-
Kurt A. O'Hearn authoredKurt A. O'Hearn authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
forces.c 35.91 KiB
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "reax_types.h"
#include "index_utils.h"
#ifdef HAVE_CUDA
#include "cuda_forces.h"
#include "cuda_linear_solvers.h"
#include "cuda_neighbors.h"
//#include "cuda_bond_orders.h"
#include "validation.h"
#endif
#if defined(PURE_REAX)
#include "forces.h"
#include "bond_orders.h"
#include "bonds.h"
#include "basic_comm.h"
#include "hydrogen_bonds.h"
#include "io_tools.h"
#include "list.h"
#include "lookup.h"
#include "multi_body.h"
#include "nonbonded.h"
#include "qEq.h"
#include "tool_box.h"
#include "torsion_angles.h"
#include "valence_angles.h"
#include "vector.h"
#elif defined(LAMMPS_REAX)
#include "reax_forces.h"
#include "reax_bond_orders.h"
#include "reax_bonds.h"
#include "reax_basic_comm.h"
#include "reax_hydrogen_bonds.h"
#include "reax_io_tools.h"
#include "reax_list.h"
#include "reax_lookup.h"
#include "reax_multi_body.h"
#include "reax_nonbonded.h"
#include "reax_tool_box.h"
#include "reax_torsion_angles.h"
#include "reax_valence_angles.h"
#include "reax_vector.h"
#endif
interaction_function Interaction_Functions[NUM_INTRS];
#ifdef HAVE_CUDA
void Cuda_Total_Forces (reax_system *, control_params *, simulation_data *, storage *);
void Cuda_Total_Forces_PURE (reax_system *, storage *);
#endif
void Dummy_Interaction( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control )
{
}
void Init_Force_Functions( control_params *control )
{
Interaction_Functions[0] = BO;
Interaction_Functions[1] = Bonds; //Dummy_Interaction;
Interaction_Functions[2] = Atom_Energy; //Dummy_Interaction;
Interaction_Functions[3] = Valence_Angles; //Dummy_Interaction;
Interaction_Functions[4] = Torsion_Angles; //Dummy_Interaction;
if( control->hbond_cut > 0 )
Interaction_Functions[5] = Hydrogen_Bonds;
else Interaction_Functions[5] = Dummy_Interaction;
Interaction_Functions[6] = Dummy_Interaction; //empty
Interaction_Functions[7] = Dummy_Interaction; //empty
Interaction_Functions[8] = Dummy_Interaction; //empty
Interaction_Functions[9] = Dummy_Interaction; //empty
}
void Compute_Bonded_Forces( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control )
{
int i;
/* Mark beginning of a new timestep in bonded energy files */
#if defined(TEST_ENERGY)
Debug_Marker_Bonded( out_control, data->step );
#endif
/* Implement all force calls as function pointers */
// for( i = 0; i < NUM_INTRS; i++ ) {
//#if defined(DEBUG)
// fprintf( stderr, "p%d: starting f%d\n", system->my_rank, i );
// MPI_Barrier( MPI_COMM_WORLD );
//#endif
// (Interaction_Functions[i])( system, control, data, workspace,
// lists, out_control );
//#if defined(DEBUG)
// fprintf( stderr, "p%d: f%d done\n", system->my_rank, i );
// MPI_Barrier( MPI_COMM_WORLD );
//#endif
// }
(Interaction_Functions[0])( system, control, data, workspace, lists, out_control );
(Interaction_Functions[1])( system, control, data, workspace, lists, out_control );
(Interaction_Functions[2])( system, control, data, workspace, lists, out_control );
(Interaction_Functions[3])( system, control, data, workspace, lists, out_control );
(Interaction_Functions[4])( system, control, data, workspace, lists, out_control );
(Interaction_Functions[5])( system, control, data, workspace, lists, out_control );
}
void Compute_NonBonded_Forces( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control,
mpi_datatypes *mpi_data )
{
/* Mark beginning of a new timestep in nonbonded energy files */
#if defined(TEST_ENERGY)
Debug_Marker_Nonbonded( out_control, data->step );
#endif
/* van der Waals and Coulomb interactions */
if( control->tabulate == 0 )
vdW_Coulomb_Energy( system, control, data, workspace,
lists, out_control );
else
Tabulated_vdW_Coulomb_Energy( system, control, data, workspace,
lists, out_control );
#if defined(DEBUG)
fprintf( stderr, "p%d: nonbonded forces done\n", system->my_rank );
MPI_Barrier( MPI_COMM_WORLD );
#endif
}
/* this version of Compute_Total_Force computes forces from
coefficients accumulated by all interaction functions.
