-
Kurt A. O'Hearn authoredKurt A. O'Hearn authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
lin_alg.c 57.13 KiB
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "lin_alg.h"
#include "allocate.h"
#include "list.h"
#include "print_utils.h"
#include "tool_box.h"
#include "vector.h"
/* global to make OpenMP shared (Sparse_MatVec) */
#ifdef _OPENMP
real *b_local = NULL;
#endif
/* global to make OpenMP shared (apply_preconditioner) */
real *Dinv_L = NULL, *Dinv_U = NULL;
/* global to make OpenMP shared (tri_solve_level_sched) */
int levels = 1;
int levels_L = 1, levels_U = 1;
unsigned int *row_levels_L = NULL, *level_rows_L = NULL, *level_rows_cnt_L = NULL;
unsigned int *row_levels_U = NULL, *level_rows_U = NULL, *level_rows_cnt_U = NULL;
unsigned int *row_levels, *level_rows, *level_rows_cnt;
unsigned int *top = NULL;
/* global to make OpenMP shared (graph_coloring) */
unsigned int *color = NULL;
unsigned int *to_color = NULL;
unsigned int *conflict = NULL;
unsigned int *temp_ptr;
unsigned int *recolor = NULL;
unsigned int recolor_cnt;
unsigned int *color_top = NULL;
/* global to make OpenMP shared (sort_colors) */
unsigned int *permuted_row_col = NULL;
unsigned int *permuted_row_col_inv = NULL;
real *y_p = NULL;
/* global to make OpenMP shared (permute_vector) */
real *x_p = NULL;
unsigned int *mapping = NULL;
sparse_matrix *H_full;
sparse_matrix *H_p;
/* global to make OpenMP shared (jacobi_iter) */
real *Dinv_b = NULL, *rp = NULL, *rp2 = NULL, *rp3 = NULL;
/* sparse matrix-vector product Ax=b
* where:
* A: lower triangular matrix, stored in CSR format
* x: vector
* b: vector (result) */
static void Sparse_MatVec( const sparse_matrix * const A,
const real * const x, real * const b )
{
int i, j, k, n, si, ei;
real H;
#ifdef _OPENMP
unsigned int tid;
#endif
n = A->n;
Vector_MakeZero( b, n );
#ifdef _OPENMP
tid = omp_get_thread_num();
#pragma omp master
{
/* keep b_local for program duration to avoid allocate/free
* overhead per Sparse_MatVec call*/
if ( b_local == NULL )
{
if ( (b_local = (real*) malloc( omp_get_num_threads() * n * sizeof(real))) == NULL )
{
exit( INSUFFICIENT_MEMORY );
}
}
}
#pragma omp barrier
Vector_MakeZero( (real * const)b_local, omp_get_num_threads() * n );
#endif
#pragma omp for schedule(static)
for ( i = 0; i < n; ++i )
{
si = A->start[i];
ei = A->start[i + 1] - 1;
for ( k = si; k < ei; ++k )
{
j = A->j[k];
H = A->val[k];
#ifdef _OPENMP
b_local[tid * n + j] += H * x[i];
b_local[tid * n + i] += H * x[j];
#else
b[j] += H * x[i];
b[i] += H * x[j];
#endif
}
// the diagonal entry is the last one in
#ifdef _OPENMP
b_local[tid * n + i] += A->val[k] * x[i];
#else
b[i] += A->val[k] * x[i];
#endif
}
#ifdef _OPENMP
#pragma omp for schedule(static)
for ( i = 0; i < n; ++i )
{
for ( j = 0; j < omp_get_num_threads(); ++j )
{
b[i] += b_local[j * n + i];
}
}
#endif
}
/* Transpose A and copy into A^T
*
* A: stored in CSR
* A_t: stored in CSR
*/
void Transpose( const sparse_matrix * const A, sparse_matrix const *A_t )
{
unsigned int i, j, pj, *A_t_top;
if ( (A_t_top = (unsigned int*) calloc( A->n + 1, sizeof(unsigned int))) == NULL )
{
fprintf( stderr, "Not enough space for matrix tranpose. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
memset( A_t->start, 0, (A->n + 1) * sizeof(unsigned int) );
/* count nonzeros in each column of A^T, store one row greater (see next loop) */
for ( i = 0; i < A->n; ++i )
{
for ( pj = A->start[i]; pj < A->start[i + 1]; ++pj )
{
++A_t->start[A->j[pj] + 1];
}
}
/* setup the row pointers for A^T */
for ( i = 1; i <= A->n; ++i )
{
A_t_top[i] = A_t->start[i] = A_t->start[i] + A_t->start[i - 1];
}
/* fill in A^T */
for ( i = 0; i < A->n; ++i )
{
for ( pj = A->start[i]; pj < A->start[i + 1]; ++pj )
{
j = A->j[pj];
A_t->j[A_t_top[j]] = i;
A_t->val[A_t_top[j]] = A->val[pj];
++A_t_top[j];
}
}
free( A_t_top );
}
/* Transpose A in-place
*
* A: stored in CSR
*/
void Transpose_I( sparse_matrix * const A )
{
sparse_matrix * A_t;
if ( Allocate_Matrix( &A_t, A->n, A->m ) == FAILURE )
{
fprintf( stderr, "not enough memory for transposing matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
Transpose( A, A_t );
memcpy( A->start, A_t->start, sizeof(int) * (A_t->n + 1) );
memcpy( A->j, A_t->j, sizeof(int) * (A_t->start[A_t->n]) );
memcpy( A->val, A_t->val, sizeof(real) * (A_t->start[A_t->n]) );
Deallocate_Matrix( A_t );
}
/* Apply diagonal inverse (Jacobi) preconditioner to system residual
