Skip to content
Snippets Groups Projects
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
io_tools.c 63.22 KiB
/*----------------------------------------------------------------------
  PuReMD - Purdue ReaxFF Molecular Dynamics Program

  Copyright (2010) Purdue University
  Hasan Metin Aktulga, haktulga@cs.purdue.edu
  Joseph Fogarty, jcfogart@mail.usf.edu
  Sagar Pandit, pandit@usf.edu
  Ananth Y Grama, ayg@cs.purdue.edu

  This program is free software; you can redistribute it and/or
  modify it under the terms of the GNU General Public License as
  published by the Free Software Foundation; either version 2 of
  the License, or (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  See the GNU General Public License for more details:
  <http://www.gnu.org/licenses/>.
  ----------------------------------------------------------------------*/

#include "reax_types.h"
#include "index_utils.h"
#if defined(PURE_REAX)
#include "io_tools.h"
#include "basic_comm.h"
#include "list.h"
#include "reset_tools.h"
#include "system_props.h"
#include "tool_box.h"
#include "traj.h"
#include "vector.h"
#elif defined(LAMMPS_REAX)
#include "reax_io_tools.h"
#include "reax_basic_comm.h"
#include "reax_list.h"
#include "reax_reset_tools.h"
#include "reax_system_props.h"
#include "reax_tool_box.h"
#include "reax_traj.h"
#include "reax_vector.h"
#endif


print_interaction Print_Interactions[NUM_INTRS];


/************************ initialize output controls ************************/
int Init_Output_Files( reax_system *system, control_params *control,
        output_controls *out_control, mpi_datatypes *mpi_data, char *msg )
{
    char temp[MAX_STR];
    int ret;

    if ( out_control->write_steps > 0 )
    {
        ret = Init_Traj( system, control, out_control, mpi_data, msg );
        if ( ret == FAILURE )
            return ret;
    }

    if ( system->my_rank == MASTER_NODE )
    {
        /* These files are written only by the master node */
        if ( out_control->energy_update_freq > 0 )
        {
            /* init out file */
            sprintf( temp, "%s.out", control->sim_name );
            if ( (out_control->out = fopen( temp, "w" )) != NULL )
            {
#if !defined(DEBUG) && !defined(DEBUG_FOCUS)
                fprintf( out_control->out, "%-6s%14s%14s%14s%11s%13s%13s\n",
                         "step", "total energy", "potential", "kinetic",
                         "T(K)", "V(A^3)", "P(Gpa)" );
#else
                fprintf( out_control->out, "%-6s%24s%24s%24s%13s%16s%13s\n",
                         "step", "total energy", "potential", "kinetic",
                         "T(K)", "V(A^3)", "P(GPa)" );
#endif
                fflush( out_control->out );
            }
            else
            {
                strcpy( msg, "init_out_controls: .out file could not be opened\n" );
                return FAILURE;
            }

            /* init potentials file */
            sprintf( temp, "%s.pot", control->sim_name );
            if ( (out_control->pot = fopen( temp, "w" )) != NULL )
            {
#if !defined(DEBUG) && !defined(DEBUG_FOCUS)
                fprintf( out_control->pot,
                         "%-6s%14s%14s%14s%14s%14s%14s%14s%14s%14s%14s%14s\n",
                         "step", "ebond", "eatom", "elp",
                         "eang", "ecoa", "ehb", "etor", "econj",
                         "evdw", "ecoul", "epol" );
#else
                fprintf( out_control->pot,
                         "%-6s%24s%24s%24s%24s%24s%24s%24s%24s%24s%24s%24s\n",
                         "step", "ebond", "eatom", "elp",
                         "eang", "ecoa", "ehb", "etor", "econj",
                         "evdw", "ecoul", "epol" );
#endif
                fflush( out_control->pot );
            }
            else
            {
                strcpy( msg, "init_out_controls: .pot file could not be opened\n" );
                return FAILURE;
            }

            /* init log file */
#if defined(LOG_PERFORMANCE)
            sprintf( temp, "%s.log", control->sim_name );
            if ( (out_control->log = fopen( temp, "w" )) != NULL )
            {
                fprintf( out_control->log, "%6s%8s%8s%8s%8s%8s%8s%8s%8s\n",
                         "step", "total", "comm", "nbrs", "init", "bonded", "nonb",
                         "qeq", "matvecs" );
                fflush( out_control->log );
            }
            else
            {
                strcpy( msg, "init_out_controls: .log file could not be opened\n" );
                return FAILURE;
            }
#endif
        }

        /* init pressure file */
        if ( control->ensemble == NPT  ||
                control->ensemble == iNPT ||
                control->ensemble == sNPT )
        {
            sprintf( temp, "%s.prs", control->sim_name );
            if ( (out_control->prs = fopen( temp, "w" )) != NULL )
            {
                fprintf(out_control->prs, "%8s%13s%13s%13s%13s%13s%13s%13s\n",
                        "step", "Pint/norm[x]", "Pint/norm[y]", "Pint/norm[z]",
                        "Pext/Ptot[x]", "Pext/Ptot[y]", "Pext/Ptot[z]", "Pkin/V" );
                fflush( out_control->prs );
            }
            else
            {
                strcpy(msg, "init_out_controls: .prs file couldn't be opened\n");
                return FAILURE;
            }
        }

        /* init electric dipole moment analysis file */
        if ( control->dipole_anal )
        {
            sprintf( temp, "%s.dpl", control->sim_name );
            if ( (out_control->dpl = fopen( temp, "w" )) != NULL )
            {
                fprintf( out_control->dpl, "%6s%20s%30s",
                         "step", "molecule count", "avg dipole moment norm" );
                fflush( out_control->dpl );
            }
            else
            {
                strcpy(msg, "init_out_controls: .dpl file couldn't be opened\n");
                return FAILURE;
            }
        }

        /* init diffusion coef analysis file */
        if ( control->diffusion_coef )
        {
            sprintf( temp, "%s.drft", control->sim_name );
            if ( (out_control->drft = fopen( temp, "w" )) != NULL )
            {
                fprintf( out_control->drft, "%7s%20s%20s\n",
                         "step", "type count", "avg disp^2" );
                fflush( out_control->drft );
            }
            else
            {
                strcpy(msg, "init_out_controls: .drft file couldn't be opened\n");
                return FAILURE;
            }
        }
    }


    /* init molecular analysis file */
    /* proc0 opens this file and shares it with everyone.
       then all processors write into it in a round-robin
       fashion controlled by their rank */
    if ( control->molecular_analysis )
    {
        if ( system->my_rank == MASTER_NODE )
        {
            sprintf( temp, "%s.mol", control->sim_name );
            if ( (out_control->mol = fopen( temp, "w" )) == NULL )
            {
                strcpy(msg, "init_out_controls: .mol file could not be opened\n");
                return FAILURE;
            }
        }

        MPI_Bcast( &(out_control->mol), 1, MPI_LONG, 0, MPI_COMM_WORLD );
    }

#ifdef TEST_ENERGY
    /* open bond energy file */
    sprintf( temp, "%s.ebond.%d", control->sim_name, system->my_rank );
    if ( (out_control->ebond = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .ebond file couldn't be opened\n");
        return FAILURE;
    }

    /* open lone-pair energy file */
    sprintf( temp, "%s.elp.%d", control->sim_name, system->my_rank );
    if ( (out_control->elp = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .elp file couldn't be opened\n");
        return FAILURE;
    }

    /* open overcoordination energy file */
    sprintf( temp, "%s.eov.%d", control->sim_name, system->my_rank );
    if ( (out_control->eov = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .eov file couldn't be opened\n");
        return FAILURE;
    }

    /* open undercoordination energy file */
    sprintf( temp, "%s.eun.%d", control->sim_name, system->my_rank );
    if ( (out_control->eun = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .eun file couldn't be opened\n");
        return FAILURE;
    }

    /* open angle energy file */
    sprintf( temp, "%s.eval.%d", control->sim_name, system->my_rank );
    if ( (out_control->eval = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .eval file couldn't be opened\n");
        return FAILURE;
    }

    /* open coalition energy file */
    sprintf( temp, "%s.ecoa.%d", control->sim_name, system->my_rank );
    if ( (out_control->ecoa = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .ecoa file couldn't be opened\n");
        return FAILURE;
    }