Saves enormous time & space! */
void Compute_Total_Force( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, mpi_datatypes *mpi_data )
{
int i, pj;
reax_list *bonds = (*lists) + BONDS;
for( i = 0; i < system->N; ++i )
for( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
if( i < bonds->select.bond_list[pj].nbr ) {
if( control->virial == 0 )
Add_dBond_to_Forces( i, pj, workspace, lists );
else
Add_dBond_to_Forces_NPT( i, pj, data, workspace, lists );
}
//Print_Total_Force( system, data, workspace );
#if defined(PURE_REAX)
/* now all forces are computed to their partially-final values
based on the neighbors information each processor has had.
final values of force on each atom needs to be computed by adding up
all partially-final pieces */
Coll( system, mpi_data, workspace->f, mpi_data->mpi_rvec,
sizeof(rvec)/sizeof(void), rvec_unpacker );
for( i = 0; i < system->n; ++i )
rvec_Copy( system->my_atoms[i].f, workspace->f[i] );
#if defined(TEST_FORCES)
Coll( system, mpi_data, workspace->f_ele, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_vdw, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_be, mpi_data->mpi_rvec, rvec_unpacker );
Coll( system, mpi_data, workspace->f_lp, mpi_data->mpi_rvec, rvec_unpacker );
Coll( system, mpi_data, workspace->f_ov, mpi_data->mpi_rvec, rvec_unpacker );
Coll( system, mpi_data, workspace->f_un, mpi_data->mpi_rvec, rvec_unpacker );
Coll( system, mpi_data, workspace->f_ang, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_coa, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_pen, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_hb, mpi_data->mpi_rvec, rvec_unpacker );
Coll( system, mpi_data, workspace->f_tor, mpi_data->mpi_rvec, rvec_unpacker);
Coll( system, mpi_data, workspace->f_con, mpi_data->mpi_rvec, rvec_unpacker);
#endif
#endif
}
#ifdef HAVE_CUDA
void Cuda_Compute_Total_Force( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, mpi_datatypes *mpi_data )
{
rvec *f = (rvec *) host_scratch;
memset (f, 0, sizeof (rvec) * system->N );
Cuda_Total_Forces (system, control, data, workspace);
#if defined(PURE_REAX)
/* now all forces are computed to their partially-final values
based on the neighbors information each processor has had.
final values of force on each atom needs to be computed by adding up
all partially-final pieces */
//MVAPICH2
get_from_device (f, dev_workspace->f, sizeof (rvec) * system->N , "total_force:f:get");
Coll( system, mpi_data, f, mpi_data->mpi_rvec,
sizeof(rvec)/sizeof(void), rvec_unpacker );
put_on_device (f, dev_workspace->f, sizeof (rvec) * system->N, "total_force:f:put" );
Cuda_Total_Forces_PURE (system, dev_workspace);
#endif
}
#endif
void Validate_Lists( reax_system *system, storage *workspace, reax_list **lists,
int step, int n, int N, int numH )
{
int i, comp, Hindex;
reax_list *bonds, *hbonds;
reallocate_data *realloc;
realloc = &(workspace->realloc);
/* bond list */
if( N > 0 ) {
bonds = *lists + BONDS;
for( i = 0; i < N; ++i ) {
if( i < n )
system->my_atoms[i].num_bonds = MAX(Num_Entries(i,bonds)*2, MIN_BONDS);
//if( End_Index(i, bonds) >= Start_Index(i+1, bonds)-2 )
//workspace->realloc.bonds = 1;
if( i < N-1 )
comp = Start_Index(i+1, bonds);
else comp = bonds->num_intrs;
if( End_Index(i, bonds) > comp ) {
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, i, End_Index(i,bonds), comp );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
}
}
/* hbonds list */
if( numH > 0 ) {
hbonds = *lists + HBONDS;
for( i = 0; i < n; ++i ) {
Hindex = system->my_atoms[i].Hindex;
if( Hindex > -1 ) {
system->my_atoms[i].num_hbonds =
MAX( Num_Entries(Hindex, hbonds)*SAFER_ZONE, MIN_HBONDS );
//if( Num_Entries(i, hbonds) >=
//(Start_Index(i+1,hbonds)-Start_Index(i,hbonds))*0.90/*DANGER_ZONE*/){
// workspace->realloc.hbonds = 1;
//TODO
if( Hindex < system->n-1 )
comp = Start_Index(Hindex+1, hbonds);
else comp = hbonds->num_intrs;