*
* Hdia_inv: diagonal inverse preconditioner (constructed using H)
* y: current residual
* x: preconditioned residual
* N: dimensions of preconditioner and vectors (# rows in H)
*/
static void diag_pre_app( const real * const Hdia_inv, const real * const y,
real * const x, const int N )
{
unsigned int i;
#pragma omp for schedule(static)
for ( i = 0; i < N; ++i )
{
x[i] = y[i] * Hdia_inv[i];
}
}
/* Solve triangular system LU*x = y using level scheduling
*
* LU: lower/upper triangular, stored in CSR
* y: constants in linear system (RHS)
* x: solution
* N: dimensions of matrix and vectors
* tri: triangularity of LU (lower/upper)
*
* Assumptions:
* LU has non-zero diagonals
* Each row of LU has at least one non-zero (i.e., no rows with all zeros) */
void tri_solve( const sparse_matrix * const LU, const real * const y,
real * const x, const int N, const TRIANGULARITY tri )
{
int i, pj, j, si, ei;
real val;
#pragma omp master
{
if ( tri == LOWER )
{
for ( i = 0; i < N; ++i )
{
x[i] = y[i];
si = LU->start[i];
ei = LU->start[i + 1];
for ( pj = si; pj < ei - 1; ++pj )
{
j = LU->j[pj];
val = LU->val[pj];
x[i] -= val * x[j];
}
x[i] /= LU->val[pj];
}
}
else
{
for ( i = N - 1; i >= 0; --i )
{
x[i] = y[i];
si = LU->start[i];
ei = LU->start[i + 1];
for ( pj = si + 1; pj < ei; ++pj )
{
j = LU->j[pj];
val = LU->val[pj];
x[i] -= val * x[j];
}
x[i] /= LU->val[si];
}
}
}
}
/* Solve triangular system LU*x = y using level scheduling
*
* LU: lower/upper triangular, stored in CSR
* y: constants in linear system (RHS)
* x: solution
* N: dimensions of matrix and vectors
* tri: triangularity of LU (lower/upper)
* find_levels: perform level search if positive, otherwise reuse existing levels
*
* Assumptions:
* LU has non-zero diagonals
* Each row of LU has at least one non-zero (i.e., no rows with all zeros) */
void tri_solve_level_sched( const sparse_matrix * const LU,
const real * const y, real * const x, const int N,
const TRIANGULARITY tri, int find_levels )
{
int i, j, pj, local_row, local_level;
#pragma omp master
{
if ( tri == LOWER )
{
row_levels = row_levels_L;
level_rows = level_rows_L;
level_rows_cnt = level_rows_cnt_L;
levels = levels_L;
}
else
{
row_levels = row_levels_U;
level_rows = level_rows_U;
level_rows_cnt = level_rows_cnt_U;
levels = levels_U;
}
if ( row_levels == NULL || level_rows == NULL || level_rows_cnt == NULL )
{
if ( (row_levels = (unsigned int*) malloc((size_t)N * sizeof(unsigned int))) == NULL
|| (level_rows = (unsigned int*) malloc((size_t)N * sizeof(unsigned int))) == NULL
|| (level_rows_cnt = (unsigned int*) malloc((size_t)(N + 1) * sizeof(unsigned int))) == NULL )
{
fprintf( stderr, "Not enough space for triangular solve via level scheduling. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
}
if ( top == NULL )
{
if ( (top = (unsigned int*) malloc((size_t)(N + 1) * sizeof(unsigned int))) == NULL )
{
fprintf( stderr, "Not enough space for triangular solve via level scheduling. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
}
/* find levels (row dependencies in substitutions) */
if ( find_levels == TRUE )
{
memset( row_levels, 0, N * sizeof(unsigned int) );
memset( level_rows_cnt, 0, N * sizeof(unsigned int) );
memset( top, 0, N * sizeof(unsigned int) );
levels = 1;
if ( tri == LOWER )
{
for ( i = 0; i < N; ++i )
{
local_level = 1;
for ( pj = LU->start[i]; pj < LU->start[i + 1] - 1; ++pj )
{
local_level = MAX( local_level, row_levels[LU->j[pj]] + 1 );
}
levels = MAX( levels, local_level );
row_levels[i] = local_level;
++level_rows_cnt[local_level];
}
//#if defined(DEBUG)
fprintf(stderr, "levels(L): %d\n", levels);
fprintf(stderr, "NNZ(L): %d\n", LU->start[N]);
//#endif
}
else
{
for ( i = N - 1; i >= 0; --i )
{
local_level = 1;
for ( pj = LU->start[i] + 1; pj < LU->start[i + 1]; ++pj )
{
local_level = MAX( local_level, row_levels[LU->j[pj]] + 1 );
}
levels = MAX( levels, local_level );
row_levels[i] = local_level;
++level_rows_cnt[local_level];
}
//#if defined(DEBUG)
fprintf(stderr, "levels(U): %d\n", levels);
fprintf(stderr, "NNZ(U): %d\n", LU->start[N]);
//#endif
}
for ( i = 1; i < levels + 1; ++i )
{
level_rows_cnt[i] += level_rows_cnt[i - 1];
top[i] = level_rows_cnt[i];
}
for ( i = 0; i < N; ++i )
{
level_rows[top[row_levels[i] - 1]] = i;
++top[row_levels[i] - 1];
}
}
}
#pragma omp barrier
/* perform substitutions by level */
if ( tri == LOWER )
{
for ( i = 0; i < levels; ++i )
{
#pragma omp for schedule(static)
