-
Kurt A. O'Hearn authored
sPuReMD: finalize corrections for pressure calculations. Change output units from GPa to ATMs. Other formatting changes.
Kurt A. O'Hearn authoredsPuReMD: finalize corrections for pressure calculations. Change output units from GPa to ATMs. Other formatting changes.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
forces.c 52.43 KiB
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "forces.h"
#include "box.h"
#include "bond_orders.h"
#include "bonds.h"
#include "charges.h"
#include "hydrogen_bonds.h"
#if defined(TEST_FORCES)
#include "io_tools.h"
#endif
#include "list.h"
#include "multi_body.h"
#include "nonbonded.h"
#include "system_props.h"
#include "torsion_angles.h"
#include "tool_box.h"
#include "valence_angles.h"
#include "vector.h"
typedef enum
{
DIAGONAL = 0,
OFF_DIAGONAL = 1,
} MATRIX_ENTRY_POSITION;
#if defined(TEST_FORCES)
static int compare_bonds( const void *p1, const void *p2 )
{
return ((bond_data *)p1)->nbr - ((bond_data *)p2)->nbr;
}
#endif
void Init_Bonded_Force_Functions( control_params *control )
{
control->intr_funcs[0] = &BO;
control->intr_funcs[1] = &Bonds;
control->intr_funcs[2] = &Atom_Energy;
control->intr_funcs[3] = &Valence_Angles;
control->intr_funcs[4] = &Torsion_Angles;
if ( control->hbond_cut > 0.0 )
{
control->intr_funcs[5] = &Hydrogen_Bonds;
}
else
{
control->intr_funcs[5] = NULL;
}
control->intr_funcs[6] = NULL;
control->intr_funcs[7] = NULL;
control->intr_funcs[8] = NULL;
control->intr_funcs[9] = NULL;
}
static void Compute_Bonded_Forces( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace, reax_list **lists,
output_controls *out_control )
{
int i;
#if defined(TEST_ENERGY)
/* Mark beginning of a new timestep in each energy file */
fprintf( out_control->ebond, "step: %d\n%6s%6s%12s%12s%12s\n",
data->step, "atom1", "atom2", "bo", "ebond", "total" );
fprintf( out_control->elp, "step: %d\n%6s%12s%12s%12s\n",
data->step, "atom", "nlp", "elp", "total" );
fprintf( out_control->eov, "step: %d\n%6s%12s%12s\n",
data->step, "atom", "eov", "total" );
fprintf( out_control->eun, "step: %d\n%6s%12s%12s\n",
data->step, "atom", "eun", "total" );
fprintf( out_control->eval, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "eval", "epen", "total" );
fprintf( out_control->epen, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "epen", "total" );
fprintf( out_control->ecoa, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "ecoa", "total" );
fprintf( out_control->ehb, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"r(23)", "angle", "bo(12)", "ehb", "total" );
fprintf( out_control->etor, "step: %d\n%6s%6s%6s%6s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3", "atom4",
"phi", "bo(23)", "etor", "total" );
fprintf( out_control->econ, "step:%d\n%6s%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3", "atom4",
"phi", "bo(12)", "bo(23)", "bo(34)", "econ", "total" );
#endif
/* function calls for bonded interactions */
for ( i = 0; i < NUM_INTRS; i++ )
{
if ( control->intr_funcs[i] != NULL )
{
(control->intr_funcs[i])( system, control, data, workspace,
lists, out_control );
}
}
#if defined(TEST_FORCES)
/* function calls for printing bonded interactions */
for ( i = 0; i < NUM_INTRS; i++ )
{
if ( control->print_intr_funcs[i] != NULL )
{
(control->print_intr_funcs[i])( system, control, data, workspace,
lists, out_control );
}
}
#endif
}
static void Compute_NonBonded_Forces( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
reax_list** lists, output_controls *out_control )
{
real t_start, t_elapsed;
#if defined(TEST_ENERGY)
fprintf( out_control->evdw, "step: %d\n%6s%6s%12s%12s%12s\n",
data->step, "atom1", "atom2", "r12", "evdw", "total" );
fprintf( out_control->ecou, "step: %d\n%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "r12", "q1", "q2", "ecou", "total" );
#endif
t_start = Get_Time( );
Compute_Charges( system, control, data, workspace, out_control );
t_elapsed = Get_Timing_Info( t_start );
data->timing.cm += t_elapsed;
if ( control->cm_solver_pre_comp_refactor == -1 )
{
if ( data->step <= 4 || is_refactoring_step( control, data ) )
{
if ( is_refactoring_step( control, data ) )
{
data->timing.cm_last_pre_comp = data->timing.cm_solver_pre_comp;
}
data->timing.cm_optimum = data->timing.cm_solver_pre_app
+ data->timing.cm_solver_spmv
+ data->timing.cm_solver_vector_ops
+ data->timing.cm_solver_orthog
+ data->timing.cm_solver_tri_solve;
data->timing.cm_total_loss = ZERO;
}
else
{