if( End_Index(Hindex, hbonds) > comp ) {
fprintf(stderr,"step%d-hbondchk failed: H=%d end(H)=%d str(H+1)=%d\n",
step, Hindex, End_Index(Hindex,hbonds), comp );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
}
}
}
}
#if defined(OLD_VALIDATE)
void Validate_Lists( storage *workspace, reax_list **lists,
int step, int n, int N, int numH )
{
int i, flag;
reax_list *bonds, *hbonds;
reallocate_data *realloc;
realloc = &(workspace->realloc);
/* bond list */
if( N > 0 ) {
flag = -1;
bonds = *lists + BONDS;
for( i = 0; i < N-1; ++i )
if( End_Index(i, bonds) >= Start_Index(i+1, bonds)-2 ) {
workspace->realloc.bonds = 1;
if( End_Index(i, bonds) > Start_Index(i+1, bonds) )
flag = i;
}
if( flag > -1 ){
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag,bonds), Start_Index(flag+1,bonds) );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
if( End_Index(i, bonds) >= bonds->num_intrs-2 ) {
workspace->realloc.bonds = 1;
if( End_Index(i, bonds) > bonds->num_intrs ) {
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d bond_end=%d\n",
step, flag, End_Index(i,bonds), bonds->num_intrs );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
}
}
/* hbonds list */
if( numH > 0 ) {
flag = -1;
hbonds = *lists + HBONDS;
for( i = 0; i < numH-1; ++i )
if( Num_Entries(i, hbonds) >=
(Start_Index(i+1, hbonds) - Start_Index(i, hbonds)) * 0.90/*DANGER_ZONE*/ ) {
workspace->realloc.hbonds = 1;
if( End_Index(i, hbonds) > Start_Index(i+1, hbonds) )
flag = i;
}
if( flag > -1 ) {
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag,hbonds), Start_Index(flag+1,hbonds) );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
if( Num_Entries(i,hbonds) >=
(hbonds->num_intrs - Start_Index(i,hbonds)) * 0.90/*DANGER_ZONE*/ ) {
workspace->realloc.hbonds = 1;
if( End_Index(i, hbonds) > hbonds->num_intrs ) {
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d hbondend=%d\n",
step, flag, End_Index(i,hbonds), hbonds->num_intrs );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
}
}
}
#endif
inline real Compute_H( real r, real gamma, real *ctap )
{
real taper, dr3gamij_1, dr3gamij_3;
taper = ctap[7] * r + ctap[6];
taper = taper * r + ctap[5];
taper = taper * r + ctap[4];
taper = taper * r + ctap[3];
taper = taper * r + ctap[2];
taper = taper * r + ctap[1];
taper = taper * r + ctap[0];
dr3gamij_1 = ( r*r*r + gamma );
dr3gamij_3 = POW( dr3gamij_1 , 0.33333333333333 );
return taper * EV_to_KCALpMOL / dr3gamij_3;
}
inline real Compute_tabH( real r_ij, int ti, int tj, int num_atom_types )
{
int r, tmin, tmax;
real val, dif, base;
LR_lookup_table *t;
tmin = MIN( ti, tj );
tmax = MAX( ti, tj );
//SUDHIR
//t = &( LR[tmin][tmax] );
t = &( LR[index_lr (tmin,tmax, num_atom_types)] );
/* cubic spline interpolation */
r = (int)(r_ij * t->inv_dx);
if( r == 0 ) ++r;
base = (real)(r+1) * t->dx;
dif = r_ij - base;
val = ((t->ele[r].d*dif + t->ele[r].c)*dif + t->ele[r].b)*dif +
t->ele[r].a;
val *= EV_to_KCALpMOL / C_ele;
return val;
}
void Init_Forces( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control ) {
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int Htop, btop_i, btop_j, num_bonds, num_hbonds;
int ihb, jhb, ihb_top, jhb_top;
int local, flag, renbr;
real r_ij, cutoff;
sparse_matrix *H;
reax_list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
far_nbrs = *lists + FAR_NBRS;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
for( i = 0; i < system->n; ++i )
workspace->bond_mark[i] = 0;
for( i = system->n; i < system->N; ++i ) {
workspace->bond_mark[i] = 1000; // put ghost atoms to an infinite distance
//workspace->done_after[i] = Start_Index( i, far_nbrs );
}
H = &workspace->H; //MATRIX CHANGES
H->n = system->n;
Htop = 0;
num_bonds = 0;
num_hbonds = 0;
btop_i = btop_j = 0;
renbr = (data->step-data->prev_steps) % control->reneighbor == 0;
for( i = 0; i < system->N; ++i ) {
atom_i = &(system->my_atoms[i]);
