-
Kurt A. O'Hearn authoredKurt A. O'Hearn authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
lookup.c 15.83 KiB
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "reax_types.h"
#if defined(PURE_REAX)
#include "lookup.h"
#include "nonbonded.h"
#include "tool_box.h"
#elif defined(LAMMPS_REAX)
#include "reax_lookup.h"
#include "reax_nonbonded.h"
#include "reax_tool_box.h"
#endif
#include "index_utils.h"
#ifdef HAVE_CUDA
#include "cuda/cuda_lookup.h"
#endif
/* Fills solution into x. Warning: will modify c and d! */
void Tridiagonal_Solve( const real *a, const real *b,
real *c, real *d, real *x, unsigned int n )
{
int i;
real id;
/* Modify the coefficients. */
c[0] /= b[0]; /* Division by zero risk. */
d[0] /= b[0]; /* Division by zero would imply a singular matrix. */
for (i = 1; i < n; i++)
{
id = (b[i] - c[i - 1] * a[i]); /* Division by zero risk. */
c[i] /= id; /* Last value calculated is redundant. */
d[i] = (d[i] - d[i - 1] * a[i]) / id;
}
/* Now back substitute. */
x[n - 1] = d[n - 1];
for (i = n - 2; i >= 0; i--)
x[i] = d[i] - c[i] * x[i + 1];
}
void Natural_Cubic_Spline( const real *h, const real *f,
cubic_spline_coef *coef, unsigned int n )
{
int i;
real *a, *b, *c, *d, *v;
/* allocate space for the linear system */
a = (real*) smalloc( n * sizeof(real), "cubic_spline:a" );
b = (real*) smalloc( n * sizeof(real), "cubic_spline:b" );
c = (real*) smalloc( n * sizeof(real), "cubic_spline:c" );
d = (real*) smalloc( n * sizeof(real), "cubic_spline:d" );
v = (real*) smalloc( n * sizeof(real), "cubic_spline:v" );
/* build the linear system */
a[0] = a[1] = a[n - 1] = 0;
for ( i = 2; i < n - 1; ++i )
a[i] = h[i - 1];
b[0] = b[n - 1] = 0;
for ( i = 1; i < n - 1; ++i )
b[i] = 2 * (h[i - 1] + h[i]);
c[0] = c[n - 2] = c[n - 1] = 0;
for ( i = 1; i < n - 2; ++i )
c[i] = h[i];
d[0] = d[n - 1] = 0;
for ( i = 1; i < n - 1; ++i )
d[i] = 6 * ((f[i + 1] - f[i]) / h[i] - (f[i] - f[i - 1]) / h[i - 1]);
v[0] = 0;
v[n - 1] = 0;
Tridiagonal_Solve( &(a[1]), &(b[1]), &(c[1]), &(d[1]), &(v[1]), n - 2 );
for ( i = 1; i < n; ++i )
{
coef[i - 1].d = (v[i] - v[i - 1]) / (6 * h[i - 1]);
coef[i - 1].c = v[i] / 2;
coef[i - 1].b = (f[i] - f[i - 1]) / h[i - 1] + h[i - 1] * (2 * v[i] + v[i - 1]) / 6;
coef[i - 1].a = f[i];
}
sfree( a, "cubic_spline:a" );
sfree( b, "cubic_spline:b" );
sfree( c, "cubic_spline:c" );
sfree( d, "cubic_spline:d" );
sfree( v, "cubic_spline:v" );
}
void Complete_Cubic_Spline( const real *h, const real *f, real v0, real vlast,
cubic_spline_coef *coef, unsigned int n )
{
int i;
real *a, *b, *c, *d, *v;
/* allocate space for the linear system */
a = (real*) smalloc( n * sizeof(real), "cubic_spline:a" );
b = (real*) smalloc( n * sizeof(real), "cubic_spline:b" );
c = (real*) smalloc( n * sizeof(real), "cubic_spline:c" );
d = (real*) smalloc( n * sizeof(real), "cubic_spline:d" );
v = (real*) smalloc( n * sizeof(real), "cubic_spline:v" );
/* build the linear system */
a[0] = 0;
for ( i = 1; i < n; ++i )
{
a[i] = h[i - 1];
}
b[0] = 2 * h[0];
for ( i = 1; i < n; ++i )
{