data->timing.cm_total_loss += data->timing.cm_solver_pre_app
+ data->timing.cm_solver_spmv
+ data->timing.cm_solver_vector_ops
+ data->timing.cm_solver_orthog
+ data->timing.cm_solver_tri_solve
- data->timing.cm_optimum;
}
}
if ( control->tabulate <= 0 )
{
vdW_Coulomb_Energy( system, control, data, workspace, lists, out_control );
}
else
{
Tabulated_vdW_Coulomb_Energy( system, control, data, workspace,
lists, out_control );
}
#if defined(TEST_FORCES)
Print_vdW_Coulomb_Forces( system, control, data, workspace,
lists, out_control );
#endif
}
/* This version of Compute_Total_Force computes forces from coefficients
accumulated by all interaction functions. Saves enormous time & space! */
static void Compute_Total_Force( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace, reax_list **lists )
{
int i;
reax_list *bonds;
bonds = lists[BONDS];
#if defined(_OPENMP)
#pragma omp parallel default(shared)
#endif
{
int pj;
#if defined(_OPENMP)
int j;
#endif
if ( control->compute_pressure == FALSE
&& (control->ensemble == NVE || control->ensemble == nhNVT
|| control->ensemble == bNVT) )
{
#if defined(_OPENMP)
#pragma omp for schedule(static)
#endif
for ( i = 0; i < system->N; ++i )
{
for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
{
if ( i <= bonds->bond_list[pj].nbr )
{
Add_dBond_to_Forces( i, pj, system, data, workspace, lists );
}
}
}
}
else if ( control->ensemble == sNPT || control->ensemble == iNPT
|| control->ensemble == aNPT || control->compute_pressure == TRUE )
{
#if defined(_OPENMP)
#pragma omp for schedule(static)
#endif
for ( i = 0; i < system->N; ++i )
{
for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
{
if ( i <= bonds->bond_list[pj].nbr )
{
Add_dBond_to_Forces_NPT( i, pj, system, data, workspace, lists );
}
}
}
}
#if defined(_OPENMP)
/* reduction (sum) on thread-local force vectors */
#pragma omp for schedule(static)
for ( i = 0; i < system->N; ++i )
{
for ( j = 0; j < control->num_threads; ++j )
{
rvec_Add( system->atoms[i].f, workspace->f_local[j * system->N + i] );
}
}
#endif
}
}
static void Validate_Lists( static_storage *workspace, reax_list **lists, int step, int n,
int Hmax, int Htop, int num_bonds, int num_hbonds )
{
int i, flag;
reax_list *bonds, *hbonds;
bonds = lists[BONDS];
hbonds = lists[HBONDS];
/* far neighbors */
if ( Htop > Hmax * DANGER_ZONE )
{
workspace->realloc.Htop = Htop;
if ( Htop > Hmax )
{
fprintf( stderr,
"[ERROR] step%d - ran out of space on H matrix: Htop=%d, max = %d",
step, Htop, Hmax );
exit( INSUFFICIENT_MEMORY );
}
}
/* bond list */
flag = -1;
workspace->realloc.num_bonds = num_bonds;
for ( i = 0; i < n - 1; ++i )
{
if ( End_Index(i, bonds) >= Start_Index(i + 1, bonds) - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > Start_Index(i + 1, bonds) )
{
flag = i;
}
}
}
if ( flag > -1 )
{
fprintf( stderr, "[ERROR] step%d-bondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, bonds), Start_Index(flag + 1, bonds) );
exit( INSUFFICIENT_MEMORY );
}
if ( End_Index(i, bonds) >= bonds->total_intrs - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > bonds->total_intrs )
{
fprintf( stderr, "[ERROR] step%d-bondchk failed: i=%d end(i)=%d bond_end=%d\n",
step, flag, End_Index(i, bonds), bonds->total_intrs );
exit( INSUFFICIENT_MEMORY );
}
}
/* hbonds list */
if ( workspace->num_H > 0 )
{
flag = -1;
workspace->realloc.num_hbonds = num_hbonds;
for ( i = 0; i < workspace->num_H - 1; ++i )
{
if ( Num_Entries(i, hbonds) >=
(Start_Index(i + 1, hbonds) - Start_Index(i, hbonds)) * DANGER_ZONE )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > Start_Index(i + 1, hbonds) )
{
flag = i;
}
}
}
if ( flag > -1 )
{
fprintf( stderr, "[ERROR] step%d-hbondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, hbonds), Start_Index(flag + 1, hbonds) );
exit( INSUFFICIENT_MEMORY );
}
if ( Num_Entries(i, hbonds) >=
(hbonds->total_intrs - Start_Index(i, hbonds)) * DANGER_ZONE )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > hbonds->total_intrs )
{
fprintf( stderr, "[ERROR] step%d-hbondchk failed: i=%d end(i)=%d hbondend=%d\n",
step, flag, End_Index(i, hbonds), hbonds->total_intrs );
exit( INSUFFICIENT_MEMORY );
}
}
}
}
static inline real Init_Charge_Matrix_Entry_Tab( reax_system *system,
control_params *control, LR_lookup_table **LR, int i, int j,
real r_ij, MATRIX_ENTRY_POSITION pos )
{
int r;
real base, dif, val, ret;
LR_lookup_table *t;
ret = 0.0;
switch ( control->charge_method )
{
case QEQ_CM:
//TODO: tabulate other portions of matrices for EE, ACKS2?