type_i = atom_i->type;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
btop_i = End_Index( i, bonds );
sbp_i = &(system->reax_param.sbp[type_i]);
if( i < system->n ) {
local = 1;
cutoff = control->nonb_cut;
}
else {
local = 0;
cutoff = control->bond_cut;
}
ihb = -1;
ihb_top = -1;
if( local ) {
H->start[i] = Htop;
H->entries[Htop].j = i;
H->entries[Htop].val = sbp_i->eta;
++Htop;
if( control->hbond_cut > 0 ) {
ihb = sbp_i->p_hbond;
if( ihb == 1 )
ihb_top = End_Index( atom_i->Hindex, hbonds );
else ihb_top = -1;
}
}
/* update i-j distance - check if j is within cutoff */
for( pj = start_i; pj < end_i; ++pj ) {
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
atom_j = &(system->my_atoms[j]);
//fprintf( stderr, "%d%d i=%d x_i: %f %f %f,j=%d x_j: %f %f %f, d=%f\n",
// MIN(atom_i->orig_id, atom_j->orig_id),
// MAX(atom_i->orig_id, atom_j->orig_id),
// i, atom_i->x[0], atom_i->x[1], atom_i->x[2],
// j, atom_j->x[0], atom_j->x[1], atom_j->x[2], nbr_pj->d );
if( renbr ) {
if(nbr_pj->d <= cutoff)
flag = 1;
else flag = 0;
}
else{
nbr_pj->dvec[0] = atom_j->x[0] - atom_i->x[0];
nbr_pj->dvec[1] = atom_j->x[1] - atom_i->x[1];
nbr_pj->dvec[2] = atom_j->x[2] - atom_i->x[2];
nbr_pj->d = rvec_Norm_Sqr( nbr_pj->dvec );
if (i == 6540) fprintf (stderr, " atom: %d, nbr_pj->d: %f, cutoff: %f \n", i, nbr_pj->d, SQR(cutoff) );
if( nbr_pj->d <= SQR(cutoff) ) {
nbr_pj->d = sqrt(nbr_pj->d);
flag = 1;
}
else {
flag = 0;
}
}
if( flag ){
type_j = atom_j->type;
r_ij = nbr_pj->d;
sbp_j = &(system->reax_param.sbp[type_j]);
//SUDHIR
//twbp = &(system->reax_param.tbp[type_i][type_j]);
twbp = &(system->reax_param.tbp[ index_tbp (type_i,type_j,system->reax_param.num_atom_types)]);
if( local ) {
/* H matrix entry */
if( j < system->n || atom_i->orig_id < atom_j->orig_id ) {//tryQEq||1
H->entries[Htop].j = j;
//fprintf( stdout, "%d%d %d %d\n",
// MIN(atom_i->orig_id, atom_j->orig_id),
// MAX(atom_i->orig_id, atom_j->orig_id),
// MIN(atom_i->orig_id, atom_j->orig_id),
// MAX(atom_i->orig_id, atom_j->orig_id) );
if( control->tabulate == 0 )
H->entries[Htop].val = Compute_H(r_ij,twbp->gamma,workspace->Tap);
else
H->entries[Htop].val = Compute_tabH(r_ij, type_i, type_j,system->reax_param.num_atom_types);
++Htop;
}
/* hydrogen bond lists */
if( control->hbond_cut > 0 && (ihb==1 || ihb==2) &&
nbr_pj->d <= control->hbond_cut ) {
// fprintf( stderr, "%d %d\n", atom1, atom2 );
jhb = sbp_j->p_hbond;
if( ihb == 1 && jhb == 2 ) {
hbonds->select.hbond_list[ihb_top].nbr = j;
hbonds->select.hbond_list[ihb_top].scl = 1;
hbonds->select.hbond_list[ihb_top].ptr = nbr_pj;
++ihb_top;
++num_hbonds;
}
else if( j < system->n && ihb == 2 && jhb == 1 ) {
jhb_top = End_Index( atom_j->Hindex, hbonds );
hbonds->select.hbond_list[jhb_top].nbr = i;
hbonds->select.hbond_list[jhb_top].scl = -1;
hbonds->select.hbond_list[jhb_top].ptr = nbr_pj;
Set_End_Index( atom_j->Hindex, jhb_top+1, hbonds );
++num_hbonds;
}
}
}
/* uncorrected bond orders */
if( //(workspace->bond_mark[i] < 3 || workspace->bond_mark[j] < 3) &&
nbr_pj->d <= control->bond_cut &&
BOp( workspace, bonds, control->bo_cut,
i , btop_i, nbr_pj, sbp_i, sbp_j, twbp ) ) {
num_bonds += 2;
++btop_i;
if( workspace->bond_mark[j] > workspace->bond_mark[i] + 1 )
workspace->bond_mark[j] = workspace->bond_mark[i] + 1;
else if( workspace->bond_mark[i] > workspace->bond_mark[j] + 1 ) {
workspace->bond_mark[i] = workspace->bond_mark[j] + 1;
//if( workspace->bond_mark[i] == 1000 )
// workspace->done_after[i] = pj;
}
//fprintf( stdout, "%d%d - %d(%d) %d(%d)\n",
// i , j, i, workspace->bond_mark[i], j, workspace->bond_mark[j] );
}
}
}
Set_End_Index( i, btop_i, bonds );
if( local ) {
H->end[i] = Htop;
if( ihb == 1 )
Set_End_Index( atom_i->Hindex, ihb_top, hbonds );
}
}
//fprintf( stderr, "after the first init loop\n" );
/*for( i = system->n; i < system->N; ++i )
if( workspace->bond_mark[i] > 3 ) {
start_i = Start_Index(i, bonds);