    /* open penalty energy file */
    sprintf( temp, "%s.epen.%d", control->sim_name, system->my_rank );
    if ( (out_control->epen = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .epen file couldn't be opened\n");
        return FAILURE;
    }

    /* open torsion energy file */
    sprintf( temp, "%s.etor.%d", control->sim_name, system->my_rank );
    if ( (out_control->etor = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .etor file couldn't be opened\n");
        return FAILURE;
    }

    /* open conjugation energy file */
    sprintf( temp, "%s.econ.%d", control->sim_name, system->my_rank );
    if ( (out_control->econ = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .econ file couldn't be opened\n");
        return FAILURE;
    }

    /* open hydrogen bond energy file */
    sprintf( temp, "%s.ehb.%d", control->sim_name, system->my_rank );
    if ( (out_control->ehb = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .ehb file couldn't be opened\n");
        return FAILURE;
    }

    /* open vdWaals energy file */
    sprintf( temp, "%s.evdw.%d", control->sim_name, system->my_rank );
    if ( (out_control->evdw = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .evdw file couldn't be opened\n");
        return FAILURE;
    }

    /* open coulomb energy file */
    sprintf( temp, "%s.ecou.%d", control->sim_name, system->my_rank );
    if ( (out_control->ecou = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .ecou file couldn't be opened\n");
        return FAILURE;
    }
#endif

#ifdef TEST_FORCES
    /* open bond orders file */
    sprintf( temp, "%s.fbo.%d", control->sim_name, system->my_rank );
    if ( (out_control->fbo = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .fbo file couldn't be opened\n");
        return FAILURE;
    }

    /* open bond orders derivatives file */
    sprintf( temp, "%s.fdbo.%d", control->sim_name, system->my_rank );
    if ( (out_control->fdbo = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .fdbo file couldn't be opened\n");
        return FAILURE;
    }

    /* produce a single force file - to be written by p0 */
    if ( system->my_rank == MASTER_NODE )
    {
        /* open bond forces file */
        sprintf( temp, "%s.fbond", control->sim_name );
        if ( (out_control->fbond = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .fbond file couldn't be opened\n");
            return FAILURE;
        }

        /* open lone-pair forces file */
        sprintf( temp, "%s.flp", control->sim_name );
        if ( (out_control->flp = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .flp file couldn't be opened\n");
            return FAILURE;
        }

        /* open overcoordination forces file */
        sprintf( temp, "%s.fov", control->sim_name );
        if ( (out_control->fov = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .fov file couldn't be opened\n");
            return FAILURE;
        }

        /* open undercoordination forces file */
        sprintf( temp, "%s.fun", control->sim_name );
        if ( (out_control->fun = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .fun file couldn't be opened\n");
            return FAILURE;
        }

        /* open angle forces file */
        sprintf( temp, "%s.fang", control->sim_name );
        if ( (out_control->fang = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .fang file couldn't be opened\n");
            return FAILURE;
        }

        /* open coalition forces file */
        sprintf( temp, "%s.fcoa", control->sim_name );
        if ( (out_control->fcoa = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .fcoa file couldn't be opened\n");
            return FAILURE;
        }

        /* open penalty forces file */
        sprintf( temp, "%s.fpen", control->sim_name );
        if ( (out_control->fpen = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .fpen file couldn't be opened\n");
            return FAILURE;
        }

        /* open torsion forces file */
        sprintf( temp, "%s.ftor", control->sim_name );
        if ( (out_control->ftor = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .ftor file couldn't be opened\n");
            return FAILURE;
        }

        /* open conjugation forces file */
        sprintf( temp, "%s.fcon", control->sim_name );
        if ( (out_control->fcon = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .fcon file couldn't be opened\n");
            return FAILURE;
        }

        /* open hydrogen bond forces file */
        sprintf( temp, "%s.fhb", control->sim_name );
        if ( (out_control->fhb = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .fhb file couldn't be opened\n");
            return FAILURE;
        }

        /* open vdw forces file */
        sprintf( temp, "%s.fvdw", control->sim_name );
        if ( (out_control->fvdw = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .fvdw file couldn't be opened\n");
            return FAILURE;
        }

        /* open nonbonded forces file */
        sprintf( temp, "%s.fele", control->sim_name );
        if ( (out_control->fele = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .fele file couldn't be opened\n");
            return FAILURE;
        }

        /* open total force file */
        sprintf( temp, "%s.ftot", control->sim_name );
        if ( (out_control->ftot = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .ftot file couldn't be opened\n");
            return FAILURE;
        }

        /* open force comprison file */
        sprintf( temp, "%s.fcomp", control->sim_name );
        if ( (out_control->fcomp = fopen( temp, "w" )) == NULL )
        {
            strcpy(msg, "Init_Out_Files: .fcomp file couldn't be opened\n");
            return FAILURE;
        }
    }
#endif

#if defined(PURE_REAX)
#if defined(TEST_FORCES) || defined(TEST_ENERGY)
    /* open far neighbor list file */
    sprintf( temp, "%s.far_nbrs_list.%d", control->sim_name, system->my_rank );
    if ( (out_control->flist = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .far_nbrs_list file couldn't be opened\n");
        return FAILURE;
    }

    /* open bond list file */
    sprintf( temp, "%s.bond_list.%d", control->sim_name, system->my_rank );
    if ( (out_control->blist = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .bond_list file couldn't be opened\n");
        return FAILURE;
    }

    /* open near neighbor list file */
    sprintf( temp, "%s.near_nbrs_list.%d", control->sim_name, system->my_rank );
    if ( (out_control->nlist = fopen( temp, "w" )) == NULL )
    {
        strcpy(msg, "Init_Out_Files: .near_nbrs_list file couldn't be opened\n");
        return FAILURE;
    }
#endif
#endif

    return SUCCESS;
}


/************************ close output files ************************/
int Close_Output_Files( reax_system *system, control_params *control,
        output_controls *out_control, mpi_datatypes *mpi_data )
{
    if ( out_control->write_steps > 0 )
        End_Traj( system->my_rank, out_control );

    if ( system->my_rank == MASTER_NODE )
    {
        if ( out_control->energy_update_freq > 0 )
        {
            fclose( out_control->out );
            fclose( out_control->pot );
#if defined(LOG_PERFORMANCE)
            fclose( out_control->log );
#endif
        }

        if ( control->ensemble == NPT || control->ensemble == iNPT ||
                control->ensemble == sNPT )
            fclose( out_control->prs );

        if ( control->dipole_anal ) fclose( out_control->dpl );
        if ( control->diffusion_coef ) fclose( out_control->drft );
        if ( control->molecular_analysis ) fclose( out_control->mol );
    }

#ifdef TEST_ENERGY
    fclose( out_control->ebond );
    fclose( out_control->elp );
    fclose( out_control->eov );
    fclose( out_control->eun );
    fclose( out_control->eval );
    fclose( out_control->epen );
    fclose( out_control->ecoa );
    fclose( out_control->ehb );
    fclose( out_control->etor );
    fclose( out_control->econ );
    fclose( out_control->evdw );
    fclose( out_control->ecou );
#endif

#ifdef TEST_FORCES
    fclose( out_control->fbo );
    fclose( out_control->fdbo );

    if ( system->my_rank == MASTER_NODE )
    {
        fclose( out_control->fbond );
        fclose( out_control->flp );
        fclose( out_control->fov );
        fclose( out_control->fun );
        fclose( out_control->fang );
        fclose( out_control->fcoa );
        fclose( out_control->fpen );
        fclose( out_control->ftor );
        fclose( out_control->fcon );
        fclose( out_control->fhb );
        fclose( out_control->fvdw );
        fclose( out_control->fele );
        fclose( out_control->ftot );
        fclose( out_control->fcomp );
    }
#endif

#if defined(PURE_REAX)
#if defined(TEST_FORCES) || defined(TEST_ENERGY)
    fclose( out_control->flist );
    fclose( out_control->blist );
    fclose( out_control->nlist );
#endif
#endif

    return SUCCESS;
}


void Print_Box( simulation_box* box, char *name, FILE *out )
{
    // int i, j;

    fprintf( out, "%s:\n", name );
    fprintf( out, "\tmin[%8.3f %8.3f %8.3f]\n",
             box->min[0], box->min[1], box->min[2] );
    fprintf( out, "\tmax[%8.3f %8.3f %8.3f]\n",
             box->max[0], box->max[1], box->max[2] );
    fprintf( out, "\tdims[%8.3f%8.3f%8.3f]\n",
             box->box_norms[0], box->box_norms[1], box->box_norms[2] );