case EE_CM:
case ACKS2_CM:
switch ( pos )
{
case OFF_DIAGONAL:
t = &LR[MIN( system->atoms[i].type, system->atoms[j].type )]
[MAX( system->atoms[i].type, system->atoms[j].type )];
/* cubic spline interpolation */
r = (int)(r_ij * t->inv_dx);
if ( r == 0 )
{
++r;
}
base = (real)(r + 1) * t->dx;
dif = r_ij - base;
val = ((t->ele[r].d * dif + t->ele[r].c) * dif + t->ele[r].b)
* dif + t->ele[r].a;
val *= EV_to_KCALpMOL / C_ELE;
ret = ((i == j) ? 0.5 : 1.0) * val;
break;
case DIAGONAL:
ret = system->reax_param.sbp[system->atoms[i].type].eta;
break;
default:
fprintf( stderr, "[ERROR] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "[ERROR] Invalid charge method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
return ret;
}
static inline real Init_Charge_Matrix_Entry( reax_system *system,
control_params *control, static_storage *workspace,
int i, int j, real r_ij, MATRIX_ENTRY_POSITION pos )
{
real Tap, dr3gamij_1, dr3gamij_3, ret;
ret = 0.0;
switch ( control->charge_method )
{
case QEQ_CM:
case EE_CM:
case ACKS2_CM:
switch ( pos )
{
case OFF_DIAGONAL:
Tap = workspace->Tap[7] * r_ij + workspace->Tap[6];
Tap = Tap * r_ij + workspace->Tap[5];
Tap = Tap * r_ij + workspace->Tap[4];
Tap = Tap * r_ij + workspace->Tap[3];
Tap = Tap * r_ij + workspace->Tap[2];
Tap = Tap * r_ij + workspace->Tap[1];
Tap = Tap * r_ij + workspace->Tap[0];
/* shielding */
dr3gamij_1 = r_ij * r_ij * r_ij
+ POW( system->reax_param.tbp[system->atoms[i].type][system->atoms[j].type].gamma, -3.0 );
dr3gamij_3 = POW( dr3gamij_1 , 1.0 / 3.0 );
/* i == j: periodic self-interaction term
* i != j: general interaction term */
ret = ((i == j) ? 0.5 : 1.0) * Tap * EV_to_KCALpMOL / dr3gamij_3;
break;
case DIAGONAL:
ret = system->reax_param.sbp[system->atoms[i].type].eta;
break;
default:
fprintf( stderr, "[ERROR] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "[ERROR] Invalid charge method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
return ret;
}
static void Init_Charge_Matrix_Remaining_Entries( reax_system *system,
control_params *control, reax_list *far_nbr_list,
sparse_matrix * H, sparse_matrix * H_sp,
int * Htop, int * H_sp_top )
{
int i, j, pj, target, val_flag;
real d, xcut, bond_softness, * X_diag;
switch ( control->charge_method )
{
case QEQ_CM:
break;
case EE_CM:
H->start[system->N_cm - 1] = *Htop;
H_sp->start[system->N_cm - 1] = *H_sp_top;
for ( i = 0; i < system->N_cm - 1; ++i )
{
H->j[*Htop] = i;
H->val[*Htop] = 1.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = i;
H_sp->val[*H_sp_top] = 1.0;
*H_sp_top = *H_sp_top + 1;
}
H->j[*Htop] = system->N_cm - 1;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N_cm - 1;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
break;
case ACKS2_CM:
X_diag = smalloc( sizeof(real) * system->N,
"Init_Charge_Matrix_Remaining_Entries::X_diag" );
for ( i = 0; i < system->N; ++i )
{
X_diag[i] = 0.0;
}
for ( i = 0; i < system->N; ++i )
{
H->start[system->N + i] = *Htop;
H_sp->start[system->N + i] = *H_sp_top;
/* constraint on ref. value for kinetic energy potential */
H->j[*Htop] = i;
H->val[*Htop] = 1.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = i;
H_sp->val[*H_sp_top] = 1.0;
*H_sp_top = *H_sp_top + 1;
/* kinetic energy terms */
for ( pj = Start_Index(i, far_nbr_list); pj < End_Index(i, far_nbr_list); ++pj )
{
/* exclude self-periodic images of atoms for
* kinetic energy term because the effective
* potential is the same on an atom and its periodic image */
if ( far_nbr_list->far_nbr_list[pj].d <= control->nonb_cut )
{
j = far_nbr_list->far_nbr_list[pj].nbr;
xcut = 0.5 * ( system->reax_param.sbp[ system->atoms[i].type ].b_s_acks2
+ system->reax_param.sbp[ system->atoms[j].type ].b_s_acks2 );
if ( far_nbr_list->far_nbr_list[pj].d < xcut )
{
d = far_nbr_list->far_nbr_list[pj].d / xcut;
bond_softness = system->reax_param.gp.l[34] * POW( d, 3.0 )
* POW( 1.0 - d, 6.0 );
if ( bond_softness > 0.0 )
{
val_flag = FALSE;
for ( target = H->start[system->N + i]; target < *Htop; ++target )
{
if ( H->j[target] == system->N + j )
{
H->val[target] += bond_softness;
val_flag = TRUE;
break;
}
}
if ( val_flag == FALSE )
{
H->j[*Htop] = system->N + j;