end_i = End_Index(i, bonds);
num_bonds -= (end_i - start_i);
Set_End_Index(i, start_i, bonds );
}*/
/*for( i = system->n; i < system->N; ++i ) {
start_i = Start_Index(i, far_nbrs);
end_i = workspace->done_after[i];
if( workspace->bond_mark[i] >= 2 && start_i < end_i ) {
atom_i = &(system->my_atoms[i]);
type_i = atom_i->type;
btop_i = End_Index( i, bonds );
sbp_i = &(system->reax_param.sbp[type_i]);
for( pj = start_i; pj < end_i; ++pj ) {
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
if( workspace->bond_mark[j] >= 2 && nbr_pj->d <= control->bond_cut ) {
atom_j = &(system->my_atoms[j]);
type_j = atom_j->type;
sbp_j = &(system->reax_param.sbp[type_j]);
twbp = &(system->reax_param.tbp[type_i][type_j]);
if( BOp( workspace, bonds, control->bo_cut,
i , btop_i, nbr_pj, sbp_i, sbp_j, twbp ) ) {
num_bonds += 2;
++btop_i;
if( workspace->bond_mark[j] > workspace->bond_mark[i] + 1 )
workspace->bond_mark[j] = workspace->bond_mark[i] + 1;
else if( workspace->bond_mark[i] > workspace->bond_mark[j] + 1 )
workspace->bond_mark[i] = workspace->bond_mark[j] + 1;
//fprintf( stdout, "%d%d - %d(%d) %d(%d) new\n",
// i , j, i, workspace->bond_mark[i], j, workspace->bond_mark[j] );
}
}
}
Set_End_Index( i, btop_i, bonds );
}
}*/
workspace->realloc.Htop = Htop;
workspace->realloc.num_bonds = num_bonds;
workspace->realloc.num_hbonds = num_hbonds;
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d @ step%d: Htop = %d num_bonds = %d num_hbonds = %d\n",
system->my_rank, data->step, Htop, num_bonds, num_hbonds );
MPI_Barrier( MPI_COMM_WORLD );
#endif
#if defined( DEBUG )
Print_Bonds( system, bonds, "debugbonds.out" );
Print_Bond_List2( system, bonds, "pbonds.out" );
Print_Sparse_Matrix( system, H );
for( i = 0; i < H->n; ++i )
for( j = H->start[i]; j < H->end[i]; ++j )
fprintf( stderr, "%d %d %.15e\n",
MIN(system->my_atoms[i].orig_id,
system->my_atoms[H->entries[j].j].orig_id),
MAX(system->my_atoms[i].orig_id,
system->my_atoms[H->entries[j].j].orig_id),
H->entries[j].val );
#endif
Validate_Lists( system, workspace, lists,
data->step, system->n, system->N, system->numH );
}
void Init_Forces_noQEq( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control ) {
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int btop_i, btop_j, num_bonds, num_hbonds;
int ihb, jhb, ihb_top, jhb_top;
int local, flag, renbr;
real r_ij, cutoff;
reax_list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
far_nbrs = *lists + FAR_NBRS;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
for( i = 0; i < system->n; ++i )
workspace->bond_mark[i] = 0;
for( i = system->n; i < system->N; ++i ) {
workspace->bond_mark[i] = 1000; // put ghost atoms to an infinite distance
//workspace->done_after[i] = Start_Index( i, far_nbrs );
}
num_bonds = 0;
num_hbonds = 0;
btop_i = btop_j = 0;
renbr = (data->step-data->prev_steps) % control->reneighbor == 0;
for( i = 0; i < system->N; ++i ) {
atom_i = &(system->my_atoms[i]);
type_i = atom_i->type;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
btop_i = End_Index( i, bonds );
sbp_i = &(system->reax_param.sbp[type_i]);
if( i < system->n ) {
local = 1;
cutoff = MAX( control->hbond_cut, control->bond_cut );
}
else {
local = 0;
cutoff = control->bond_cut;
}
ihb = -1;
ihb_top = -1;
if( local && control->hbond_cut > 0 ) {
ihb = sbp_i->p_hbond;
if( ihb == 1 )
ihb_top = End_Index( atom_i->Hindex, hbonds );
else ihb_top = -1;
}
/* update i-j distance - check if j is within cutoff */
for( pj = start_i; pj < end_i; ++pj ) {
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
atom_j = &(system->my_atoms[j]);
if( renbr ) {
if( nbr_pj->d <= cutoff )
flag = 1;
else flag = 0;
}
else{
nbr_pj->dvec[0] = atom_j->x[0] - atom_i->x[0];
nbr_pj->dvec[1] = atom_j->x[1] - atom_i->x[1];
nbr_pj->dvec[2] = atom_j->x[2] - atom_i->x[2];
nbr_pj->d = rvec_Norm_Sqr( nbr_pj->dvec );
if( nbr_pj->d <= SQR(cutoff) ) {