    // fprintf( out, "box: {" );
    // for( i = 0; i < 3; ++i )
    //   {
    //     fprintf( out, "{" );
    //     for( j = 0; j < 3; ++j )
    //       fprintf( out, "%8.3f ", box->box[i][j] );
    //     fprintf( out, "}" );
    //   }
    // fprintf( out, "}\n" );

    // fprintf( out, "box_trans: {" );
    // for( i = 0; i < 3; ++i )
    //   {
    //     fprintf( out, "{" );
    //     for( j = 0; j < 3; ++j )
    //    fprintf( out, "%8.3f ", box->trans[i][j] );
    //     fprintf( out, "}" );
    //   }
    // fprintf( out, "}\n" );

    // fprintf( out, "box_trinv: {" );
    // for( i = 0; i < 3; ++i )
    //   {
    //     fprintf( out, "{" );
    //     for( j = 0; j < 3; ++j )
    //    fprintf( out, "%8.3f ", box->trans_inv[i][j] );
    //     fprintf( out, "}" );
    //   }
    // fprintf( out, "}\n" );
}


void Print_Grid( grid* g, FILE *out )
{
    int x, y, z, gc_type;
    ivec gc_str;
    char gcell_type_text[10][12] =
    {
        "NO_NBRS", "NEAR_ONLY", "HBOND_ONLY", "FAR_ONLY",
        "NEAR_HBOND", "NEAR_FAR", "HBOND_FAR", "FULL_NBRS", "NATIVE"
    };

    fprintf( out, "\tnumber of grid cells: %d %d %d\n",
             g->ncells[0], g->ncells[1], g->ncells[2] );
    fprintf( out, "\tgcell lengths: %8.3f %8.3f %8.3f\n",
             g->cell_len[0], g->cell_len[1], g->cell_len[2] );
    fprintf( out, "\tinverses of gcell lengths: %8.3f %8.3f %8.3f\n",
             g->inv_len[0], g->inv_len[1], g->inv_len[2] );
    fprintf( out, "\t---------------------------------\n" );
    fprintf( out, "\tnumber of native gcells: %d %d %d\n",
             g->native_cells[0], g->native_cells[1], g->native_cells[2] );
    fprintf( out, "\tnative gcell span: %d-%d  %d-%d  %d-%d\n",
             g->native_str[0], g->native_end[0],
             g->native_str[1], g->native_end[1],
             g->native_str[2], g->native_end[2] );
    fprintf( out, "\t---------------------------------\n" );
    fprintf( out, "\tvlist gcell stretch: %d %d %d\n",
             g->vlist_span[0], g->vlist_span[1], g->vlist_span[2] );
    fprintf( out, "\tnonbonded nbrs gcell stretch: %d %d %d\n",
             g->nonb_span[0], g->nonb_span[1], g->nonb_span[2] );
    fprintf( out, "\tbonded nbrs gcell stretch: %d %d %d\n",
             g->bond_span[0], g->bond_span[1], g->bond_span[2] );
    fprintf( out, "\t---------------------------------\n" );
    fprintf( out, "\tghost gcell span: %d %d %d\n",
             g->ghost_span[0], g->ghost_span[1], g->ghost_span[2] );
    fprintf( out, "\tnonbonded ghost gcell span: %d %d %d\n",
             g->ghost_nonb_span[0], g->ghost_nonb_span[1], g->ghost_nonb_span[2]);
    fprintf(out, "\thbonded ghost gcell span: %d %d %d\n",
            g->ghost_hbond_span[0], g->ghost_hbond_span[1], g->ghost_hbond_span[2]);
    fprintf( out, "\tbonded ghost gcell span: %d %d %d\n",
             g->ghost_bond_span[0], g->ghost_bond_span[1], g->ghost_bond_span[2]);
    //fprintf(out, "\t---------------------------------\n" );
    //fprintf(out, "\tmax number of gcells at the boundary: %d\n", g->gcell_cap);
    fprintf( out, "\t---------------------------------\n" );

    fprintf( stderr, "GCELL MARKS:\n" );
    //SUDHIR
    //gc_type = g->cells[0][0][0].type;
    gc_type = g->cells[ index_grid_3d (0, 0, 0, g) ].type;
    ivec_MakeZero( gc_str );

    x = y = z = 0;
    for ( x = 0; x < g->ncells[0]; ++x )
        for ( y = 0; y < g->ncells[1]; ++y )
            for ( z = 0; z < g->ncells[2]; ++z )
                //SUDHIR
                //if( g->cells[x][y][z].type != gc_type ){
                if ( g->cells[ index_grid_3d(x, y, z, g) ].type != gc_type )
                {
                    fprintf( stderr,
                             "\tgcells from(%2d %2d %2d) to (%2d %2d %2d): %d - %s\n",
                             gc_str[0], gc_str[1], gc_str[2], x, y, z,
                             gc_type, gcell_type_text[gc_type] );
                    //SUDHIR
                    //gc_type = g->cells[x][y][z].type;
                    gc_type = g->cells[ index_grid_3d(x, y, z, g) ].type;
                    gc_str[0] = x;
                    gc_str[1] = y;
                    gc_str[2] = z;
                }
    fprintf( stderr, "\tgcells from(%2d %2d %2d) to (%2d %2d %2d): %d - %s\n",
             gc_str[0], gc_str[1], gc_str[2], x, y, z,
             gc_type, gcell_type_text[gc_type] );
    fprintf( out, "-------------------------------------\n" );
}


void Print_GCell_Exchange_Bounds( int my_rank, neighbor_proc *my_nbrs )
{
    ivec r;
    int nbr;
    neighbor_proc *nbr_pr;
    char fname[100];
    FILE *f;
    char exch[3][10] = { "NONE", "NEAR_EXCH", "FULL_EXCH" };

    sprintf( fname, "gcell_exchange_bounds%d", my_rank );
    f = fopen( fname, "w" );

    /* loop over neighbor processes */
    for ( r[0] = -1; r[0] <= 1; ++r[0])
        for ( r[1] = -1; r[1] <= 1; ++r[1] )
            for ( r[2] = -1; r[2] <= 1; ++r[2] )
                if ( (nbr = Relative_Coord_Encoding( r )) != MYSELF )
                {
                    nbr_pr = &(my_nbrs[nbr]);

                    fprintf( f, "p%-2d GCELL BOUNDARIES with r(%2d %2d %2d):\n",
                             my_rank, r[0], r[1], r[2] );

                    fprintf( f, "\tsend_type %s: send(%d %d %d) to (%d %d %d)\n",
                             exch[nbr_pr->send_type],
                             nbr_pr->str_send[0], nbr_pr->str_send[1],
                             nbr_pr->str_send[2],
                             nbr_pr->end_send[0], nbr_pr->end_send[1],
                             nbr_pr->end_send[2] );

                    fprintf( f, "\trecv_type %s: recv(%d %d %d) to (%d %d %d)\n",
                             exch[nbr_pr->recv_type],
                             nbr_pr->str_recv[0], nbr_pr->str_recv[1],
                             nbr_pr->str_recv[2],
                             nbr_pr->end_recv[0], nbr_pr->end_recv[1],
                             nbr_pr->end_recv[2] );
                }

    fclose(f);
}


void Print_Native_GCells( reax_system *system )
{
    int        i, j, k, l;
    char       fname[100];
    FILE      *f;
    grid      *g;
    grid_cell *gc;
    char gcell_type_text[10][12] =
    {
        "NO_NBRS", "NEAR_ONLY", "HBOND_ONLY", "FAR_ONLY",
        "NEAR_HBOND", "NEAR_FAR", "HBOND_FAR", "FULL_NBRS", "NATIVE"
    };

    sprintf( fname, "native_gcells.%d", system->my_rank );
    f = fopen( fname, "w" );
    g = &(system->my_grid);

    for ( i = g->native_str[0]; i < g->native_end[0]; i++ )
        for ( j = g->native_str[1]; j < g->native_end[1]; j++ )
            for ( k = g->native_str[2]; k < g->native_end[2]; k++ )
            {
                //SUDHIR
                //gc = &( g->cells[i][j][k] );
                gc = &( g->cells[ index_grid_3d(i, j, k, g) ] );

                fprintf( f, "p%d gcell(%2d %2d %2d) of type %d(%s)\n",
                         system->my_rank, i, j, k,
                         gc->type, gcell_type_text[gc->type] );