H->val[*Htop] = bond_softness;
++(*Htop);
}
val_flag = FALSE;
for ( target = H_sp->start[system->N + i]; target < *H_sp_top; ++target )
{
if ( H_sp->j[target] == system->N + j )
{
H_sp->val[target] += bond_softness;
val_flag = TRUE;
break;
}
}
if ( val_flag == FALSE )
{
H_sp->j[*H_sp_top] = system->N + j;
H_sp->val[*H_sp_top] = bond_softness;
++(*H_sp_top);
}
X_diag[i] -= bond_softness;
X_diag[j] -= bond_softness;
}
}
}
}
/* placeholders for diagonal entries, to be replaced below */
H->j[*Htop] = system->N + i;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N + i;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
}
/* second to last row */
H->start[system->N_cm - 2] = *Htop;
H_sp->start[system->N_cm - 2] = *H_sp_top;
/* place accumulated diagonal entries (needed second to last row marker above before this code) */
for ( i = system->N; i < 2 * system->N; ++i )
{
for ( pj = H->start[i]; pj < H->start[i + 1]; ++pj )
{
if ( H->j[pj] == i )
{
H->val[pj] = X_diag[i - system->N];
break;
}
}
for ( pj = H_sp->start[i]; pj < H_sp->start[i + 1]; ++pj )
{
if ( H_sp->j[pj] == i )
{
H_sp->val[pj] = X_diag[i - system->N];
break;
}
}
}
/* coupling with the kinetic energy potential */
for ( i = 0; i < system->N; ++i )
{
H->j[*Htop] = system->N + i;
H->val[*Htop] = 1.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N + i;
H_sp->val[*H_sp_top] = 1.0;
*H_sp_top = *H_sp_top + 1;
}
/* explicitly store zero on diagonal */
H->j[*Htop] = system->N_cm - 2;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N_cm - 2;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
/* last row */
H->start[system->N_cm - 1] = *Htop;
H_sp->start[system->N_cm - 1] = *H_sp_top;
for ( i = 0; i < system->N; ++i )
{
H->j[*Htop] = i;
H->val[*Htop] = 1.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = i;
H_sp->val[*H_sp_top] = 1.0;
*H_sp_top = *H_sp_top + 1;
}
/* explicitly store zero on diagonal */
H->j[*Htop] = system->N_cm - 1;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N_cm - 1;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
sfree( X_diag, "Init_Charge_Matrix_Remaining_Entries::X_diag" );
break;
default:
break;
}
}
/* Generate bond list (full format), hydrogen bond list (full format),
* and charge matrix (half symmetric format)
* from the far neighbors list (with distance updates, if necessary) */
static void Init_Forces( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
reax_list **lists, output_controls *out_control )
{
int i, j, pj, target;
int start_i, end_i;
int type_i, type_j;
int Htop, H_sp_top, btop_i, btop_j, num_bonds, num_hbonds;
int ihb, jhb, ihb_top, jhb_top;
int flag, flag_sp, val_flag, renbr;
real r_ij, r2, val;
real C12, C34, C56;
real Cln_BOp_s, Cln_BOp_pi, Cln_BOp_pi2;
real BO, BO_s, BO_pi, BO_pi2;
sparse_matrix *H, *H_sp;
reax_list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
bond_data *ibond, *jbond;
bond_order_data *bo_ij, *bo_ji;
far_nbrs = lists[FAR_NBRS];
bonds = lists[BONDS];
hbonds = lists[HBONDS];
H = workspace->H;
H_sp = workspace->H_sp;
Htop = 0;
H_sp_top = 0;
num_bonds = 0;
num_hbonds = 0;
btop_i = 0;
btop_j = 0;
renbr = ((data->step - data->prev_steps) % control->reneighbor) == 0 ? TRUE : FALSE;
for ( i = 0; i < system->N; ++i )
{
atom_i = &system->atoms[i];
type_i = atom_i->type;
start_i = Start_Index( i, far_nbrs );
end_i = End_Index( i, far_nbrs );
H->start[i] = Htop;
H_sp->start[i] = H_sp_top;
btop_i = End_Index( i, bonds );
sbp_i = &system->reax_param.sbp[type_i];
if ( control->hbond_cut > 0.0 )
{
ihb = sbp_i->p_hbond;
if ( ihb == H_ATOM )
{
ihb_top = End_Index( workspace->hbond_index[i], hbonds );
}
else
{
ihb_top = -1;
}
}
else
{
ihb = NON_H_BONDING_ATOM;
ihb_top = -1;
}
for ( pj = start_i; pj < end_i; ++pj )
{
nbr_pj = &far_nbrs->far_nbr_list[pj];
j = nbr_pj->nbr;
flag = FALSE;
flag_sp = FALSE;
/* check if reneighboring step --
* atomic distances just computed via
* Verlet list, so use current distances */
if ( renbr == TRUE )
{
if ( nbr_pj->d <= control->nonb_cut )
{
flag = TRUE;
if ( nbr_pj->d <= control->nonb_sp_cut )
{
flag_sp = TRUE;
}
}
}
/* update atomic distances */
else
{
atom_j = &system->atoms[j];