for ( j = level_rows_cnt[i]; j < level_rows_cnt[i + 1]; ++j )
{
local_row = level_rows[j];
x[local_row] = y[local_row];
for ( pj = LU->start[local_row]; pj < LU->start[local_row + 1] - 1; ++pj )
{
x[local_row] -= LU->val[pj] * x[LU->j[pj]];
}
x[local_row] /= LU->val[pj];
}
}
}
else
{
for ( i = 0; i < levels; ++i )
{
#pragma omp for schedule(static)
for ( j = level_rows_cnt[i]; j < level_rows_cnt[i + 1]; ++j )
{
local_row = level_rows[j];
x[local_row] = y[local_row];
for ( pj = LU->start[local_row] + 1; pj < LU->start[local_row + 1]; ++pj )
{
x[local_row] -= LU->val[pj] * x[LU->j[pj]];
}
x[local_row] /= LU->val[LU->start[local_row]];
}
}
}
#pragma omp master
{
/* save level info for re-use if performing repeated triangular solves via preconditioning */
if ( tri == LOWER )
{
row_levels_L = row_levels;
level_rows_L = level_rows;
level_rows_cnt_L = level_rows_cnt;
levels_L = levels;
}
else
{
row_levels_U = row_levels;
level_rows_U = level_rows;
level_rows_cnt_U = level_rows_cnt;
levels_U = levels;
}
}
#pragma omp barrier
}
static void compute_H_full( const sparse_matrix * const H )
{
int count, i, pj;
sparse_matrix *H_t;
if ( Allocate_Matrix( &H_t, H->n, H->m ) == FAILURE )
{
fprintf( stderr, "not enough memory for full H. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
/* Set up the sparse matrix data structure for A. */
Transpose( H, H_t );
count = 0;
for ( i = 0; i < H->n; ++i )
{
H_full->start[i] = count;
/* H: symmetric, lower triangular portion only stored */
for ( pj = H->start[i]; pj < H->start[i + 1]; ++pj )
{
H_full->val[count] = H->val[pj];
H_full->j[count] = H->j[pj];
++count;
}
/* H^T: symmetric, upper triangular portion only stored;
* skip diagonal from H^T, as included from H above */
for ( pj = H_t->start[i] + 1; pj < H_t->start[i + 1]; ++pj )
{
H_full->val[count] = H_t->val[pj];
H_full->j[count] = H_t->j[pj];
++count;
}
}
H_full->start[i] = count;
Deallocate_Matrix( H_t );
}
/* Iterative greedy shared-memory parallel graph coloring
*
* A: matrix to use for coloring, stored in CSR format;
* rows represent vertices, columns of entries within a row represent adjacent vertices
* (i.e., dependent rows for elimination during LU factorization)
* tri: triangularity of LU (lower/upper)
* color: vertex color (1-based)
*
* Reference:
* Umit V. Catalyurek et al.
* Graph Coloring Algorithms for Multi-core
* and Massively Threaded Architectures
* Parallel Computing, 2012
*/
void graph_coloring( const sparse_matrix * const A, const TRIANGULARITY tri )
{
#pragma omp parallel
{
#define MAX_COLOR (500)
int i, pj, v;
unsigned int temp;
int *fb_color;
#pragma omp master
{
memset( color, 0, sizeof(unsigned int) * A->n );
recolor_cnt = A->n;
}
/* ordering of vertices to color depends on triangularity of factor
* for which coloring is to be used for */
if ( tri == LOWER )
{
#pragma omp for schedule(static)
for ( i = 0; i < A->n; ++i )
{
to_color[i] = i;
}
}
else
{
#pragma omp for schedule(static)
for ( i = 0; i < A->n; ++i )
{
to_color[i] = A->n - 1 - i;
}
}
if ( (fb_color = (int*) malloc(sizeof(int) * MAX_COLOR)) == NULL )
{
fprintf( stderr, "not enough memory for graph coloring. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
#pragma omp barrier
while ( recolor_cnt > 0 )
{
memset( fb_color, -1, sizeof(int) * MAX_COLOR );
/* color vertices */
#pragma omp for schedule(static)
for ( i = 0; i < recolor_cnt; ++i )
{
v = to_color[i];
/* colors of adjacent vertices are forbidden */
for ( pj = A->start[v]; pj < A->start[v + 1]; ++pj )
{
if ( v != A->j[pj] )
{
fb_color[color[A->j[pj]]] = v;
}
}
/* search for min. color which is not in conflict with adjacent vertices;
* start at 1 since 0 is default (invalid) color for all vertices */
for ( pj = 1; fb_color[pj] == v; ++pj );
/* assign discovered color (no conflict in neighborhood of adjacent vertices) */
color[v] = pj;
}
/* determine if recoloring required */
//TODO: switch to reduction on recolor_cnt (+) via parallel scan through recolor
#pragma omp master
{
temp = recolor_cnt;
recolor_cnt = 0;
for ( i = 0; i < temp; ++i )
{
v = to_color[i];
/* search for color conflicts with adjacent vertices */
for ( pj = A->start[v]; pj < A->start[v + 1]; ++pj )
{
if ( color[v] == color[A->j[pj]] && v > A->j[pj] )
{
conflict[recolor_cnt] = v;
color[v] = 0;
++recolor_cnt;
break;
}
}
}
temp_ptr = to_color;
to_color = conflict;
conflict = temp_ptr;
}
#pragma omp barrier
}
free( fb_color );