                //fprintf( f, "\tatom list start: %d, end: %d\n\t", gc->str, gc->end );
                fprintf( f, "\tatom list start: %d, end: %d\n\t", g->str[index_grid_3d(i, j, k, g)], g->end[index_grid_3d(i, j, k, g)] );

                //for( l = gc->str; l < gc->end; ++l )
                for ( l = g->str[index_grid_3d(i, j, k, g)]; l < g->end[index_grid_3d(i, j, k, g)]; ++l )
                    fprintf( f, "%5d", system->my_atoms[l].orig_id );
                fprintf( f, "\n" );
            }

    fclose(f);
}


void Print_All_GCells( reax_system *system )
{
    int        i, j, k, l;
    char       fname[100];
    FILE      *f;
    grid      *g;
    grid_cell *gc;
    char gcell_type_text[10][12] =
    {
        "NO_NBRS", "NEAR_ONLY", "HBOND_ONLY", "FAR_ONLY",
        "NEAR_HBOND", "NEAR_FAR", "HBOND_FAR", "FULL_NBRS", "NATIVE"
    };

    sprintf( fname, "all_gcells.%d", system->my_rank );
    f = fopen( fname, "w" );
    g = &(system->my_grid);

    for ( i = 0; i < g->ncells[0]; i++ )
        for ( j = 0; j < g->ncells[1]; j++ )
            for ( k = 0; k < g->ncells[2]; k++ )
            {
                //SUDHIR
                //gc = &( g->cells[i][j][k] );
                gc = &( g->cells[ index_grid_3d(i, j, k, g) ] );

                fprintf( f, "p%d gcell(%2d %2d %2d) of type %d(%s)\n",
                         system->my_rank, i, j, k,
                         gc->type, gcell_type_text[gc->type] );

                //fprintf( f, "\tatom list start: %d, end: %d\n\t", gc->str, gc->end );
                fprintf( f, "\tatom list start: %d, end: %d\n\t", g->str[index_grid_3d(i, j, k, g)], g->end[index_grid_3d(i, j, k, g)] );

                //for( l = gc->str; l < gc->end; ++l )
                for ( l = g->str[index_grid_3d(i, j, k, g)]; l < g->end[index_grid_3d(i, j, k, g)]; ++l )
                    fprintf( f, "%5d", system->my_atoms[l].orig_id );
                fprintf( f, "\n" );
            }

    fclose(f);
}


void Print_My_Atoms( reax_system *system )
{
    int   i;
    char  fname[100];
    FILE *fh;

    sprintf( fname, "my_atoms.%d", system->my_rank );
    if ( (fh = fopen( fname, "w" )) == NULL )
    {
        fprintf( stderr, "error in opening my_atoms file" );
        MPI_Abort( MPI_COMM_WORLD, FILE_NOT_FOUND );
    }

    // fprintf( stderr, "p%d had %d atoms\n",
    //   system->my_rank, system->n );

    for ( i = 0; i < system->n; ++i )
        fprintf( fh, "p%-2d %-5d %2d %24.15e%24.15e%24.15e\n",
                 system->my_rank,
                 system->my_atoms[i].orig_id, system->my_atoms[i].type,
                 system->my_atoms[i].x[0],
                 system->my_atoms[i].x[1],
                 system->my_atoms[i].x[2] );

    fclose( fh );
}


void Print_My_Ext_Atoms( reax_system *system )
{
    int   i;
    char  fname[100];
    FILE *fh;

    sprintf( fname, "my_ext_atoms.%d", system->my_rank );
    if ( (fh = fopen( fname, "w" )) == NULL )
    {
        fprintf( stderr, "error in opening my_ext_atoms file" );
        MPI_Abort( MPI_COMM_WORLD, FILE_NOT_FOUND );
    }

    // fprintf( stderr, "p%d had %d atoms\n",
    //   system->my_rank, system->n );

    for ( i = 0; i < system->N; ++i )
        fprintf( fh, "p%-2d %-5d imprt%-5d %2d %24.15e%24.15e%24.15e\n",
                 system->my_rank, system->my_atoms[i].orig_id,
                 system->my_atoms[i].imprt_id, system->my_atoms[i].type,
                 system->my_atoms[i].x[0],
                 system->my_atoms[i].x[1],
                 system->my_atoms[i].x[2] );

    fclose( fh );
}


void Print_Far_Neighbors( reax_system *system, reax_list **lists,
                          control_params *control )
{
    char  fname[100];
    int   i, j, id_i, id_j, nbr, natoms;
    FILE *fout;
    reax_list *far_nbrs;

    sprintf( fname, "%s.far_nbrs.%d", control->sim_name, system->my_rank );
    fout      = fopen( fname, "w" );
    far_nbrs = (*lists) + FAR_NBRS;
    natoms = system->N;

    for ( i = 0; i < natoms; ++i )
    {
        id_i = system->my_atoms[i].orig_id;

        for ( j = Start_Index(i, far_nbrs); j < End_Index(i, far_nbrs); ++j )
        {
            nbr = far_nbrs->select.far_nbr_list[j].nbr;
            id_j = system->my_atoms[nbr].orig_id;

            fprintf( fout, "%6d%6d%24.15e%24.15e%24.15e%24.15e\n",
                     id_i, id_j, far_nbrs->select.far_nbr_list[j].d,
                     far_nbrs->select.far_nbr_list[j].dvec[0],
                     far_nbrs->select.far_nbr_list[j].dvec[1],
                     far_nbrs->select.far_nbr_list[j].dvec[2] );

            fprintf( fout, "%6d%6d%24.15e%24.15e%24.15e%24.15e\n",
                     id_j, id_i, far_nbrs->select.far_nbr_list[j].d,
                     -far_nbrs->select.far_nbr_list[j].dvec[0],
                     -far_nbrs->select.far_nbr_list[j].dvec[1],
                     -far_nbrs->select.far_nbr_list[j].dvec[2] );
        }
    }

    fclose( fout );
}


void Print_Sparse_Matrix( reax_system *system, sparse_matrix *A )
{
    int i, j;

    for ( i = 0; i < A->n; ++i )
    {
        for ( j = A->start[i]; j < A->end[i]; ++j )
        {
            fprintf( stderr, "%d %d %.15e\n",
                     system->my_atoms[i].orig_id,
                     system->my_atoms[A->entries[j].j].orig_id,
                     A->entries[j].val );
        }
    }
}


void Print_Sparse_Matrix2( reax_system *system, sparse_matrix *A, char *fname )
{
    int i, j;
    FILE *f = fopen( fname, "w" );

    for ( i = 0; i < A->n; ++i )
    {
        for ( j = A->start[i]; j < A->end[i]; ++j )
        {
            fprintf( f, "%d %d %.15e\n",
                     system->my_atoms[i].orig_id,
                     system->my_atoms[A->entries[j].j].orig_id,
                     A->entries[j].val );
        }
    }

    fclose(f);
}


void Print_Symmetric_Sparse(reax_system *system, sparse_matrix *A, char *fname)
{
    int i, j;
    reax_atom *ai, *aj;
    FILE *f = fopen( fname, "w" );

    for ( i = 0; i < A->n; ++i )
    {
        ai = &(system->my_atoms[i]);
        for ( j = A->start[i]; j < A->end[i]; ++j )
        {
            aj = &(system->my_atoms[A->entries[j].j]);
            fprintf( f, "%d %d %.15e\n",
                     ai->renumber, aj->renumber, A->entries[j].val );
            if ( A->entries[j].j < system->n && ai->renumber != aj->renumber )
                fprintf( f, "%d %d %.15e\n",
                         aj->renumber, ai->renumber, A->entries[j].val );
        }
    }

    fclose(f);
}


void Print_Linear_System( reax_system *system, control_params *control,
        storage *workspace, int step )
{
    int i, j;
    char fname[100];
    reax_atom *ai, *aj;
    sparse_matrix *H;
    FILE *out;