nbr_pj->d = control->compute_atom_distance( &system->box,
atom_i->x, atom_j->x, atom_i->rel_map,
atom_j->rel_map, nbr_pj->rel_box,
nbr_pj->dvec );
if ( nbr_pj->d <= control->nonb_cut )
{
flag = TRUE;
if ( nbr_pj->d <= control->nonb_sp_cut )
{
flag_sp = TRUE;
}
}
}
if ( flag == TRUE )
{
type_j = system->atoms[j].type;
sbp_j = &system->reax_param.sbp[type_j];
twbp = &system->reax_param.tbp[type_i][type_j];
r_ij = nbr_pj->d;
val = Init_Charge_Matrix_Entry( system, control,
workspace, i, j, r_ij, OFF_DIAGONAL );
val_flag = FALSE;
for ( target = H->start[i]; target < Htop; ++target )
{
if ( H->j[target] == j )
{
H->val[target] += val;
val_flag = TRUE;
break;
}
}
if ( val_flag == FALSE )
{
H->j[Htop] = j;
H->val[Htop] = val;
++Htop;
}
/* H_sp matrix entry */
if ( flag_sp == TRUE )
{
val_flag = FALSE;
for ( target = H_sp->start[i]; target < H_sp_top; ++target )
{
if ( H_sp->j[target] == j )
{
H_sp->val[target] += val;
val_flag = TRUE;
break;
}
}
if ( val_flag == FALSE )
{
H_sp->j[H_sp_top] = j;
H_sp->val[H_sp_top] = val;
++H_sp_top;
}
}
/* hydrogen bond lists */
if ( control->hbond_cut > 0.0
&& (ihb == H_ATOM || ihb == H_BONDING_ATOM)
&& nbr_pj->d <= control->hbond_cut )
{
jhb = sbp_j->p_hbond;
if ( ihb == H_ATOM && jhb == H_BONDING_ATOM )
{
hbonds->hbond_list[ihb_top].nbr = j;
hbonds->hbond_list[ihb_top].scl = 1;
hbonds->hbond_list[ihb_top].ptr = nbr_pj;
++ihb_top;
++num_hbonds;
}
else if ( ihb == H_BONDING_ATOM && jhb == H_ATOM )
{
jhb_top = End_Index( workspace->hbond_index[j], hbonds );
hbonds->hbond_list[jhb_top].nbr = i;
hbonds->hbond_list[jhb_top].scl = -1;
hbonds->hbond_list[jhb_top].ptr = nbr_pj;
Set_End_Index( workspace->hbond_index[j], jhb_top + 1, hbonds );
++num_hbonds;
}
}
/* uncorrected bond orders */
if ( nbr_pj->d <= control->bond_cut )
{
r2 = SQR( r_ij );
if ( sbp_i->r_s > 0.0 && sbp_j->r_s > 0.0 )
{
C12 = twbp->p_bo1 * POW( r_ij / twbp->r_s, twbp->p_bo2 );
BO_s = (1.0 + control->bo_cut) * EXP( C12 );
}
else
{
C12 = 0.0;
BO_s = 0.0;
}
if ( sbp_i->r_pi > 0.0 && sbp_j->r_pi > 0.0 )
{
C34 = twbp->p_bo3 * POW( r_ij / twbp->r_p, twbp->p_bo4 );
BO_pi = EXP( C34 );
}
else
{
C34 = 0.0;
BO_pi = 0.0;
}
if ( sbp_i->r_pi_pi > 0.0 && sbp_j->r_pi_pi > 0.0 )
{
C56 = twbp->p_bo5 * POW( r_ij / twbp->r_pp, twbp->p_bo6 );
BO_pi2 = EXP( C56 );
}
else
{
C56 = 0.0;
BO_pi2 = 0.0;
}
/* Initially BO values are the uncorrected ones, page 1 */
BO = BO_s + BO_pi + BO_pi2;
if ( BO >= control->bo_cut )
{
num_bonds += 2;
/****** bonds i-j and j-i ******/
ibond = &bonds->bond_list[btop_i];
btop_j = End_Index( j, bonds );
jbond = &bonds->bond_list[btop_j];
ibond->nbr = j;
jbond->nbr = i;
ibond->d = r_ij;
jbond->d = r_ij;
rvec_Copy( ibond->dvec, nbr_pj->dvec );
rvec_Scale( jbond->dvec, -1, nbr_pj->dvec );
ivec_Copy( ibond->rel_box, nbr_pj->rel_box );
ivec_Scale( jbond->rel_box, -1, nbr_pj->rel_box );
ibond->dbond_index = btop_i;
jbond->dbond_index = btop_i;
ibond->sym_index = btop_j;
jbond->sym_index = btop_i;
++btop_i;
Set_End_Index( j, btop_j + 1, bonds );
bo_ij = &ibond->bo_data;
bo_ij->BO = BO;
bo_ij->BO_s = BO_s;
bo_ij->BO_pi = BO_pi;
bo_ij->BO_pi2 = BO_pi2;
bo_ji = &jbond->bo_data;
bo_ji->BO = BO;
bo_ji->BO_s = BO_s;
bo_ji->BO_pi = BO_pi;
bo_ji->BO_pi2 = BO_pi2;
/* Bond Order page2-3, derivative of total bond order prime */
Cln_BOp_s = twbp->p_bo2 * C12 / r2;
Cln_BOp_pi = twbp->p_bo4 * C34 / r2;
Cln_BOp_pi2 = twbp->p_bo6 * C56 / r2;
/* Only dln_BOp_xx wrt. dr_i is stored here, note that
dln_BOp_xx/dr_i = -dln_BOp_xx/dr_j and all others are 0 */
rvec_Scale( bo_ij->dln_BOp_s, -bo_ij->BO_s * Cln_BOp_s, ibond->dvec );
rvec_Scale( bo_ij->dln_BOp_pi, -bo_ij->BO_pi * Cln_BOp_pi, ibond->dvec );
rvec_Scale( bo_ij->dln_BOp_pi2,
-bo_ij->BO_pi2 * Cln_BOp_pi2, ibond->dvec );
rvec_Scale( bo_ji->dln_BOp_s, -1., bo_ij->dln_BOp_s );
rvec_Scale( bo_ji->dln_BOp_pi, -1., bo_ij->dln_BOp_pi );
rvec_Scale( bo_ji->dln_BOp_pi2, -1., bo_ij->dln_BOp_pi2 );
/* Only dBOp wrt. dr_i is stored here, note that
dBOp/dr_i = -dBOp/dr_j and all others are 0 */
rvec_Scale( bo_ij->dBOp, -(bo_ij->BO_s * Cln_BOp_s
+ bo_ij->BO_pi * Cln_BOp_pi
+ bo_ij->BO_pi2 * Cln_BOp_pi2), ibond->dvec );