//#if defined(DEBUG)
// #pragma omp master
// {
// for ( i = 0; i < A->n; ++i )
// printf("Vertex: %5d, Color: %5d\n", i, color[i] );
// }
//#endif
#pragma omp barrier
}
}
/* Sort coloring
*
* n: number of entries in coloring
* tri: coloring to triangular factor to use (lower/upper)
*/
void sort_colors( const unsigned int n, const TRIANGULARITY tri )
{
unsigned int i;
memset( color_top, 0, sizeof(unsigned int) * (n + 1) );
/* sort vertices by color (ascending within a color)
* 1) count colors
* 2) determine offsets of color ranges
* 3) sort by color
*
* note: color is 1-based */
for ( i = 0; i < n; ++i )
{
++color_top[color[i]];
}
for ( i = 1; i < n + 1; ++i )
{
color_top[i] += color_top[i - 1];
}
for ( i = 0; i < n; ++i )
{
permuted_row_col[color_top[color[i] - 1]] = i;
++color_top[color[i] - 1];
}
/* invert mapping to get map from current row/column to permuted (new) row/column */
for ( i = 0; i < n; ++i )
{
permuted_row_col_inv[permuted_row_col[i]] = i;
}
}
/* Apply permutation Q^T*x or Q*x based on graph coloring
*
* color: vertex color (1-based); vertices represent matrix rows/columns
* x: vector to permute (in-place)
* n: number of entries in x
* invert_map: if TRUE, use Q^T, otherwise use Q
* tri: coloring to triangular factor to use (lower/upper)
*/
static void permute_vector( real * const x, const unsigned int n, const int invert_map,
const TRIANGULARITY tri )
{
unsigned int i;
#pragma omp master
{
if ( x_p == NULL )
{
if ( (x_p = (real*) malloc(sizeof(real) * n)) == NULL )
{
fprintf( stderr, "not enough memory for permuting vector. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
}
if ( invert_map == TRUE )
{
mapping = permuted_row_col_inv;
}
else
{
mapping = permuted_row_col;
}
}
#pragma omp barrier
#pragma omp for schedule(static)
for ( i = 0; i < n; ++i )
{
x_p[i] = x[mapping[i]];
}
#pragma omp master
{
memcpy( x, x_p, sizeof(real) * n );
}
#pragma omp barrier
}
/* Apply permutation Q^T*(LU)*Q based on graph coloring
*
* color: vertex color (1-based); vertices represent matrix rows/columns
* LU: matrix to permute, stored in CSR format
* tri: triangularity of LU (lower/upper)
*/
void permute_matrix( sparse_matrix * const LU, const TRIANGULARITY tri )
{
int i, pj, nr, nc;
sparse_matrix *LUtemp;
if ( Allocate_Matrix( &LUtemp, LU->n, LU->m ) == FAILURE )
{
fprintf( stderr, "Not enough space for graph coloring (factor permutation). Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
/* count nonzeros in each row of permuted factor (re-use color_top for counting) */
memset( color_top, 0, sizeof(unsigned int) * (LU->n + 1) );
if ( tri == LOWER )
{
for ( i = 0; i < LU->n; ++i )
{
nr = permuted_row_col_inv[i];
for ( pj = LU->start[i]; pj < LU->start[i + 1]; ++pj )
{
nc = permuted_row_col_inv[LU->j[pj]];
if ( nc <= nr )
{
++color_top[nr + 1];
}
/* correct entries to maintain triangularity (lower) */
else
{
++color_top[nc + 1];
}
}
}
}
else
{
for ( i = LU->n - 1; i >= 0; --i )
{
nr = permuted_row_col_inv[i];
for ( pj = LU->start[i]; pj < LU->start[i + 1]; ++pj )
{
nc = permuted_row_col_inv[LU->j[pj]];
if ( nc >= nr )
{
++color_top[nr + 1];
}
/* correct entries to maintain triangularity (upper) */
else
{
++color_top[nc + 1];
}
}
}
}
for ( i = 1; i < LU->n + 1; ++i )
{
color_top[i] += color_top[i - 1];
}
memcpy( LUtemp->start, color_top, sizeof(unsigned int) * (LU->n + 1) );
/* permute factor */
if ( tri == LOWER )
{
for ( i = 0; i < LU->n; ++i )
{
nr = permuted_row_col_inv[i];
for ( pj = LU->start[i]; pj < LU->start[i + 1]; ++pj )
{
nc = permuted_row_col_inv[LU->j[pj]];
if ( nc <= nr )
{
LUtemp->j[color_top[nr]] = nc;
LUtemp->val[color_top[nr]] = LU->val[pj];
++color_top[nr];
}
/* correct entries to maintain triangularity (lower) */
else
{
LUtemp->j[color_top[nc]] = nr;
LUtemp->val[color_top[nc]] = LU->val[pj];
++color_top[nc];
}
}
}
}
else
{
for ( i = LU->n - 1; i >= 0; --i )
{
nr = permuted_row_col_inv[i];
for ( pj = LU->start[i]; pj < LU->start[i + 1]; ++pj )
{
nc = permuted_row_col_inv[LU->j[pj]];
if ( nc >= nr )
{
LUtemp->j[color_top[nr]] = nc;
LUtemp->val[color_top[nr]] = LU->val[pj];
++color_top[nr];
}
/* correct entries to maintain triangularity (upper) */
else
{
LUtemp->j[color_top[nc]] = nr;
LUtemp->val[color_top[nc]] = LU->val[pj];
++color_top[nc];
}
}
}
}
memcpy( LU->start, LUtemp->start, sizeof(unsigned int) * (LU->n + 1) );
memcpy( LU->j, LUtemp->j, sizeof(unsigned int) * LU->start[LU->n] );