nbr_pj->d = sqrt(nbr_pj->d);
flag = 1;
}
else {
flag = 0;
}
}
if( flag ) {
type_j = atom_j->type;
r_ij = nbr_pj->d;
sbp_j = &(system->reax_param.sbp[type_j]);
//SUDHIR
//twbp = &(system->reax_param.tbp[type_i][type_j]);
twbp = &(system->reax_param.tbp[index_tbp(type_i,type_j,system->reax_param.num_atom_types)]);
if( local ) {
/* hydrogen bond lists */
if( control->hbond_cut > 0 && (ihb==1 || ihb==2) &&
nbr_pj->d <= control->hbond_cut ) {
// fprintf( stderr, "%d %d\n", atom1, atom2 );
jhb = sbp_j->p_hbond;
if( ihb == 1 && jhb == 2 ) {
hbonds->select.hbond_list[ihb_top].nbr = j;
hbonds->select.hbond_list[ihb_top].scl = 1;
hbonds->select.hbond_list[ihb_top].ptr = nbr_pj;
++ihb_top;
++num_hbonds;
}
else if( j < system->n && ihb == 2 && jhb == 1 ) {
jhb_top = End_Index( atom_j->Hindex, hbonds );
hbonds->select.hbond_list[jhb_top].nbr = i;
hbonds->select.hbond_list[jhb_top].scl = -1;
hbonds->select.hbond_list[jhb_top].ptr = nbr_pj;
Set_End_Index( atom_j->Hindex, jhb_top+1, hbonds );
++num_hbonds;
}
}
}
/* uncorrected bond orders */
if( //(workspace->bond_mark[i] < 3 || workspace->bond_mark[j] < 3) &&
nbr_pj->d <= control->bond_cut &&
BOp( workspace, bonds, control->bo_cut,
i , btop_i, nbr_pj, sbp_i, sbp_j, twbp ) ) {
num_bonds += 2;
++btop_i;
if( workspace->bond_mark[j] > workspace->bond_mark[i] + 1 )
workspace->bond_mark[j] = workspace->bond_mark[i] + 1;
else if( workspace->bond_mark[i] > workspace->bond_mark[j] + 1 ) {
workspace->bond_mark[i] = workspace->bond_mark[j] + 1;
//if( workspace->bond_mark[i] == 1000 )
// workspace->done_after[i] = pj;
}
//fprintf( stdout, "%d%d - %d(%d) %d(%d)\n",
// i , j, i, workspace->bond_mark[i], j, workspace->bond_mark[j] );
}
}
}
Set_End_Index( i, btop_i, bonds );
if( local && ihb == 1 )
Set_End_Index( atom_i->Hindex, ihb_top, hbonds );
}
for( i = system->n; i < system->N; ++i )
if( workspace->bond_mark[i] > 3 ) {
start_i = Start_Index(i, bonds);
end_i = End_Index(i, bonds);
num_bonds -= (end_i - start_i);
Set_End_Index(i, start_i, bonds );
}
workspace->realloc.num_bonds = num_bonds;
workspace->realloc.num_hbonds = num_hbonds;
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d @ step%d: num_bonds = %d num_hbonds = %d\n",
system->my_rank, data->step, num_bonds, num_hbonds );
MPI_Barrier( MPI_COMM_WORLD );
#endif
#if defined( DEBUG )
Print_Bonds( system, bonds, "debugbonds.out" );
Print_Bond_List2( system, bonds, "pbonds.out" );
#endif
Validate_Lists( system, workspace, lists,
data->step, system->n, system->N, system->numH );
}
void Estimate_Storages( reax_system *system, control_params *control,
reax_list **lists, int *Htop,
int *hb_top, int *bond_top, int *num_3body )
{
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int ihb, jhb;
int local;
real cutoff;
real r_ij, r2;
real C12, C34, C56;
real BO, BO_s, BO_pi, BO_pi2;
reax_list *far_nbrs;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
far_nbrs = *lists + FAR_NBRS;
*Htop = 0;
memset( hb_top, 0, sizeof(int) * system->Hcap );
memset( bond_top, 0, sizeof(int) * system->total_cap );
*num_3body = 0;
for( i = 0; i < system->N; ++i ) {
atom_i = &(system->my_atoms[i]);
type_i = atom_i->type;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
sbp_i = &(system->reax_param.sbp[type_i]);
if( i < system->n ) {
local = 1;
cutoff = control->nonb_cut;
++(*Htop);
ihb = sbp_i->p_hbond;
}
else {
local = 0;
cutoff = control->bond_cut;
ihb = -1;
}
for( pj = start_i; pj < end_i; ++pj ) {
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
atom_j = &(system->my_atoms[j]);
if(nbr_pj->d <= cutoff) {
type_j = system->my_atoms[j].type;
r_ij = nbr_pj->d;
sbp_j = &(system->reax_param.sbp[type_j]);
//SUDHIR
//twbp = &(system->reax_param.tbp[type_i][type_j]);
twbp = &(system->reax_param.tbp[index_tbp (type_i,type_j,system->reax_param.num_atom_types)]);
if( local ) {
if( j < system->n || atom_i->orig_id < atom_j->orig_id ) //tryQEq ||1