b[i] = 2 * (h[i - 1] + h[i]);
}
c[n - 1] = 0;
for ( i = 0; i < n - 1; ++i )
{
c[i] = h[i];
}
d[0] = 6 * (f[1] - f[0]) / h[0] - 6 * v0;
d[n - 1] = 6 * vlast - 6 * (f[n - 1] - f[n - 2] / h[n - 2]);
for ( i = 1; i < n - 1; ++i )
{
d[i] = 6 * ((f[i + 1] - f[i]) / h[i] - (f[i] - f[i - 1]) / h[i - 1]);
}
Tridiagonal_Solve( &(a[0]), &(b[0]), &(c[0]), &(d[0]), &(v[0]), n );
for ( i = 1; i < n; ++i )
{
coef[i - 1].d = (v[i] - v[i - 1]) / (6 * h[i - 1]);
coef[i - 1].c = v[i] / 2;
coef[i - 1].b = (f[i] - f[i - 1]) / h[i - 1] + h[i - 1] * (2 * v[i] + v[i - 1]) / 6;
coef[i - 1].a = f[i];
}
sfree( a, "cubic_spline:a" );
sfree( b, "cubic_spline:b" );
sfree( c, "cubic_spline:c" );
sfree( d, "cubic_spline:d" );
sfree( v, "cubic_spline:v" );
}
void LR_Lookup( LR_lookup_table *t, real r, LR_data *y )
{
int i;
real base, dif;
i = (int)(r * t->inv_dx);
if ( i == 0 ) ++i;
base = (real)(i + 1) * t->dx;
dif = r - base;
y->e_vdW = ((t->vdW[i].d * dif + t->vdW[i].c) * dif + t->vdW[i].b) * dif +
t->vdW[i].a;
y->CEvd = ((t->CEvd[i].d * dif + t->CEvd[i].c) * dif +
t->CEvd[i].b) * dif + t->CEvd[i].a;
y->e_ele = ((t->ele[i].d * dif + t->ele[i].c) * dif + t->ele[i].b) * dif +
t->ele[i].a;
y->CEclmb = ((t->CEclmb[i].d * dif + t->CEclmb[i].c) * dif + t->CEclmb[i].b) * dif +
t->CEclmb[i].a;
y->H = y->e_ele * EV_to_KCALpMOL / C_ele;
}
int Init_Lookup_Tables( reax_system *system, control_params *control,
real *Tap, mpi_datatypes *mpi_data, char *msg )
{
int i, j, r;
int num_atom_types;
int existing_types[MAX_ATOM_TYPES], aggregated[MAX_ATOM_TYPES];
real dr;
real *h, *fh, *fvdw, *fele, *fCEvd, *fCEclmb;
real v0_vdw, v0_ele, vlast_vdw, vlast_ele;
real t_start, t_end;
/* initializations */
v0_vdw = 0;
v0_ele = 0;
vlast_vdw = 0;
vlast_ele = 0;
num_atom_types = system->reax_param.num_atom_types;
dr = control->nonb_cut / control->tabulate;
h = (real*) smalloc( (control->tabulate + 1) * sizeof(real), "lookup:h" );
fh = (real*) smalloc( (control->tabulate + 1) * sizeof(real), "lookup:fh" );
fvdw = (real*) smalloc( (control->tabulate + 1) * sizeof(real), "lookup:fvdw" );
fCEvd = (real*) smalloc((control->tabulate + 1) * sizeof(real), "lookup:fCEvd");
fele = (real*) smalloc( (control->tabulate + 1) * sizeof(real), "lookup:fele" );
fCEclmb = (real*) smalloc( (control->tabulate + 1) * sizeof(real),
"lookup:fCEclmb" );
/* allocate Long-Range LookUp Table space based on
number of atom types in the ffield file */
LR = (LR_lookup_table*) smalloc(
num_atom_types * num_atom_types * sizeof(LR_lookup_table),
"Init_Lookup_Tables::LR" );
/* most atom types in ffield file will not exist in the current
simulation. to avoid unnecessary lookup table space, determine
the atom types that exist in the current simulation */
for ( i = 0; i < MAX_ATOM_TYPES; ++i )
{
existing_types[i] = 0;
}
for ( i = 0; i < system->n; ++i )
{
existing_types[ system->my_atoms[i].type ] = 1;
}
MPI_Allreduce( existing_types, aggregated, MAX_ATOM_TYPES,
MPI_INT, MPI_SUM, mpi_data->world );
/* fill in the lookup table entries for existing atom types.