memcpy( LU->val, LUtemp->val, sizeof(real) * LU->start[LU->n] );
Deallocate_Matrix( LUtemp );
}
/* Setup routines to build permuted QEq matrix H (via graph coloring),
* used for preconditioning (incomplete factorizations computed based on
* permuted H)
*
* H: symmetric, lower triangular portion only, stored in CSR format;
* H is permuted in-place
*/
sparse_matrix * setup_graph_coloring( sparse_matrix * const H )
{
if ( color == NULL )
{
/* internal storage for graph coloring (global to facilitate simultaneous access to OpenMP threads) */
if ( (color = (unsigned int*) malloc(sizeof(unsigned int) * H->n)) == NULL ||
(to_color =(unsigned int*) malloc(sizeof(unsigned int) * H->n)) == NULL ||
(conflict = (unsigned int*) malloc(sizeof(unsigned int) * H->n)) == NULL ||
(recolor = (unsigned int*) malloc(sizeof(unsigned int) * H->n)) == NULL ||
(color_top = (unsigned int*) malloc(sizeof(unsigned int) * (H->n + 1))) == NULL ||
(permuted_row_col = (unsigned int*) malloc(sizeof(unsigned int) * H->n)) == NULL ||
(permuted_row_col_inv = (unsigned int*) malloc(sizeof(unsigned int) * H->n)) == NULL ||
(y_p = (real*) malloc(sizeof(real) * H->n)) == NULL ||
(Allocate_Matrix( &H_p, H->n, H->m ) == FAILURE ) ||
(Allocate_Matrix( &H_full, H->n, 2 * H->m - H->n ) == FAILURE ) )
{
fprintf( stderr, "not enough memory for graph coloring. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
}
compute_H_full( H );
graph_coloring( H_full, LOWER );
sort_colors( H_full->n, LOWER );
memcpy( H_p->start, H->start, sizeof(int) * (H->n + 1) );
memcpy( H_p->j, H->j, sizeof(int) * (H->start[H->n]) );
memcpy( H_p->val, H->val, sizeof(real) * (H->start[H->n]) );
permute_matrix( H_p, LOWER );
return H_p;
}
/* Jacobi iteration using truncated Neumann series: x_{k+1} = Gx_k + D^{-1}b
* where:
* G = I - D^{-1}R
* R = triangular matrix
* D = diagonal matrix, diagonals from R
*
* Note: used during the backsolves when applying preconditioners with
* triangular factors in iterative linear solvers
*
* Note: Newmann series arises from series expansion of the inverse of
* the coefficient matrix in the triangular system */
void jacobi_iter( const sparse_matrix * const R, const real * const Dinv,
const real * const b, real * const x, const TRIANGULARITY tri, const
unsigned int maxiter )
{
unsigned int i, k, si = 0, ei = 0, iter;
iter = 0;
#pragma omp master
{
if ( Dinv_b == NULL )
{
if ( (Dinv_b = (real*) malloc(sizeof(real) * R->n)) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
}
if ( rp == NULL )
{
if ( (rp = (real*) malloc(sizeof(real) * R->n)) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
}
if ( rp2 == NULL )
{
if ( (rp2 = (real*) malloc(sizeof(real) * R->n)) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
}
}
#pragma omp barrier
Vector_MakeZero( rp, R->n );
/* precompute and cache, as invariant in loop below */
#pragma omp for schedule(static)
for ( i = 0; i < R->n; ++i )
{
Dinv_b[i] = Dinv[i] * b[i];
}
do
{
// x_{k+1} = G*x_{k} + Dinv*b;
#pragma omp for schedule(guided)
for ( i = 0; i < R->n; ++i )
{
if (tri == LOWER)
{
si = R->start[i];
ei = R->start[i + 1] - 1;
}
else
{
si = R->start[i] + 1;
ei = R->start[i + 1];
}
rp2[i] = 0.;
for ( k = si; k < ei; ++k )
{
rp2[i] += R->val[k] * rp[R->j[k]];
}
rp2[i] *= -Dinv[i];
rp2[i] += Dinv_b[i];
}
#pragma omp master
{
rp3 = rp;
rp = rp2;
rp2 = rp3;
}
#pragma omp barrier
++iter;
}
while ( iter < maxiter );
Vector_Copy( x, rp, R->n );
}
/* Solve triangular system LU*x = y using level scheduling
*
* workspace: data struct containing matrices, lower/upper triangular, stored in CSR
* control: data struct containing parameters
* y: constants in linear system (RHS)
* x: solution
* fresh_pre: parameter indicating if this is a newly computed (fresh) preconditioner
*
* Assumptions:
* Matrices have non-zero diagonals
* Each row of a matrix has at least one non-zero (i.e., no rows with all zeros) */
static void apply_preconditioner( const static_storage * const workspace, const control_params * const control,
const real * const y, real * const x, const int fresh_pre )
{
int i, si;
/* no preconditioning */
if ( control->cm_solver_pre_comp_type == NONE_PC )
{
Vector_Copy( x, y, workspace->H->n );
}
else
{
switch ( control->cm_solver_pre_app_type )
{
case TRI_SOLVE_PA:
switch ( control->cm_solver_pre_comp_type )
{
case DIAG_PC:
diag_pre_app( workspace->Hdia_inv, y, x, workspace->H->n );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