rvec_Scale( bo_ji->dBOp, -1., bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[i], bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[j], bo_ji->dBOp );
bo_ij->BO_s -= control->bo_cut;
bo_ij->BO -= control->bo_cut;
bo_ji->BO_s -= control->bo_cut;
bo_ji->BO -= control->bo_cut;
workspace->total_bond_order[i] += bo_ij->BO;
workspace->total_bond_order[j] += bo_ji->BO;
bo_ij->Cdbo = 0.0;
bo_ij->Cdbopi = 0.0;
bo_ij->Cdbopi2 = 0.0;
bo_ji->Cdbo = 0.0;
bo_ji->Cdbopi = 0.0;
bo_ji->Cdbopi2 = 0.0;
Set_End_Index( j, btop_j + 1, bonds );
}
}
}
}
/* diagonal entry */
H->j[Htop] = i;
H->val[Htop] = Init_Charge_Matrix_Entry( system, control,
workspace, i, i, r_ij, DIAGONAL );
++Htop;
H_sp->j[H_sp_top] = i;
H_sp->val[H_sp_top] = H->val[Htop - 1];
++H_sp_top;
Set_End_Index( i, btop_i, bonds );
if ( ihb == H_ATOM )
{
Set_End_Index( workspace->hbond_index[i], ihb_top, hbonds );
}
}
Init_Charge_Matrix_Remaining_Entries( system, control, far_nbrs,
H, H_sp, &Htop, &H_sp_top );
H->start[system->N_cm] = Htop;
H_sp->start[system->N_cm] = H_sp_top;
/* validate lists - decide if reallocation is required! */
Validate_Lists( workspace, lists,
data->step, system->N, H->m, Htop, num_bonds, num_hbonds );
#if defined(TEST_FORCES)
/* Calculate_dBO requires a sorted bonds list */
// for ( i = 0; i < bonds->n; ++i )
// {
// if ( Num_Entries(i, bonds) > 0 )
// {
// qsort( &bonds->bond_list[Start_Index(i, bonds)],
// Num_Entries(i, bonds), sizeof(bond_data), compare_bonds );
// }
// }
#endif
#if defined(DEBUG_FOCUS)
fprintf( stderr, "step%d: Htop = %d, num_bonds = %d, num_hbonds = %d\n",
data->step, Htop, num_bonds, num_hbonds );
#endif
}
static void Init_Forces_Tab( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
reax_list **lists, output_controls *out_control )
{
int i, j, pj, target;
int start_i, end_i;
int type_i, type_j;
int Htop, H_sp_top, btop_i, btop_j, num_bonds, num_hbonds;
int ihb, jhb, ihb_top, jhb_top;
int flag, flag_sp, val_flag, renbr;
real r_ij, r2, val;
real C12, C34, C56;
real Cln_BOp_s, Cln_BOp_pi, Cln_BOp_pi2;
real BO, BO_s, BO_pi, BO_pi2;
sparse_matrix *H, *H_sp;
reax_list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
bond_data *ibond, *jbond;
bond_order_data *bo_ij, *bo_ji;
far_nbrs = lists[FAR_NBRS];
bonds = lists[BONDS];
hbonds = lists[HBONDS];
H = workspace->H;
H_sp = workspace->H_sp;
Htop = 0;
H_sp_top = 0;
num_bonds = 0;
num_hbonds = 0;
btop_i = 0;
btop_j = 0;
renbr = ((data->step - data->prev_steps) % control->reneighbor) == 0 ? TRUE : FALSE;
for ( i = 0; i < system->N; ++i )
{
atom_i = &system->atoms[i];
type_i = atom_i->type;
start_i = Start_Index( i, far_nbrs );
end_i = End_Index( i, far_nbrs );
H->start[i] = Htop;
H_sp->start[i] = H_sp_top;
btop_i = End_Index( i, bonds );
sbp_i = &system->reax_param.sbp[type_i];
if ( control->hbond_cut > 0.0 )
{
ihb = sbp_i->p_hbond;
if ( ihb == H_ATOM )
{
ihb_top = End_Index( workspace->hbond_index[i], hbonds );
}
else
{
ihb_top = -1;
}
}
else
{
ihb = NON_H_BONDING_ATOM;
ihb_top = -1;
}
/* update i-j distance - check if j is within cutoff */
for ( pj = start_i; pj < end_i; ++pj )
{
nbr_pj = &far_nbrs->far_nbr_list[pj];
j = nbr_pj->nbr;
flag = FALSE;
flag_sp = FALSE;
/* check if reneighboring step --
* atomic distances just computed via
* Verlet list, so use current distances */
if ( renbr == TRUE )
{
if ( nbr_pj->d <= control->nonb_cut )
{
flag = TRUE;
if ( nbr_pj->d <= control->nonb_sp_cut )
{
flag_sp = TRUE;
}
}
}
/* update atomic distances */
else
{
atom_j = &system->atoms[j];
nbr_pj->d = control->compute_atom_distance( &system->box,
atom_i->x, atom_j->x, atom_i->rel_map,
atom_j->rel_map, nbr_pj->rel_box,
nbr_pj->dvec );
if ( nbr_pj->d <= control->nonb_cut )
{
flag = TRUE;
if ( nbr_pj->d <= control->nonb_sp_cut )
{
flag_sp = TRUE;
}
}
}
if ( flag == TRUE )
{
type_j = system->atoms[j].type;
sbp_j = &system->reax_param.sbp[type_j];
twbp = &system->reax_param.tbp[type_i][type_j];
r_ij = nbr_pj->d;
val = Init_Charge_Matrix_Entry( system, control,
workspace, i, j, r_ij, OFF_DIAGONAL );
val_flag = FALSE;
for ( target = H->start[i]; target < Htop; ++target )
{
if ( H->j[target] == j )
{
H->val[target] += val;
val_flag = TRUE;
break;
}
}
if ( val_flag == FALSE )
{
H->j[Htop] = j;