    /* print rhs and init guesses for QEq */
    sprintf( fname, "%s.p%dstate%d", control->sim_name, system->my_rank, step );
    out = fopen( fname, "w" );
    for ( i = 0; i < system->n; i++ )
    {
        ai = &(system->my_atoms[i]);
        fprintf( out, "%6d%2d%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e\n",
                 ai->renumber, ai->type, ai->x[0], ai->x[1], ai->x[2],
                 workspace->s[i], workspace->b_s[i],
                 workspace->t[i], workspace->b_t[i] );
    }
    fclose( out );

    /* print QEq coef matrix */
    sprintf( fname, "%s.p%dH%d", control->sim_name, system->my_rank, step );
    Print_Symmetric_Sparse( system, &workspace->H, fname ); //MATRIX CHANGES

    /* print the incomplete H matrix */
//    sprintf( fname, "%s.p%dHinc%d", control->sim_name, system->my_rank, step );
//    out = fopen( fname, "w" );
//    H = workspace->H;
//    for( i = 0; i < H->n; ++i )
//    {
//        ai = &(system->my_atoms[i]);
//        for( j = H->start[i]; j < H->end[i]; ++j )
//        {
//            if( H->entries[j].j < system->n )
//            {
//                aj = &(system->my_atoms[H->entries[j].j]);
//                fprintf( out, "%d %d %.15e\n",
//                ai->orig_id, aj->orig_id, H->entries[j].val );
//                if( ai->orig_id != aj->orig_id )
//                    fprintf( out, "%d %d %.15e\n",
//                aj->orig_id, ai->orig_id, H->entries[j].val );
//            }
//        }
//    }
//    fclose( out );

    // print the L from incomplete cholesky decomposition
//    sprintf( fname, "%s.p%dL%d", control->sim_name, system->my_rank, step );
//    Print_Sparse_Matrix2( system, workspace->L, fname );
}


void Print_LinSys_Soln( reax_system *system, real *x, real *b_prm, real *b )
{
    int i;
    char fname[100];
    FILE  *fout;

    sprintf( fname, "qeq.%d.out", system->my_rank );
    fout = fopen( fname, "w" );

    for ( i = 0; i < system->n; ++i )
        fprintf( fout, "%6d%10.4f%10.4f%10.4f\n",
                 system->my_atoms[i].orig_id, x[i], b_prm[i], b[i] );

    fclose( fout );
}


void Print_Charges( reax_system *system )
{
    int    i;
    char   fname[100];
    FILE  *fout;

    sprintf( fname, "q.%d.out", system->my_rank );
    fout = fopen( fname, "w" );

    for ( i = 0; i < system->n; ++i )
        fprintf( fout, "%6d %10.7f %10.7f %10.7f\n",
                 system->my_atoms[i].orig_id,
                 system->my_atoms[i].s[0],
                 system->my_atoms[i].t[0],
                 system->my_atoms[i].q );

    fclose( fout );
}


void Print_Bonds( reax_system *system, reax_list *bonds, char *fname )
{
    int i, j, pj;
    bond_data *pbond;
    bond_order_data *bo_ij;
    FILE *f = fopen( fname, "w" );

    for ( i = 0; i < system->N; ++i )
        for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
        {
            pbond = &(bonds->select.bond_list[pj]);
            bo_ij = &(pbond->bo_data);
            j = pbond->nbr;
            //fprintf( f, "%6d%6d%23.15e%23.15e%23.15e%23.15e%23.15e\n",
            //       system->my_atoms[i].orig_id, system->my_atoms[j].orig_id,
            //       pbond->d, bo_ij->BO, bo_ij->BO_s, bo_ij->BO_pi, bo_ij->BO_pi2 );
            fprintf( f, "%8d%8d %24.15f %24.15f\n",
                     i, j,//system->my_atoms[i].orig_id, system->my_atoms[j].orig_id,
                     pbond->d, bo_ij->BO );
        }

    fclose(f);
}


int fn_qsort_intcmp( const void *a, const void *b )
{
    return ( *(int *)a - * (int *)b );
}


void Print_Bond_List2( reax_system *system, reax_list *bonds, char *fname )
{
    int i, j, id_i, id_j, nbr, pj;
    FILE *f = fopen( fname, "w" );
    int temp[500];
    int num = 0;

    for ( i = 0; i < system->n; ++i )
    {
        num = 0;
        id_i = system->my_atoms[i].orig_id;
        fprintf( f, "%6d:", id_i);
        for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
        {
            nbr = bonds->select.bond_list[pj].nbr;
            id_j = system->my_atoms[nbr].orig_id;
            if ( id_i < id_j )
                temp[num++] = id_j;
        }

        qsort(&temp, num, sizeof(int), fn_qsort_intcmp);
        for (j = 0; j < num; j++)
            fprintf(f, "%6d", temp[j] );
        fprintf(f, "\n");
    }
}


void Print_Total_Force( reax_system *system, simulation_data *data,
                        storage *workspace )
{
    int    i;

    fprintf( stderr, "step: %d\n", data->step );
    fprintf( stderr, "%6s\t%-38s\n", "atom", "atom.f[0,1,2]");

    for ( i = 0; i < system->N; ++i )
        fprintf( stderr, "%6d %f %f %f\n",
                 //"%6d%24.15e%24.15e%24.15e\n",
                 system->my_atoms[i].orig_id,
                 workspace->f[i][0], workspace->f[i][1], workspace->f[i][2] );
}


void Output_Results( reax_system *system, control_params *control,
        simulation_data *data, reax_list **lists,
        output_controls *out_control, mpi_datatypes *mpi_data )
{
#if defined(LOG_PERFORMANCE)
    real t_elapsed, denom;
#endif

    if ((out_control->energy_update_freq > 0 &&
            data->step % out_control->energy_update_freq == 0) ||
            (out_control->write_steps > 0 &&
             data->step % out_control->write_steps == 0))
    {
        /* update system-wide energies */
        Compute_System_Energy( system, data, MPI_COMM_WORLD );

        /* output energies */
        if ( system->my_rank == MASTER_NODE &&
                out_control->energy_update_freq > 0 &&
                data->step % out_control->energy_update_freq == 0 )
        {
#if !defined(DEBUG) && !defined(DEBUG_FOCUS)
            fprintf( out_control->out,
                     "%-6d%14.2f%14.2f%14.2f%11.2f%13.2f%13.5f\n",
                     data->step, data->sys_en.e_tot, data->sys_en.e_pot,
                     E_CONV * data->sys_en.e_kin, data->therm.T,
                     system->big_box.V, data->iso_bar.P );

            fprintf( out_control->pot,
                     "%-6d%14.2f%14.2f%14.2f%14.2f%14.2f%14.2f%14.2f%14.2f%14.2f%14.2f%14.2f\n",
                     data->step,
                     data->sys_en.e_bond,
                     data->sys_en.e_ov + data->sys_en.e_un,  data->sys_en.e_lp,
                     data->sys_en.e_ang + data->sys_en.e_pen, data->sys_en.e_coa,
                     data->sys_en.e_hb,
                     data->sys_en.e_tor, data->sys_en.e_con,
                     data->sys_en.e_vdW, data->sys_en.e_ele, data->sys_en.e_pol);
#else
            fprintf( out_control->out,
                     "%-6d%24.15e%24.15e%24.15e%13.5f%16.5f%13.5f\n",
                     data->step, data->sys_en.e_tot, data->sys_en.e_pot,
                     E_CONV * data->sys_en.e_kin, data->therm.T,
                     system->big_box.V, data->iso_bar.P );

            fprintf( out_control->pot,
                     "%-6d%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e\n",
                     data->step,
                     data->sys_en.e_bond,
                     data->sys_en.e_ov + data->sys_en.e_un,  data->sys_en.e_lp,
                     data->sys_en.e_ang + data->sys_en.e_pen, data->sys_en.e_coa,
                     data->sys_en.e_hb,
                     data->sys_en.e_tor, data->sys_en.e_con,
                     data->sys_en.e_vdW, data->sys_en.e_ele, data->sys_en.e_pol);
#endif //DEBUG