tri_solve( workspace->L, y, x, workspace->L->n, LOWER );
tri_solve( workspace->U, x, x, workspace->U->n, UPPER );
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case TRI_SOLVE_LEVEL_SCHED_PA:
switch ( control->cm_solver_pre_comp_type )
{
case DIAG_PC:
diag_pre_app( workspace->Hdia_inv, y, x, workspace->H->n );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
tri_solve_level_sched( workspace->L, y, x, workspace->L->n, LOWER, fresh_pre );
tri_solve_level_sched( workspace->U, x, x, workspace->U->n, UPPER, fresh_pre );
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case TRI_SOLVE_GC_PA:
switch ( control->cm_solver_pre_comp_type )
{
case DIAG_PC:
fprintf( stderr, "Unsupported preconditioner computation/application method combination. Terminating...\n" );
exit( INVALID_INPUT );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
#pragma omp master
{
memcpy( y_p, y, sizeof(real) * workspace->H->n );
}
#pragma omp barrier
permute_vector( y_p, workspace->H->n, FALSE, LOWER );
tri_solve_level_sched( workspace->L, y_p, x, workspace->L->n, LOWER, fresh_pre );
tri_solve_level_sched( workspace->U, x, x, workspace->U->n, UPPER, fresh_pre );
permute_vector( x, workspace->H->n, TRUE, UPPER );
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case JACOBI_ITER_PA:
switch ( control->cm_solver_pre_comp_type )
{
case DIAG_PC:
fprintf( stderr, "Unsupported preconditioner computation/application method combination. Terminating...\n" );
exit( INVALID_INPUT );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
#pragma omp master
{
if ( Dinv_L == NULL )
{
if ( (Dinv_L = (real*) malloc(sizeof(real) * workspace->L->n)) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
}
}
#pragma omp barrier
/* construct D^{-1}_L */
if ( fresh_pre == TRUE )
{
#pragma omp for schedule(static)
for ( i = 0; i < workspace->L->n; ++i )
{
si = workspace->L->start[i + 1] - 1;
Dinv_L[i] = 1. / workspace->L->val[si];
}
}
jacobi_iter( workspace->L, Dinv_L, y, x, LOWER, control->cm_solver_pre_app_jacobi_iters );
#pragma omp master
{
if ( Dinv_U == NULL )
{
if ( (Dinv_U = (real*) malloc(sizeof(real) * workspace->U->n)) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
}
}
#pragma omp barrier
/* construct D^{-1}_U */
if ( fresh_pre == TRUE )
{
#pragma omp for schedule(static)
for ( i = 0; i < workspace->U->n; ++i )
{
si = workspace->U->start[i];
Dinv_U[i] = 1. / workspace->U->val[si];
}
}
jacobi_iter( workspace->U, Dinv_U, y, x, UPPER, control->cm_solver_pre_app_jacobi_iters );
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
}
}
/* generalized minimual residual iterative solver for sparse linear systems */
int GMRES( const static_storage * const workspace, const control_params * const control,
simulation_data * const data, const sparse_matrix * const H, const real * const b,
const real tol, real * const x, const int fresh_pre )
{
int i, j, k, itr, N, g_j, g_itr;
real cc, tmp1, tmp2, temp, ret_temp, bnorm, time_start;
N = H->n;
#pragma omp parallel default(none) private(i, j, k, itr, bnorm, ret_temp) \
shared(N, cc, tmp1, tmp2, temp, time_start, g_itr, g_j, stderr)
{
#pragma omp master
{
time_start = Get_Time( );
}
bnorm = Norm( b, N );
#pragma omp master
{
data->timing.cm_solver_vector_ops += Get_Timing_Info( time_start );
}
if ( control->cm_solver_pre_comp_type == DIAG_PC )
{
/* apply preconditioner to RHS */
#pragma omp master
{
time_start = Get_Time( );
}
apply_preconditioner( workspace, control, b, workspace->b_prc, fresh_pre );
#pragma omp master
{
data->timing.cm_solver_pre_app += Get_Timing_Info( time_start );
}
}
/* GMRES outer-loop */
for ( itr = 0; itr < control->cm_solver_max_iters; ++itr )
{
/* calculate r0 */
#pragma omp master
{
time_start = Get_Time( );
}
Sparse_MatVec( H, x, workspace->b_prm );
#pragma omp master
{
data->timing.cm_solver_spmv += Get_Timing_Info( time_start );
}
if ( control->cm_solver_pre_comp_type == DIAG_PC )
{
#pragma omp master
{
time_start = Get_Time( );
}
apply_preconditioner( workspace, control, workspace->b_prm, workspace->b_prm, FALSE );
#pragma omp master
{
data->timing.cm_solver_pre_app += Get_Timing_Info( time_start );
}
}
if ( control->cm_solver_pre_comp_type == DIAG_PC )
{
#pragma omp master
{
time_start = Get_Time( );
}
Vector_Sum( workspace->v[0], 1., workspace->b_prc, -1., workspace->b_prm, N );
#pragma omp master
{
data->timing.cm_solver_vector_ops += Get_Timing_Info( time_start );
}
}
else
{
#pragma omp master