H->val[Htop] = val;
++Htop;
}
/* H_sp matrix entry */
if ( flag_sp == TRUE )
{
val_flag = FALSE;
for ( target = H_sp->start[i]; target < H_sp_top; ++target )
{
if ( H_sp->j[target] == j )
{
H_sp->val[target] += val;
val_flag = TRUE;
break;
}
}
if ( val_flag == FALSE )
{
H_sp->j[H_sp_top] = j;
H_sp->val[H_sp_top] = val;
++H_sp_top;
}
}
/* hydrogen bond lists */
if ( control->hbond_cut > 0
&&(ihb == H_ATOM || ihb == H_BONDING_ATOM)
&& nbr_pj->d <= control->hbond_cut )
{
jhb = sbp_j->p_hbond;
if ( ihb == H_ATOM && jhb == H_BONDING_ATOM )
{
hbonds->hbond_list[ihb_top].nbr = j;
hbonds->hbond_list[ihb_top].scl = 1;
hbonds->hbond_list[ihb_top].ptr = nbr_pj;
++ihb_top;
++num_hbonds;
}
else if ( ihb == H_BONDING_ATOM && jhb == H_ATOM )
{
jhb_top = End_Index( workspace->hbond_index[j], hbonds );
hbonds->hbond_list[jhb_top].nbr = i;
hbonds->hbond_list[jhb_top].scl = -1;
hbonds->hbond_list[jhb_top].ptr = nbr_pj;
Set_End_Index( workspace->hbond_index[j], jhb_top + 1, hbonds );
++num_hbonds;
}
}
/* uncorrected bond orders */
if ( nbr_pj->d <= control->bond_cut )
{
r2 = SQR( r_ij );
if ( sbp_i->r_s > 0.0 && sbp_j->r_s > 0.0 )
{
C12 = twbp->p_bo1 * POW( r_ij / twbp->r_s, twbp->p_bo2 );
BO_s = (1.0 + control->bo_cut) * EXP( C12 );
}
else
{
C12 = 0.0;
BO_s = 0.0;
}
if ( sbp_i->r_pi > 0.0 && sbp_j->r_pi > 0.0 )
{
C34 = twbp->p_bo3 * POW( r_ij / twbp->r_p, twbp->p_bo4 );
BO_pi = EXP( C34 );
}
else
{
C34 = 0.0;
BO_pi = 0.0;
}
if ( sbp_i->r_pi_pi > 0.0 && sbp_j->r_pi_pi > 0.0 )
{
C56 = twbp->p_bo5 * POW( r_ij / twbp->r_pp, twbp->p_bo6 );
BO_pi2 = EXP( C56 );
}
else
{
C56 = 0.0;
BO_pi2 = 0.0;
}
/* Initially BO values are the uncorrected ones, page 1 */
BO = BO_s + BO_pi + BO_pi2;
if ( BO >= control->bo_cut )
{
num_bonds += 2;
/****** bonds i-j and j-i ******/
ibond = &bonds->bond_list[btop_i];
btop_j = End_Index( j, bonds );
jbond = &bonds->bond_list[btop_j];
ibond->nbr = j;
jbond->nbr = i;
ibond->d = r_ij;
jbond->d = r_ij;
rvec_Copy( ibond->dvec, nbr_pj->dvec );
rvec_Scale( jbond->dvec, -1, nbr_pj->dvec );
ivec_Copy( ibond->rel_box, nbr_pj->rel_box );
ivec_Scale( jbond->rel_box, -1, nbr_pj->rel_box );
ibond->dbond_index = btop_i;
jbond->dbond_index = btop_i;
ibond->sym_index = btop_j;
jbond->sym_index = btop_i;
++btop_i;
Set_End_Index( j, btop_j + 1, bonds );
bo_ij = &ibond->bo_data;
bo_ij->BO = BO;
bo_ij->BO_s = BO_s;
bo_ij->BO_pi = BO_pi;
bo_ij->BO_pi2 = BO_pi2;
bo_ji = &jbond->bo_data;
bo_ji->BO = BO;
bo_ji->BO_s = BO_s;
bo_ji->BO_pi = BO_pi;
bo_ji->BO_pi2 = BO_pi2;
/* Bond Order page2-3, derivative of total bond order prime */
Cln_BOp_s = twbp->p_bo2 * C12 / r2;
Cln_BOp_pi = twbp->p_bo4 * C34 / r2;
Cln_BOp_pi2 = twbp->p_bo6 * C56 / r2;
/* Only dln_BOp_xx wrt. dr_i is stored here, note that
dln_BOp_xx/dr_i = -dln_BOp_xx/dr_j and all others are 0 */
rvec_Scale( bo_ij->dln_BOp_s, -bo_ij->BO_s * Cln_BOp_s, ibond->dvec );
rvec_Scale( bo_ij->dln_BOp_pi, -bo_ij->BO_pi * Cln_BOp_pi, ibond->dvec );
rvec_Scale( bo_ij->dln_BOp_pi2,
-bo_ij->BO_pi2 * Cln_BOp_pi2, ibond->dvec );
rvec_Scale( bo_ji->dln_BOp_s, -1., bo_ij->dln_BOp_s );
rvec_Scale( bo_ji->dln_BOp_pi, -1., bo_ij->dln_BOp_pi );
rvec_Scale( bo_ji->dln_BOp_pi2, -1., bo_ij->dln_BOp_pi2 );
/* Only dBOp wrt. dr_i is stored here, note that
dBOp/dr_i = -dBOp/dr_j and all others are 0 */
rvec_Scale( bo_ij->dBOp, -(bo_ij->BO_s * Cln_BOp_s
+ bo_ij->BO_pi * Cln_BOp_pi
+ bo_ij->BO_pi2 * Cln_BOp_pi2), ibond->dvec );
rvec_Scale( bo_ji->dBOp, -1., bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[i], bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[j], bo_ji->dBOp );
bo_ij->BO_s -= control->bo_cut;
bo_ij->BO -= control->bo_cut;
bo_ji->BO_s -= control->bo_cut;
bo_ji->BO -= control->bo_cut;
workspace->total_bond_order[i] += bo_ij->BO;
workspace->total_bond_order[j] += bo_ji->BO;
bo_ij->Cdbo = 0.0;
bo_ij->Cdbopi = 0.0;
bo_ij->Cdbopi2 = 0.0;
bo_ji->Cdbo = 0.0;
bo_ji->Cdbopi = 0.0;
bo_ji->Cdbopi2 = 0.0;
Set_End_Index( j, btop_j + 1, bonds );
}
}
}
}
/* diagonal entry */
H->j[Htop] = i;
H->val[Htop] = Init_Charge_Matrix_Entry( system, control,
workspace, i, i, r_ij, DIAGONAL );
++Htop;
H_sp->j[H_sp_top] = i;
H_sp->val[H_sp_top] = H->val[Htop - 1];