only lower half should be enough. */
for ( i = 0; i < num_atom_types; ++i )
{
if ( aggregated[i] )
{
for ( j = i; j < num_atom_types; ++j )
{
if ( aggregated[j] )
{
LR[ index_lr(i, j, num_atom_types) ].xmin = 0;
LR[ index_lr(i, j, num_atom_types) ].xmax = control->nonb_cut;
LR[ index_lr(i, j, num_atom_types) ].n = control->tabulate + 1;
LR[ index_lr(i, j, num_atom_types) ].dx = dr;
LR[ index_lr(i, j, num_atom_types) ].inv_dx = control->tabulate / control->nonb_cut;
LR[ index_lr(i, j, num_atom_types) ].y = (LR_data*)
smalloc(LR[ index_lr(i, j, num_atom_types) ].n * sizeof(LR_data), "lookup:LR[i,j].y");
LR[ index_lr(i, j, num_atom_types) ].H = (cubic_spline_coef*)
smalloc(LR[ index_lr(i, j, num_atom_types) ].n * sizeof(cubic_spline_coef), "lookup:LR[i,j].H");
LR[ index_lr(i, j, num_atom_types) ].vdW = (cubic_spline_coef*)
smalloc(LR[ index_lr(i, j, num_atom_types) ].n * sizeof(cubic_spline_coef), "lookup:LR[i,j].vdW");
LR[ index_lr(i, j, num_atom_types) ].CEvd = (cubic_spline_coef*)
smalloc(LR[ index_lr(i, j, num_atom_types) ].n * sizeof(cubic_spline_coef), "lookup:LR[i,j].CEvd");
LR[ index_lr(i, j, num_atom_types) ].ele = (cubic_spline_coef*)
smalloc(LR[ index_lr(i, j, num_atom_types) ].n * sizeof(cubic_spline_coef), "lookup:LR[i,j].ele");
LR[ index_lr(i, j, num_atom_types) ].CEclmb = (cubic_spline_coef*)
smalloc(LR[ index_lr(i, j, num_atom_types) ].n * sizeof(cubic_spline_coef), "lookup:LR[i,j].CEclmb");
for ( r = 1; r <= control->tabulate; ++r )
{
LR_vdW_Coulomb( system, Tap, i, j, r * dr, &(LR[ index_lr (i, j, num_atom_types) ].y[r]) );
h[r] = LR[ index_lr (i, j, num_atom_types) ].dx;
fh[r] = LR[ index_lr (i, j, num_atom_types) ].y[r].H;
fvdw[r] = LR[ index_lr (i, j, num_atom_types) ].y[r].e_vdW;
fCEvd[r] = LR[ index_lr (i, j, num_atom_types) ].y[r].CEvd;
fele[r] = LR[ index_lr (i, j, num_atom_types) ].y[r].e_ele;
fCEclmb[r] = LR[ index_lr (i, j, num_atom_types) ].y[r].CEclmb;
if ( r == 1 )
{
v0_vdw = LR[ index_lr (i, j, num_atom_types) ].y[r].CEvd;
v0_ele = LR[ index_lr (i, j, num_atom_types) ].y[r].CEclmb;
}
else if ( r == control->tabulate )
{
vlast_vdw = LR[ index_lr (i, j, num_atom_types) ].y[r].CEvd;
vlast_ele = LR[ index_lr (i, j, num_atom_types) ].y[r].CEclmb;
}
}
Natural_Cubic_Spline( &h[1], &fh[1],
&(LR[ index_lr (i, j, num_atom_types) ].H[1]), control->tabulate + 1 );
Complete_Cubic_Spline( &h[1], &fvdw[1], v0_vdw, vlast_vdw,
&(LR[ index_lr (i, j, num_atom_types) ].vdW[1]), control->tabulate + 1 );
Natural_Cubic_Spline( &h[1], &fCEvd[1],
&(LR[ index_lr (i, j, num_atom_types) ].CEvd[1]), control->tabulate + 1 );
Complete_Cubic_Spline( &h[1], &fele[1], v0_ele, vlast_ele,
&(LR[ index_lr (i, j, num_atom_types) ].ele[1]), control->tabulate + 1 );
Natural_Cubic_Spline( &h[1], &fCEclmb[1],
&(LR[ index_lr (i, j, num_atom_types) ].CEclmb[1]), control->tabulate + 1 );
}
}
}
}
sfree( h, "Init_Lookup_Tables::h" );
sfree( fh, "Init_Lookup_Tables::fh" );
sfree( fvdw, "Init_Lookup_Tables::fvdw" );
sfree( fCEvd, "Init_Lookup_Tables::fCEvd" );
sfree( fele, "Init_Lookup_Tables::fele" );
sfree( fCEclmb, "Init_Lookup_Tables::fCEclmb" );
#ifdef HAVE_CUDA
//copy the LR_Table to the device here.