++(*Htop);
/* hydrogen bond lists */
if( control->hbond_cut > 0.1 && (ihb==1 || ihb==2) &&
nbr_pj->d <= control->hbond_cut ) {
jhb = sbp_j->p_hbond;
if( ihb == 1 && jhb == 2 )
++hb_top[i];
else if( j < system->n && ihb == 2 && jhb == 1 )
++hb_top[j];
}
}
/* uncorrected bond orders */
if( nbr_pj->d <= control->bond_cut ) {
r2 = SQR(r_ij);
if( sbp_i->r_s > 0.0 && sbp_j->r_s > 0.0) {
C12 = twbp->p_bo1 * POW( r_ij / twbp->r_s, twbp->p_bo2 );
BO_s = (1.0 + control->bo_cut) * EXP( C12 );
}
else BO_s = C12 = 0.0;
if( sbp_i->r_pi > 0.0 && sbp_j->r_pi > 0.0) {
C34 = twbp->p_bo3 * POW( r_ij / twbp->r_p, twbp->p_bo4 );
BO_pi = EXP( C34 );
}
else BO_pi = C34 = 0.0;
if( sbp_i->r_pi_pi > 0.0 && sbp_j->r_pi_pi > 0.0) {
C56 = twbp->p_bo5 * POW( r_ij / twbp->r_pp, twbp->p_bo6 );
BO_pi2= EXP( C56 );
}
else BO_pi2 = C56 = 0.0;
/* Initially BO values are the uncorrected ones, page 1 */
BO = BO_s + BO_pi + BO_pi2;
if( BO >= control->bo_cut ) {
++bond_top[i];
++bond_top[j];
}
}
}
}
}
fprintf (stderr, "HOST SPARSE MATRIX ENTRIES: %d \n", *Htop );
*Htop = MAX( *Htop * SAFE_ZONE, MIN_CAP * MIN_HENTRIES );
int hbond_count = 0;
for( i = 0; i < system->n; ++i ) {
hbond_count += hb_top[i];
hb_top[i] = MAX( hb_top[i] * SAFER_ZONE, MIN_HBONDS );
}
fprintf (stderr, "HOST HBOND COUNT: %d \n", hbond_count);
int bond_count = 0;
for( i = 0; i < system->N; ++i ) {
bond_count += bond_top[i];
*num_3body += SQR(bond_top[i]);
//if( i < system->n )
bond_top[i] = MAX( bond_top[i] * 2, MIN_BONDS );
//else bond_top[i] = MAX_BONDS;
}
fprintf (stderr, "HOST BOND COUNT: %d \n", bond_count);
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d @ estimate storages: Htop = %d, num_3body = %d\n",
system->my_rank, *Htop, *num_3body );
MPI_Barrier( MPI_COMM_WORLD );
#endif
}
void Compute_Forces( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control,
mpi_datatypes *mpi_data )
{
int qeq_flag;
#if defined(LOG_PERFORMANCE)
real t_start = 0;
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
t_start = Get_Time( );
#endif
/********* init forces ************/
if( control->qeq_freq && (data->step-data->prev_steps)%control->qeq_freq==0 )
qeq_flag = 1;
else qeq_flag = 0;
if( qeq_flag )
Init_Forces( system, control, data, workspace, lists, out_control );
else
Init_Forces_noQEq( system, control, data, workspace, lists, out_control );
#if defined(LOG_PERFORMANCE)
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &(data->timing.init_forces) );
#endif
/********* bonded interactions ************/
Compute_Bonded_Forces( system, control, data, workspace, lists, out_control );
#if defined(LOG_PERFORMANCE)
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &(data->timing.bonded) );
#endif
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d @ step%d: completed bonded\n",
system->my_rank, data->step );
MPI_Barrier( MPI_COMM_WORLD );
#endif
/**************** qeq ************************/
#if defined(PURE_REAX)
if( qeq_flag )
QEq( system, control, data, workspace, out_control, mpi_data );
#if defined(LOG_PERFORMANCE)
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &(data->timing.qEq) );
#endif
#if defined(DEBUG_FOCUS)
fprintf(stderr, "p%d @ step%d: qeq completed\n", system->my_rank, data->step);
MPI_Barrier( MPI_COMM_WORLD );
#endif
#endif //PURE_REAX
/********* nonbonded interactions ************/
Compute_NonBonded_Forces( system, control, data, workspace,
lists, out_control, mpi_data );
#if defined(LOG_PERFORMANCE)
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &(data->timing.nonb) );
#endif
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d @ step%d: nonbonded forces completed\n",
system->my_rank, data->step );
MPI_Barrier( MPI_COMM_WORLD );
#endif
/*********** total force ***************/
Compute_Total_Force( system, control, data, workspace, lists, mpi_data );
#if defined(LOG_PERFORMANCE)
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &(data->timing.bonded) );