{
time_start = Get_Time( );
}
Vector_Sum( workspace->v[0], 1., b, -1., workspace->b_prm, N );
#pragma omp master
{
data->timing.cm_solver_vector_ops += Get_Timing_Info( time_start );
}
}
if ( control->cm_solver_pre_comp_type != DIAG_PC )
{
#pragma omp master
{
time_start = Get_Time( );
}
apply_preconditioner( workspace, control, workspace->v[0], workspace->v[0],
itr == 0 ? fresh_pre : FALSE );
#pragma omp master
{
data->timing.cm_solver_pre_app += Get_Timing_Info( time_start );
}
}
#pragma omp master
{
time_start = Get_Time( );
}
ret_temp = Norm( workspace->v[0], N );
#pragma omp single
{
workspace->g[0] = ret_temp;
}
Vector_Scale( workspace->v[0], 1. / workspace->g[0], workspace->v[0], N );
#pragma omp master
{
data->timing.cm_solver_vector_ops += Get_Timing_Info( time_start );
}
/* GMRES inner-loop */
for ( j = 0; j < control->cm_solver_restart && FABS(workspace->g[j]) / bnorm > tol; j++ )
{
/* matvec */
#pragma omp master
{
time_start = Get_Time( );
}
Sparse_MatVec( H, workspace->v[j], workspace->v[j + 1] );
#pragma omp master
{
data->timing.cm_solver_spmv += Get_Timing_Info( time_start );
}
#pragma omp master
{
time_start = Get_Time( );
}
apply_preconditioner( workspace, control, workspace->v[j + 1], workspace->v[j + 1], FALSE );
#pragma omp master
{
data->timing.cm_solver_pre_app += Get_Timing_Info( time_start );
}
if ( control->cm_solver_pre_comp_type == DIAG_PC )
{
/* apply modified Gram-Schmidt to orthogonalize the new residual */
#pragma omp master
{
time_start = Get_Time( );
}
for ( i = 0; i <= j; i++ )
{
workspace->h[i][j] = Dot( workspace->v[i], workspace->v[j + 1], N );
Vector_Add( workspace->v[j + 1], -workspace->h[i][j], workspace->v[i], N );
}
#pragma omp master
{
data->timing.cm_solver_vector_ops += Get_Timing_Info( time_start );
}
}
else
{
//TODO: investigate correctness of not explicitly orthogonalizing first few vectors
/* apply modified Gram-Schmidt to orthogonalize the new residual */
#pragma omp master
{
time_start = Get_Time( );
for ( i = 0; i < j - 1; i++ )
{
workspace->h[i][j] = 0;
}
}
for ( i = MAX(j - 1, 0); i <= j; i++ )
{
ret_temp = Dot( workspace->v[i], workspace->v[j + 1], N );
#pragma omp single
{
workspace->h[i][j] = ret_temp;
}
Vector_Add( workspace->v[j + 1], -workspace->h[i][j], workspace->v[i], N );
}
#pragma omp master
{
data->timing.cm_solver_vector_ops += Get_Timing_Info( time_start );
}
}
#pragma omp master
{
time_start = Get_Time( );
}
ret_temp = Norm( workspace->v[j + 1], N );
#pragma omp single
{
workspace->h[j + 1][j] = ret_temp;
}
Vector_Scale( workspace->v[j + 1],
1. / workspace->h[j + 1][j], workspace->v[j + 1], N );
#pragma omp master
{
data->timing.cm_solver_vector_ops += Get_Timing_Info( time_start );
}
#if defined(DEBUG)
fprintf( stderr, "%d-%d: orthogonalization completed.\n", itr, j );
#endif
#pragma omp master
{
time_start = Get_Time( );
if ( control->cm_solver_pre_comp_type == NONE_PC ||
control->cm_solver_pre_comp_type == DIAG_PC )
{
/* Givens rotations on the upper-Hessenberg matrix to make it U */
for ( i = 0; i <= j; i++ )
{
if ( i == j )
{
cc = SQRT( SQR(workspace->h[j][j]) + SQR(workspace->h[j + 1][j]) );
workspace->hc[j] = workspace->h[j][j] / cc;
workspace->hs[j] = workspace->h[j + 1][j] / cc;
}
tmp1 = workspace->hc[i] * workspace->h[i][j] +
workspace->hs[i] * workspace->h[i + 1][j];
tmp2 = -workspace->hs[i] * workspace->h[i][j] +
workspace->hc[i] * workspace->h[i + 1][j];
workspace->h[i][j] = tmp1;
workspace->h[i + 1][j] = tmp2;
}
}
else
{
//TODO: investigate correctness of not explicitly orthogonalizing first few vectors
/* Givens rotations on the upper-Hessenberg matrix to make it U */
for ( i = MAX(j - 1, 0); i <= j; i++ )
{
if ( i == j )
{
cc = SQRT( SQR(workspace->h[j][j]) + SQR(workspace->h[j + 1][j]) );
workspace->hc[j] = workspace->h[j][j] / cc;
workspace->hs[j] = workspace->h[j + 1][j] / cc;
}
tmp1 = workspace->hc[i] * workspace->h[i][j] +
workspace->hs[i] * workspace->h[i + 1][j];
tmp2 = -workspace->hs[i] * workspace->h[i][j] +
workspace->hc[i] * workspace->h[i + 1][j];
workspace->h[i][j] = tmp1;
workspace->h[i + 1][j] = tmp2;
}
}
/* apply Givens rotations to the rhs as well */
tmp1 = workspace->hc[j] * workspace->g[j];
tmp2 = -workspace->hs[j] * workspace->g[j];
workspace->g[j] = tmp1;
workspace->g[j + 1] = tmp2;
data->timing.cm_solver_orthog += Get_Timing_Info( time_start );
}
#pragma omp barrier
//fprintf( stderr, "h: " );
//for( i = 0; i <= j+1; ++i )