t_start = Get_Time( );
copy_LR_table_to_device( system, control, aggregated );
t_end = Get_Timing_Info( t_start );
fprintf( stderr, "Device copy of LR Lookup table: %f \n", t_end );
#endif
return SUCCESS;
}
/*
void copy_LR_table_to_device( reax_system *system, control_params *control, int aggregated )
{
int i, j, r;
int num_atom_types;
LR_data *d_y;
cubic_spline_coef *temp;
num_atom_types = system->reaxprm.num_atom_types;
fprintf (stderr, "Copying the LR Lookyp Table to the device ... \n");
cuda_malloc ((void **) &d_LR, sizeof (LR_lookup_table) * ( num_atom_types * num_atom_types ), FALSE, "LR_lookup:table");
for( i = 0; i < MAX_ATOM_TYPES; ++i )
existing_types[i] = 0;
for( i = 0; i < system->N; ++i )
existing_types[ system->atoms[i].type ] = 1;
copy_host_device ( LR, d_LR, sizeof (LR_lookup_table) * (num_atom_types * num_atom_types),
cudaMemcpyHostToDevice, "LR_lookup:table");
for( i = 0; i < num_atom_types; ++i )
if( aggregated [i] )
for( j = i; j < num_atom_types; ++j )
if( aggregated [j] ) {
cuda_malloc ((void **) &d_y, sizeof (LR_data) * (control->tabulate + 1), FALSE, "LR_lookup:d_y");
copy_host_device ( LR [ index_lr (i, j, num_atom_types) ].y, d_y,
sizeof (LR_data) * (control->tabulate + 1), cudaMemcpyHostToDevice, "LR_lookup:y");
copy_host_device ( &d_y, &d_LR [ index_lr (i, j, num_atom_types) ].y,
sizeof (LR_data *), cudaMemcpyHostToDevice, "LR_lookup:y");
cuda_malloc ((void **) &temp, sizeof (cubic_spline_coef) * (control->tabulate + 1), FALSE, "LR_lookup:h");
copy_host_device ( LR [ index_lr (i, j, num_atom_types) ].H, temp,
sizeof (cubic_spline_coef) * (control->tabulate + 1), cudaMemcpyHostToDevice, "LR_lookup:h");
copy_host_device ( &temp, &d_LR [ index_lr (i, j, num_atom_types) ].H,
sizeof (cubic_spline_coef *), cudaMemcpyHostToDevice, "LR_lookup:h");
cuda_malloc ((void **) &temp, sizeof (cubic_spline_coef) * (control->tabulate + 1), FALSE, "LR_lookup:vdW");
copy_host_device ( LR [ index_lr (i, j, num_atom_types) ].vdW, temp,
sizeof (cubic_spline_coef) * (control->tabulate + 1), cudaMemcpyHostToDevice, "LR_lookup:vdW");
copy_host_device ( &temp, &d_LR [ index_lr (i, j, num_atom_types) ].vdW,
sizeof (cubic_spline_coef *), cudaMemcpyHostToDevice, "LR_lookup:vdW");
cuda_malloc ((void **) &temp, sizeof (cubic_spline_coef) * (control->tabulate + 1), FALSE, "LR_lookup:CEvd");
copy_host_device ( LR [ index_lr (i, j, num_atom_types) ].CEvd, temp,
sizeof (cubic_spline_coef) * (control->tabulate + 1), cudaMemcpyHostToDevice, "LR_lookup:CEvd");
copy_host_device ( &temp, &d_LR [ index_lr (i, j, num_atom_types) ].CEvd,
sizeof (cubic_spline_coef *), cudaMemcpyHostToDevice, "LR_lookup:CDvd");
cuda_malloc ((void **) &temp, sizeof (cubic_spline_coef) * (control->tabulate + 1), FALSE, "LR_lookup:ele");
copy_host_device ( LR [ index_lr (i, j, num_atom_types) ].ele, temp,
sizeof (cubic_spline_coef) * (control->tabulate + 1), cudaMemcpyHostToDevice, "LR_lookup:ele");
copy_host_device ( &temp, &d_LR [ index_lr (i, j, num_atom_types) ].ele,
sizeof (cubic_spline_coef *), cudaMemcpyHostToDevice, "LR_lookup:ele");
cuda_malloc ((void **) &temp, sizeof (cubic_spline_coef) * (control->tabulate + 1), FALSE, "LR_lookup:ceclmb");
copy_host_device ( LR [ index_lr (i, j, num_atom_types) ].CEclmb, temp,
sizeof (cubic_spline_coef) * (control->tabulate + 1), cudaMemcpyHostToDevice, "LR_lookup:ceclmb");
copy_host_device ( &temp, &d_LR [ index_lr (i, j, num_atom_types) ].CEclmb,
sizeof (cubic_spline_coef *), cudaMemcpyHostToDevice, "LR_lookup:ceclmb");
}
fprintf (stderr, "Copy of the LR Lookup Table to the device complete ... \n");
}
*/