#endif
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d @ step%d: total forces computed\n",
system->my_rank, data->step );
//Print_Total_Force( system, data, workspace );
MPI_Barrier( MPI_COMM_WORLD );
#endif
#if defined(TEST_FORCES)
Print_Force_Files( system, control, data, workspace,
lists, out_control, mpi_data );
#endif
}
#ifdef HAVE_CUDA
void Cuda_Compute_Forces( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control,
mpi_datatypes *mpi_data )
{
int qeq_flag, retVal = SUCCESS;
#if defined(LOG_PERFORMANCE)
real t_start = 0;
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
t_start = Get_Time( );
#endif
/********* init forces ************/
if( control->qeq_freq && (data->step-data->prev_steps)%control->qeq_freq==0 )
qeq_flag = 1;
else qeq_flag = 0;
if( qeq_flag )
retVal = Cuda_Init_Forces( system, control, data, workspace, lists, out_control );
else
retVal = Cuda_Init_Forces_noQEq( system, control, data, workspace, lists, out_control );
if (retVal == FAILURE) {
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
//validate_sparse_matrix (system, workspace);
#if defined(LOG_PERFORMANCE)
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &(data->timing.init_forces) );
#endif
/********* bonded interactions ************/
retVal = Cuda_Compute_Bonded_Forces( system, control, data, workspace, lists, out_control );
if (retVal == FAILURE) {
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
#if defined(LOG_PERFORMANCE)
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &(data->timing.bonded) );
#endif
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d @ step%d: completed bonded\n",
system->my_rank, data->step );
MPI_Barrier( MPI_COMM_WORLD );
#endif
/**************** qeq ************************/
#if defined(PURE_REAX)
if( qeq_flag )
Cuda_QEq( system, control, data, workspace, out_control, mpi_data );
#if defined(LOG_PERFORMANCE)
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &(data->timing.qEq) );
#endif
#if defined(DEBUG_FOCUS)
fprintf(stderr, "p%d @ step%d: qeq completed\n", system->my_rank, data->step);
MPI_Barrier( MPI_COMM_WORLD );
#endif
#endif //PURE_REAX
/********* nonbonded interactions ************/
Cuda_Compute_NonBonded_Forces( system, control, data, workspace,
lists, out_control, mpi_data );
#if defined(LOG_PERFORMANCE)
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &(data->timing.nonb) );
#endif
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d @ step%d: nonbonded forces completed\n",
system->my_rank, data->step );
MPI_Barrier( MPI_COMM_WORLD );
#endif
/*********** total force ***************/
Cuda_Compute_Total_Force( system, control, data, workspace, lists, mpi_data );
#if defined(LOG_PERFORMANCE)
//MPI_Barrier( MPI_COMM_WORLD );
if( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &(data->timing.bonded) );
#endif
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d @ step%d: total forces computed\n",
system->my_rank, data->step );
//Print_Total_Force( system, data, workspace );
MPI_Barrier( MPI_COMM_WORLD );
#endif
}
#endif
int validate_device (reax_system *system, simulation_data *data, storage *workspace, reax_list **lists )
{
int retval = FAILURE;
#ifdef __CUDA_DEBUG__
//retval |= validate_neighbors (system, lists);
//retval |= validate_sym_dbond_indices (system, workspace, lists);
//retval |= validate_hbonds (system, workspace, lists);
//retval |= validate_workspace (system, workspace);
//retval |= validate_bonds (system, workspace, lists);
//retval |= validate_three_bodies (system, workspace, lists );
retval |= validate_sparse_matrix (system, workspace);
//retval |= validate_data (system, data);
//retval |= validate_atoms (system, lists);
//analyze_hbonds (system, workspace, lists);
if (!retval) {
fprintf (stderr, "Results *DOES NOT* mattch between device and host \n");
}
#endif
return retval;
}