#if defined(LOG_PERFORMANCE)
            t_elapsed = Get_Timing_Info( data->timing.total );
            if ( data->step - data->prev_steps > 0 )
                denom = 1.0 / out_control->energy_update_freq;
            else denom = 1;

            fprintf( out_control->log, "%6d%8.3f%8.3f%8.3f%8.3f%8.3f%8.3f%8.3f%6d\n",
                     data->step,
                     t_elapsed * denom,
                     data->timing.comm * denom,
                     data->timing.nbrs * denom,
                     data->timing.init_forces * denom,
                     data->timing.bonded * denom,
                     data->timing.nonb * denom,
                     data->timing.qEq * denom,
                     (int)((data->timing.s_matvecs + data->timing.t_matvecs)*denom) );

            Reset_Timing( &(data->timing) );
            fflush( out_control->log );
#endif //LOG_PERFORMANCE
            if ( control->virial )
            {
                fprintf( out_control->prs,
                         "%8d%13.6f%13.6f%13.6f%13.6f%13.6f%13.6f%13.6f\n",
                         data->step,
                         data->int_press[0], data->int_press[1], data->int_press[2],
                         data->ext_press[0], data->ext_press[1], data->ext_press[2],
                         data->kin_press );

                fprintf( out_control->prs,
                         "%8s%13.6f%13.6f%13.6f%13.6f%13.6f%13.6f%13.6f\n",
                         "", system->big_box.box_norms[0], system->big_box.box_norms[1],
                         system->big_box.box_norms[2],
                         data->tot_press[0], data->tot_press[1], data->tot_press[2],
                         system->big_box.V );

                fflush( out_control->prs);
            }

            fflush( out_control->out );
            fflush( out_control->pot );
        }

        /* write current frame */
        if ( out_control->write_steps > 0 &&
                (data->step - data->prev_steps) % out_control->write_steps == 0 )
        {
            Append_Frame( system, control, data, lists, out_control, mpi_data );
        }
    }

#if defined(DEBUG)
    fprintf( stderr, "output_results... done\n" );
#endif
}


#ifdef TEST_ENERGY
void Debug_Marker_Bonded( output_controls *out_control, int step )
{
    fprintf( out_control->ebond, "step: %d\n%6s%6s%12s%12s%12s\n",
             step, "atom1", "atom2", "bo", "ebond", "total" );
    fprintf( out_control->elp, "step: %d\n%6s%12s%12s%12s\n",
             step, "atom", "nlp", "elp", "total" );
    fprintf( out_control->eov, "step: %d\n%6s%12s%12s\n",
             step, "atom", "eov", "total" );
    fprintf( out_control->eun, "step: %d\n%6s%12s%12s\n",
             step, "atom", "eun", "total" );
    fprintf( out_control->eval, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
             step, "atom1", "atom2", "atom3", "angle", "theta0",
             "bo(12)", "bo(23)", "eval", "total" );
    fprintf( out_control->epen, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
             step, "atom1", "atom2", "atom3", "angle", "bo(12)", "bo(23)",
             "epen", "total" );
    fprintf( out_control->ecoa, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
             step, "atom1", "atom2", "atom3", "angle", "bo(12)", "bo(23)",
             "ecoa", "total" );
    fprintf( out_control->ehb,  "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
             step, "atom1", "atom2", "atom3", "r(23)", "angle", "bo(12)",
             "ehb", "total" );
    fprintf( out_control->etor, "step: %d\n%6s%6s%6s%6s%12s%12s%12s%12s\n",
             step, "atom1", "atom2", "atom3", "atom4", "phi", "bo(23)",
             "etor", "total" );
    fprintf( out_control->econ, "step:%d\n%6s%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
             step, "atom1", "atom2", "atom3", "atom4",
             "phi", "bo(12)", "bo(23)", "bo(34)", "econ", "total" );
}


void Debug_Marker_Nonbonded( output_controls *out_control, int step )
{
    fprintf( out_control->evdw, "step: %d\n%6s%6s%12s%12s%12s\n",
             step, "atom1", "atom2", "r12", "evdw", "total" );
    fprintf( out_control->ecou, "step: %d\n%6s%6s%12s%12s%12s%12s%12s\n",
             step, "atom1", "atom2", "r12", "q1", "q2", "ecou", "total" );
}

#endif


#ifdef TEST_FORCES
void Dummy_Printer( reax_system *system, control_params *control,
                    simulation_data *data, storage *workspace,
                    reax_list **lists, output_controls *out_control )
{
}


void Print_Bond_Orders( reax_system *system, control_params *control,
                        simulation_data *data, storage *workspace,
                        reax_list **lists, output_controls *out_control )
{
    int i, pj, pk;
    bond_order_data *bo_ij;
    dbond_data *dbo_k;
    reax_list *bonds = (*lists) + BONDS;
    reax_list *dBOs  = (*lists) + DBOS;

    /* bond orders */
    fprintf( out_control->fbo, "step: %d\n", data->step );
    fprintf( out_control->fbo, "%6s%6s%12s%12s%12s%12s%12s\n",
             "atom1", "atom2", "r_ij", "total_bo", "bo_s", "bo_p", "bo_pp" );

    for ( i = 0; i < system->N; ++i )
        for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
        {
            bo_ij = &(bonds->select.bond_list[pj].bo_data);
            fprintf( out_control->fbo,
                     "%6d%6d%24.15e%24.15e%24.15e%24.15e%24.15e\n",
                     system->my_atoms[i].orig_id,
                     system->my_atoms[bonds->select.bond_list[pj].nbr].orig_id,
                     bonds->select.bond_list[pj].d,
                     bo_ij->BO, bo_ij->BO_s, bo_ij->BO_pi, bo_ij->BO_pi2 );
        }


    /* derivatives of bond orders */
    fprintf( out_control->fdbo, "step: %d\n", data->step );
    fprintf( out_control->fdbo, "%6s%6s%6s%24s%24s%24s\n",
             "atom1", "atom2", "atom2", "dBO", "dBOpi", "dBOpi2" );
    for ( i = 0; i < system->N; ++i )
        for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
        {
            /* fprintf( out_control->fdbo, "%6d %6d\tstart: %6d\tend: %6d\n",
            system->my_atoms[i].orig_id,
             system->my_atoms[bonds->select.bond_list[pj].nbr].orig_id,
             Start_Index( pj, dBOs ), End_Index( pj, dBOs ) ); */
            for ( pk = Start_Index(pj, dBOs); pk < End_Index(pj, dBOs); ++pk )
            {
                dbo_k = &(dBOs->select.dbo_list[pk]);
                fprintf( out_control->fdbo, "%6d%6d%6d%24.15e%24.15e%24.15e\n",
                         system->my_atoms[i].orig_id,
                         system->my_atoms[bonds->select.bond_list[pj].nbr].orig_id,
                         system->my_atoms[dbo_k->wrt].orig_id,
                         dbo_k->dBO[0], dbo_k->dBO[1], dbo_k->dBO[2] );

                fprintf( out_control->fdbo, "%6d%6d%6d%24.15e%24.15e%24.15e\n",
                         system->my_atoms[i].orig_id,
                         system->my_atoms[bonds->select.bond_list[pj].nbr].orig_id,
                         system->my_atoms[dbo_k->wrt].orig_id,
                         dbo_k->dBOpi[0], dbo_k->dBOpi[1], dbo_k->dBOpi[2] );

                fprintf( out_control->fdbo, "%6d%6d%6d%24.15e%24.15e%24.15e\n",
                         system->my_atoms[i].orig_id,
                         system->my_atoms[bonds->select.bond_list[pj].nbr].orig_id,
                         system->my_atoms[dbo_k->wrt].orig_id,
                         dbo_k->dBOpi2[0], dbo_k->dBOpi2[1], dbo_k->dBOpi2[2] );
            }
        }
}


void Print_Forces( FILE *f, storage *workspace, int N, int step )
{
    int i;

    fprintf( f, "step: %d\n", step );
    for ( i = 0; i < N; ++i )
        //fprintf( f, "%6d %23.15e %23.15e %23.15e\n",
        //fprintf( f, "%6d%12.6f%12.6f%12.6f\n",
        fprintf( f, "%6d %19.9e %19.9e %19.9e\n",
                 workspace->id_all[i], workspace->f_all[i][0],
                 workspace->f_all[i][1], workspace->f_all[i][2] );
}


void Print_Force_Files( reax_system *system, control_params *control,
                        simulation_data *data, storage *workspace,
                        reax_list **lists, output_controls *out_control,
                        mpi_datatypes *mpi_data )
{
    int i, d;

