" );
/* open coalition energy file */
strcat( temp, ".ecoa" );
out_control->ecoa = fopen( temp, "w" );
/* open hydrogen bond energy file */
strcat( temp, ".ehb" );
out_control->ehb = fopen( temp, "w" );
/* open torsion energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".etor" );
out_control->etor = fopen( temp, "w" );
/* open conjugation energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".econ" );
out_control->econ = fopen( temp, "w" );
/* open vdWaals energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".evdw" );
out_control->evdw = fopen( temp, "w" );
/* open coulomb energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".ecou" );
out_control->ecou = fopen( temp, "w" );
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
/* open bond orders file */
strcpy( temp, control->sim_name );
strcat( temp, ".fbo" );
out_control->fbo = fopen( temp, "w" );
/* open bond orders derivatives file */
strcpy( temp, control->sim_name );
strcat( temp, ".fdbo" );
out_control->fdbo = fopen( temp, "w" );
/* open bond forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fbond" );
out_control->fbond = fopen( temp, "w" );
/* open lone-pair forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".flp" );
out_control->flp = fopen( temp, "w" );
/* open overcoordination forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fatom" );
out_control->fatom = fopen( temp, "w" );
/* open angle forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".f3body" );
out_control->f3body = fopen( temp, "w" );
/* open hydrogen bond forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fhb" );
out_control->fhb = fopen( temp, "w" );
/* open torsion forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".f4body" );
out_control->f4body = fopen( temp, "w" );
/* open nonbonded forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fnonb" );
out_control->fnonb = fopen( temp, "w" );
/* open total force file */
strcpy( temp, control->sim_name );
strcat( temp, ".ftot" );
out_control->ftot = fopen( temp, "w" );
/* open coulomb forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".ftot2" );
out_control->ftot2 = fopen( temp, "w" );
/* Error handling */
/* if ( out_control->out == NULL || out_control->pot == NULL ||
out_control->log == NULL || out_control->mol == NULL ||
out_control->dpl == NULL || out_control->drft == NULL ||
out_control->pdb == NULL )
{
fprintf( stderr, "FILE OPEN ERROR. TERMINATING..." );
exit( CANNOT_OPEN_OUTFILE );
}*/
void Initialize(reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace, list **lists,
output_controls *out_control, evolve_function *Evolve)
Init_Simulation_Data( system, control, data, out_control, Evolve );
Init_Lists( system, control, data, workspace, lists, out_control );
Init_Out_Controls( system, control, workspace, out_control );
/* These are done in forces.c, only forces.c can see all those functions */
Init_Bonded_Force_Functions( control );
if ( control->tabulate )
{
start = Get_Time ();
Make_LR_Lookup_Table( system, control );
end = Get_Timing_Info (start);
//fprintf (stderr, "Time for LR Lookup Table calculation is %f \n", end );
}
fprintf( stderr, "data structures have been initialized...\n" );