++H_sp_top;
Set_End_Index( i, btop_i, bonds );
if ( ihb == H_ATOM )
{
Set_End_Index( workspace->hbond_index[i], ihb_top, hbonds );
}
}
Init_Charge_Matrix_Remaining_Entries( system, control, far_nbrs,
H, H_sp, &Htop, &H_sp_top );
H->start[system->N_cm] = Htop;
H_sp->start[system->N_cm] = H_sp_top;
/* validate lists - decide if reallocation is required! */
Validate_Lists( workspace, lists,
data->step, system->N, H->m, Htop, num_bonds, num_hbonds );
#if defined(DEBUG_FOCUS)
fprintf( stderr, "step%d: Htop = %d, num_bonds = %d, num_hbonds = %d\n",
data->step, Htop, num_bonds, num_hbonds );
//Print_Bonds( system, bonds, "sbonds.out" );
//Print_Bond_List2( system, bonds, "sbonds.out" );
//Print_Sparse_Matrix2( H, "H.out", NULL );
#endif
}
void Estimate_Storage_Sizes( reax_system *system, control_params *control,
reax_list **lists, int *Htop, int *hb_top, int *bond_top, int *num_3body )
{
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int ihb, jhb;
real r_ij;
real C12, C34, C56;
real BO, BO_s, BO_pi, BO_pi2;
reax_list *far_nbrs;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
far_nbrs = lists[FAR_NBRS];
for ( i = 0; i < system->N; ++i )
{
atom_i = &system->atoms[i];
type_i = atom_i->type;
start_i = Start_Index( i, far_nbrs );
end_i = End_Index( i, far_nbrs );
sbp_i = &system->reax_param.sbp[type_i];
ihb = sbp_i->p_hbond;
/* update i-j distance - check if j is within cutoff */
for ( pj = start_i; pj < end_i; ++pj )
{
nbr_pj = &far_nbrs->far_nbr_list[pj];
if ( nbr_pj->d <= control->nonb_cut )
{
j = nbr_pj->nbr;
atom_j = &system->atoms[j];
type_j = atom_j->type;
sbp_j = &system->reax_param.sbp[type_j];
twbp = &system->reax_param.tbp[type_i][type_j];
++(*Htop);
/* hydrogen bond lists */
if ( control->hbond_cut > 0.0
&& (ihb == H_ATOM || ihb == H_BONDING_ATOM)
&& nbr_pj->d <= control->hbond_cut )
{
jhb = sbp_j->p_hbond;
if ( ihb == H_ATOM && jhb == H_BONDING_ATOM )
{
++hb_top[i];
}
else if ( ihb == H_BONDING_ATOM && jhb == H_ATOM )
{
++hb_top[j];
}
}
/* uncorrected bond orders */
if ( nbr_pj->d <= control->bond_cut )
{
r_ij = nbr_pj->d;
if ( sbp_i->r_s > 0.0 && sbp_j->r_s > 0.0 )
{
C12 = twbp->p_bo1 * POW( r_ij / twbp->r_s, twbp->p_bo2 );
BO_s = (1.0 + control->bo_cut) * EXP( C12 );
}
else
{
C12 = 0.0;
BO_s = 0.0;
}
if ( sbp_i->r_pi > 0.0 && sbp_j->r_pi > 0.0 )
{
C34 = twbp->p_bo3 * POW( r_ij / twbp->r_p, twbp->p_bo4 );
BO_pi = EXP( C34 );
}
else
{
C34 = 0.0;
BO_pi = 0.0;
}
if ( sbp_i->r_pi_pi > 0.0 && sbp_j->r_pi_pi > 0.0 )
{
C56 = twbp->p_bo5 * POW( r_ij / twbp->r_pp, twbp->p_bo6 );
BO_pi2 = EXP( C56 );
}
else
{
C56 = 0.0;
BO_pi2 = 0.0;
}
/* Initially BO values are the uncorrected ones, page 1 */
BO = BO_s + BO_pi + BO_pi2;
if ( BO >= control->bo_cut )
{
++bond_top[i];
++bond_top[j];
}
}
}
}
}
*Htop += system->N;
*Htop *= SAFE_ZONE;
for ( i = 0; i < system->N; ++i )
{
hb_top[i] = MAX( hb_top[i] * SAFE_HBONDS, MIN_HBONDS );
*num_3body += SQR( bond_top[i] );
bond_top[i] = MAX( bond_top[i] * 2, MIN_BONDS );
}
*num_3body *= SAFE_ZONE;
}
void Compute_Forces( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
reax_list** lists, output_controls *out_control )
{
real t_start, t_elapsed;
t_start = Get_Time( );
if ( control->tabulate <= 0 )
{
Init_Forces( system, control, data, workspace, lists, out_control );
}
else
{
Init_Forces_Tab( system, control, data, workspace, lists, out_control );
}
t_elapsed = Get_Timing_Info( t_start );
data->timing.init_forces += t_elapsed;
t_start = Get_Time( );
Compute_Bonded_Forces( system, control, data, workspace, lists, out_control );
t_elapsed = Get_Timing_Info( t_start );
data->timing.bonded += t_elapsed;
t_start = Get_Time( );
Compute_NonBonded_Forces( system, control, data, workspace,
lists, out_control );
t_elapsed = Get_Timing_Info( t_start );
data->timing.nonb += t_elapsed;
Compute_Total_Force( system, control, data, workspace, lists );
#if defined(DEBUG_FOCUS)
//Print_Total_Force( system, control, data, workspace, lists, out_control );
#endif
#if defined(TEST_FORCES)
Print_Total_Force( system, control, data, workspace, lists, out_control );
Compare_Total_Forces( system, control, data, workspace, lists, out_control );
#endif
}