    Coll_ids_at_Master( system, workspace, mpi_data );

    Print_Bond_Orders( system, control, data, workspace, lists, out_control );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_be );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->fbond, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_lp );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->flp, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_ov );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->fov, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_un );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->fun, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_ang );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->fang, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_coa );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->fcoa, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_pen );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->fpen, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_tor );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->ftor, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_con );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->fcon, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_hb );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->fhb, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_vdw );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->fvdw, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_ele );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->fele, workspace, system->bigN, data->step );

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->ftot, workspace, system->bigN, data->step );

    for ( i = 0; i < system->n; ++i )
    {
        for ( d = 0; d < 3; ++d )
            workspace->f_tot[i][d] = workspace->f_be[i][d] +
                                     workspace->f_lp[i][d] + workspace->f_ov[i][d] + workspace->f_un[i][d] +
                                     workspace->f_ang[i][d] + workspace->f_pen[i][d] + workspace->f_coa[i][d] +
                                     workspace->f_tor[i][d] + workspace->f_con[i][d] +
                                     workspace->f_vdw[i][d] + workspace->f_ele[i][d] +
                                     workspace->f_hb[i][d];
    }

    Coll_rvecs_at_Master( system, workspace, mpi_data, workspace->f_tot );
    if ( system->my_rank == MASTER_NODE )
        Print_Forces( out_control->fcomp, workspace, system->bigN, data->step );
}
#endif


#if defined(TEST_FORCES) || defined(TEST_ENERGY)
void Print_Far_Neighbors_List( reax_system *system, reax_list **lists,
        control_params *control, simulation_data *data,
        output_controls *out_control )
{
    int   i, j, id_i, id_j, nbr, natoms;
    int num = 0;
    int temp[500];
    reax_list *far_nbrs;

    far_nbrs = (*lists) + FAR_NBRS;
    fprintf( out_control->flist, "step: %d\n", data->step );
    fprintf( out_control->flist, "%6s\t%-38s\n", "atom", "Far_nbrs_list");


    natoms = system->n;
    for ( i = 0; i < natoms; ++i )
    {
        id_i = system->my_atoms[i].orig_id;
        fprintf( out_control->flist, "%6d:", id_i);
        num = 0;

        for ( j = Start_Index(i, far_nbrs); j < End_Index(i, far_nbrs); ++j )
        {
            nbr = far_nbrs->select.far_nbr_list[j].nbr;
            id_j = system->my_atoms[nbr].orig_id;
            temp[num++] = id_j;
        }

        qsort(&temp, num, sizeof(int), fn_qsort_intcmp);
        for (j = 0; j < num; j++)
            fprintf(out_control->flist, "%6d", temp[j]);
        fprintf( out_control->flist, "\n");
    }
}

void Print_Bond_List( reax_system *system, control_params *control,
        simulation_data *data, reax_list **lists,
        output_controls *out_control)
{
    int i, j, id_i, id_j, nbr, pj;
    reax_list *bonds = (*lists) + BONDS;

    int temp[500];
    int num = 0;

    fprintf( out_control->blist, "step: %d\n", data->step );
    fprintf( out_control->blist, "%6s\t%-38s\n", "atom", "Bond_list");

    /* bond list */
    for ( i = 0; i < system->n; ++i )
    {
        num = 0;
        id_i = system->my_atoms[i].orig_id;
        fprintf( out_control->blist, "%6d:", id_i);
        for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
        {
            nbr = bonds->select.bond_list[pj].nbr;
            id_j = system->my_atoms[nbr].orig_id;
            if ( id_i < id_j )
                temp[num++] = id_j;
        }

        qsort(&temp, num, sizeof(int), fn_qsort_intcmp);
        for (j = 0; j < num; j++)
            fprintf(out_control->blist, "%6d", temp[j]);
        fprintf(out_control->blist, "\n");
    }
}


#endif


#ifdef OLD_VERSION
void Print_Init_Atoms( reax_system *system, storage *workspace )
{
    int i;

    fprintf( stderr, "p%d had %d atoms\n",
             system->my_rank, workspace->init_cnt );

    for ( i = 0; i < workspace->init_cnt; ++i )
        fprintf( stderr, "p%d, atom%d: %d  %s  %8.3f %8.3f %8.3f\n",
                 system->my_rank, i,
                 workspace->init_atoms[i].type, workspace->init_atoms[i].name,
                 workspace->init_atoms[i].x[0],
                 workspace->init_atoms[i].x[1],
                 workspace->init_atoms[i].x[2] );
}
#endif //OLD_VERSION


/*void Print_Bond_Forces( reax_system *system, control_params *control,
            simulation_data *data, storage *workspace,
            reax_list **lists, output_controls *out_control )
{
  int i;

  fprintf( out_control->fbond, "step: %d\n", data->step );
  fprintf( out_control->fbond, "%6s%24s%24s%24s\n",
       "atom", "f_be[0]", "f_be[1]", "f_be[2]" );
  for( i = 0; i < system->bigN; ++i )
    fprintf(out_control->fbond, "%6d%24.15e%24.15e%24.15e\n",
        system->my_atoms[i].orig_id,
        workspace->f_all[i][0], workspace->f_all[i][1],
        workspace->f_all[i][2]);
}

void Print_LonePair_Forces( reax_system *system, control_params *control,
                simulation_data *data, storage *workspace,
                reax_list **lists, output_controls *out_control )
{
  int i;

  fprintf( out_control->flp, "step: %d\n", data->step );
  fprintf( out_control->flp, "%6s%24s\n", "atom", "f_lonepair" );

  for( i = 0; i < system->bigN; ++i )
    fprintf(out_control->flp, "%6d%24.15e%24.15e%24.15e\n",
        system->my_atoms[i].orig_id,
        workspace->f_all[i][0], workspace->f_all[i][1],
        workspace->f_all[i][2]);
}


void Print_OverCoor_Forces( reax_system *system, control_params *control,
                simulation_data *data, storage *workspace,
                reax_list **lists, output_controls *out_control )
{
  int i;

  fprintf( out_control->fov, "step: %d\n", data->step );
  fprintf( out_control->fov, "%6s%-38s%-38s%-38s\n",
       "atom","f_over[0]", "f_over[1]", "f_over[2]" );

  for( i = 0; i < system->bigN; ++i )
    fprintf( out_control->fov,
         "%6d %24.15e%24.15e%24.15e 0 0 0\n",
         system->my_atoms[i].orig_id,
         workspace->f_all[i][0], workspace->f_all[i][1],
         workspace->f_all[i][2] );
}


void Print_UnderCoor_Forces( reax_system *system, control_params *control,
                 simulation_data *data, storage *workspace,
                 reax_list **lists, output_controls *out_control )
{
  int i;

  fprintf( out_control->fun, "step: %d\n", data->step );
  fprintf( out_control->fun, "%6s%-38s%-38s%-38s\n",
       "atom","f_under[0]", "f_under[1]", "f_under[2]" );

  for( i = 0; i < system->bigN; ++i )
    fprintf( out_control->fun,
         "%6d %24.15e%24.15e%24.15e 0 0 0\n",
         system->my_atoms[i].orig_id,
         workspace->f_all[i][0], workspace->f_all[i][1],
         workspace->f_all[i][2] );
}


void Print_ValAngle_Forces( reax_system *system, control_params *control,
                simulation_data *data, storage *workspace,
                reax_list **lists, output_controls *out_control )
{
  int j;

  fprintf( out_control->f3body, "step: %d\n", data->step );
  fprintf( out_control->f3body, "%6s%-37s%-37s%-37s%-38s\n",
       "atom", "3-body total", "f_ang", "f_pen", "f_coa" );

  for( j = 0; j < system->N; ++j ){
    if( rvec_isZero(workspace->f_pen[j]) && rvec_isZero(workspace->f_coa[j]) )
      fprintf( out_control->f3body,
           "%6d %24.15e%24.15e%24.15e  0 0 0  0 0 0\n",
           system->my_atoms[j].orig_id,
           workspace->f_ang[j][0], workspace->f_ang[j][1],
           workspace->f_ang[j][2] );
    else if( rvec_isZero(workspace->f_coa[j]) )
      fprintf( out_control->f3body,
           "%6d %24.15e%24.15e%24.15e %24.15e%24.15e%24.15e "   \
           "%24.15e%24.15e%24.15e\n",
           system->my_atoms[j].orig_id,
           workspace->f_ang[j][0] + workspace->f_pen[j][0],
           workspace->f_ang[j][1] + workspace->f_pen[j][1],
           workspace->f_ang[j][2] + workspace->f_pen[j][2],
           workspace->f_ang[j][0], workspace->f_ang[j][1],
           workspace->f_ang[j][2],
           workspace->f_pen[j][0], workspace->f_pen[j][1],
           workspace->f_pen[j][2] );
    else{
      fprintf( out_control->f3body, "%6d %24.15e%24.15e%24.15e ",
         system->my_atoms[j].orig_id,
           workspace->f_ang[j][0] + workspace->f_pen[j][0] +
           workspace->f_coa[j][0],
           workspace->f_ang[j][1] + workspace->f_pen[j][1] +
           workspace->f_coa[j][1],
           workspace->f_ang[j][2] + workspace->f_pen[j][2] +
           workspace->f_coa[j][2] );

      fprintf( out_control->f3body,
           "%24.15e%24.15e%24.15e %24.15e%24.15e%24.15e "\
           "%24.15e%24.15e%24.15e\n",
           workspace->f_ang[j][0], workspace->f_ang[j][1],
           workspace->f_ang[j][2],
           workspace->f_pen[j][0], workspace->f_pen[j][1],
           workspace->f_pen[j][2],
           workspace->f_coa[j][0], workspace->f_coa[j][1],
           workspace->f_coa[j][2] );
    }
  }
}


void Print_Hydrogen_Bond_Forces( reax_system *system, control_params *control,
                 simulation_data *data, storage *workspace,
                 reax_list **lists, output_controls *out_control)
{
  int j;

  fprintf( out_control->fhb, "step: %d\n", data->step );
  fprintf( out_control->fhb, "%6s\t%-38s\n", "atom", "f_hb[0,1,2]" );

  for( j = 0; j < system->N; ++j )
    fprintf(out_control->fhb, "%6d%24.15e%24.15e%24.15e\n",
         system->my_atoms[j].orig_id,
         workspace->f_hb[j][0],
         workspace->f_hb[j][1],
         workspace->f_hb[j][2] );
}


void Print_Four_Body_Forces( reax_system *system, control_params *control,
                 simulation_data *data, storage *workspace,
                 reax_list **lists, output_controls *out_control )
{
  int j;

  fprintf( out_control->f4body, "step: %d\n", data->step );
  fprintf( out_control->f4body, "%6s\t%-38s%-38s%-38s\n",
       "atom", "4-body total", "f_tor", "f_con" );

  for( j = 0; j < system->N; ++j ){
    if( !rvec_isZero( workspace->f_con[j] ) )
      fprintf( out_control->f4body,
           "%6d %24.15e%24.15e%24.15e %24.15e%24.15e%24.15e "\
           "%24.15e%24.15e%24.15e\n",
         system->my_atoms[j].orig_id,
           workspace->f_tor[j][0] + workspace->f_con[j][0],
           workspace->f_tor[j][1] + workspace->f_con[j][1],
           workspace->f_tor[j][2] + workspace->f_con[j][2],
           workspace->f_tor[j][0], workspace->f_tor[j][1],
           workspace->f_tor[j][2],
           workspace->f_con[j][0], workspace->f_con[j][1],
           workspace->f_con[j][2] );
    else
      fprintf( out_control->f4body,
           "%6d %24.15e%24.15e%24.15e  0 0 0\n",
           system->my_atoms[j].orig_id, workspace->f_tor[j][0],
           workspace->f_tor[j][1], workspace->f_tor[j][2] );
  }

}


void Print_vdW_Coulomb_Forces( reax_system *system, control_params *control,
                   simulation_data *data, storage *workspace,
                   reax_list **lists, output_controls *out_control )
{
  int  i;

  return;

  fprintf( out_control->fnonb, "step: %d\n", data->step );
  fprintf( out_control->fnonb, "%6s\t%-38s%-38s%-38s\n",
       "atom", "nonbonded_total[0,1,2]", "f_vdw[0,1,2]", "f_ele[0,1,2]" );

  for( i = 0; i < system->N; ++i )
    fprintf( out_control->fnonb,
         "%6d%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e\n",
         system->my_atoms[i].orig_id,
         workspace->f_vdw[i][0] + workspace->f_ele[i][0],
         workspace->f_vdw[i][1] + workspace->f_ele[i][1],
         workspace->f_vdw[i][2] + workspace->f_ele[i][2],
         workspace->f_vdw[i][0],
         workspace->f_vdw[i][1],
         workspace->f_vdw[i][2],
         workspace->f_ele[i][0],
         workspace->f_ele[i][1],
         workspace->f_ele[i][2] );
}


void Print_Total_Force( reax_system *system, control_params *control,
            simulation_data *data, storage *workspace,
            reax_list **lists, output_controls *out_control )
{
  int    i;

  return;

  fprintf( out_control->ftot, "step: %d\n", data->step );
  fprintf( out_control->ftot, "%6s\t%-38s\n", "atom", "atom.f[0,1,2]");

  for( i = 0; i < system->n; ++i )
    fprintf( out_control->ftot, "%6d%24.15e%24.15e%24.15e\n",
         system->my_atoms[i].orig_id,
         system->my_atoms[i].f[0],
         system->my_atoms[i].f[1],
         system->my_atoms[i].f[2] );
}


void Compare_Total_Forces( reax_system *system, control_params *control,
               simulation_data *data, storage *workspace,
               reax_list **lists, output_controls *out_control )
{
  int i;

  return;

  fprintf( out_control->ftot2, "step: %d\n", data->step );
  fprintf( out_control->ftot2, "%6s\t%-38s%-38s\n",
       "atom", "f_total[0,1,2]", "test_force_total[0,1,2]" );

  for( i = 0; i < system->N; ++i )
    fprintf( out_control->ftot2, "%6d%24.15e%24.15e%24.15e%24.15e%24.15e%24.15e\n",
         system->my_atoms[i].orig_id,
         system->my_atoms[i].f[0],
         system->my_atoms[i].f[1],
         system->my_atoms[i].f[2],
         workspace->f_be[i][0] + workspace->f_lp[i][0] +
         workspace->f_ov[i][0] + workspace->f_un[i][0] +
         workspace->f_ang[i][0]+ workspace->f_pen[i][0]+
         workspace->f_coa[i][0]+ + workspace->f_hb[i][0] +
         workspace->f_tor[i][0] + workspace->f_con[i][0] +
         workspace->f_vdw[i][0] + workspace->f_ele[i][0],
         workspace->f_be[i][1] + workspace->f_lp[i][1] +
         workspace->f_ov[i][1] + workspace->f_un[i][1] +
             workspace->f_ang[i][1]+ workspace->f_pen[i][1]+
         workspace->f_coa[i][1]+ + workspace->f_hb[i][1] +
         workspace->f_tor[i][1] + workspace->f_con[i][1] +
         workspace->f_vdw[i][1] + workspace->f_ele[i][1],
         workspace->f_be[i][2] + workspace->f_lp[i][2] +
         workspace->f_ov[i][2] + workspace->f_un[i][2] +
             workspace->f_ang[i][2]+ workspace->f_pen[i][2] +
         workspace->f_coa[i][2]+ + workspace->f_hb[i][2] +
         workspace->f_tor[i][2] + workspace->f_con[i][2] +
         workspace->f_vdw[i][2] + workspace->f_ele[i][2] );
}*/

/*void Init_Force_Test_Functions( )
{
  Print_Interactions[0] = Print_Bond_Orders;
  Print_Interactions[1] = Print_Bond_Forces;
  Print_Interactions[2] = Print_LonePair_Forces;
  Print_Interactions[3] = Print_OverUnderCoor_Forces;
  Print_Interactions[4] = Print_Three_Body_Forces;
  Print_Interactions[5] = Print_Four_Body_Forces;
  Print_Interactions[6] = Print_Hydrogen_Bond_Forces;
  Print_Interactions[7] = Print_vdW_Coulomb_Forces;
  Print_Interactions[8] = Print_Total_Force;
  Print_Interactions[9] = Compare_Total_Forces;
  }*/