//fprintf( stderr, "%.6f ", workspace->h[i][j] );
//fprintf( stderr, "\n" );
//fprintf( stderr, "res: %.15e\n", workspace->g[j+1] );
}
/* solve Hy = g: H is now upper-triangular, do back-substitution */
#pragma omp master
{
time_start = Get_Time( );
for ( i = j - 1; i >= 0; i-- )
{
temp = workspace->g[i];
for ( k = j - 1; k > i; k-- )
{
temp -= workspace->h[i][k] * workspace->y[k];
}
workspace->y[i] = temp / workspace->h[i][i];
}
data->timing.cm_solver_tri_solve += Get_Timing_Info( time_start );
/* update x = x_0 + Vy */
time_start = Get_Time( );
}
Vector_MakeZero( workspace->p, N );
for ( i = 0; i < j; i++ )
{
Vector_Add( workspace->p, workspace->y[i], workspace->v[i], N );
}
Vector_Add( x, 1., workspace->p, N );
#pragma omp master
{
data->timing.cm_solver_vector_ops += Get_Timing_Info( time_start );
}
/* stopping condition */
if ( FABS(workspace->g[j]) / bnorm <= tol )
{
break;
}
}
#pragma omp master
{
g_itr = itr;
g_j = j;
}
}
if ( g_itr >= control->cm_solver_max_iters )
{
fprintf( stderr, "GMRES convergence failed\n" );
return g_itr * (control->cm_solver_restart + 1) + g_j + 1;
}
return g_itr * (control->cm_solver_restart + 1) + g_j + 1;
}
int GMRES_HouseHolder( const static_storage * const workspace,
const control_params * const control, simulation_data * const data,
const sparse_matrix * const H, const real * const b, real tol,
real * const x, const int fresh_pre )
{
int i, j, k, itr, N;
real cc, tmp1, tmp2, temp, bnorm;
real v[10000], z[control->cm_solver_restart + 2][10000], w[control->cm_solver_restart + 2];
real u[control->cm_solver_restart + 2][10000];
N = H->n;
bnorm = Norm( b, N );
/* apply the diagonal pre-conditioner to rhs */
for ( i = 0; i < N; ++i )
{
workspace->b_prc[i] = b[i] * workspace->Hdia_inv[i];
}
// memset( x, 0, sizeof(real) * N );
/* GMRES outer-loop */
for ( itr = 0; itr < control->cm_solver_max_iters; ++itr )
{
/* compute z = r0 */
Sparse_MatVec( H, x, workspace->b_prm );
for ( i = 0; i < N; ++i )
{
workspace->b_prm[i] *= workspace->Hdia_inv[i]; /* pre-conditioner */
}
Vector_Sum( z[0], 1., workspace->b_prc, -1., workspace->b_prm, N );
Vector_MakeZero( w, control->cm_solver_restart + 1 );
w[0] = Norm( z[0], N );
Vector_Copy( u[0], z[0], N );
u[0][0] += ( u[0][0] < 0.0 ? -1 : 1 ) * w[0];
Vector_Scale( u[0], 1 / Norm( u[0], N ), u[0], N );
w[0] *= ( u[0][0] < 0.0 ? 1 : -1 );
// fprintf( stderr, "\n\n%12.6f\n", w[0] );
/* GMRES inner-loop */
for ( j = 0; j < control->cm_solver_restart && fabs( w[j] ) / bnorm > tol; j++ )
{
/* compute v_j */
Vector_Scale( z[j], -2 * u[j][j], u[j], N );
z[j][j] += 1.; /* due to e_j */
for ( i = j - 1; i >= 0; --i )
{
Vector_Add( z[j] + i, -2 * Dot( u[i] + i, z[j] + i, N - i ), u[i] + i, N - i );
}
/* matvec */
Sparse_MatVec( H, z[j], v );
for ( k = 0; k < N; ++k )
{
v[k] *= workspace->Hdia_inv[k]; /* pre-conditioner */
}
for ( i = 0; i <= j; ++i )
{
Vector_Add( v + i, -2 * Dot( u[i] + i, v + i, N - i ), u[i] + i, N - i );
}
if ( !Vector_isZero( v + (j + 1), N - (j + 1) ) )
{
/* compute the HouseHolder unit vector u_j+1 */
for ( i = 0; i <= j; ++i )
{
u[j + 1][i] = 0;
}
Vector_Copy( u[j + 1] + (j + 1), v + (j + 1), N - (j + 1) );
u[j + 1][j + 1] += ( v[j + 1] < 0.0 ? -1 : 1 ) * Norm( v + (j + 1), N - (j + 1) );
Vector_Scale( u[j + 1], 1 / Norm( u[j + 1], N ), u[j + 1], N );
/* overwrite v with P_m+1 * v */
v[j + 1] -= 2 * Dot( u[j + 1] + (j + 1), v + (j + 1), N - (j + 1) ) * u[j + 1][j + 1];
Vector_MakeZero( v + (j + 2), N - (j + 2) );
// Vector_Add( v, -2 * Dot( u[j+1], v, N ), u[j+1], N );
}
/* prev Givens rots on the upper-Hessenberg matrix to make it U */
for ( i = 0; i < j; i++ )
{
tmp1 = workspace->hc[i] * v[i] + workspace->hs[i] * v[i + 1];
tmp2 = -workspace->hs[i] * v[i] + workspace->hc[i] * v[i + 1];
v[i] = tmp1;
v[i + 1] = tmp2;
}
/* apply the new Givens rotation to H and right-hand side */
if ( fabs(v[j + 1]) >= ALMOST_ZERO )
{
cc = SQRT( SQR( v[j] ) + SQR( v[j + 1] ) );
workspace->hc[j] = v[j] / cc;
workspace->hs[j] = v[j + 1] / cc;
tmp1 = workspace->hc[j] * v[j] + workspace->hs[j] * v[j + 1];
tmp2 = -workspace->hs[j] * v[j] + workspace->hc[j] * v[j + 1];
v[j] = tmp1;
v[j + 1] = tmp2;
/* Givens rotations to rhs */
tmp1 = workspace->hc[j] * w[j];
tmp2 = -workspace->hs[j] * w[j];
w[j] = tmp1;
w[j + 1] = tmp2;
}
/* extend R */
for ( i = 0; i <= j; ++i )
{
workspace->h[i][j] = v[i];
}
// fprintf( stderr, "h:" );
// for( i = 0; i <= j+1 ; ++i )
// fprintf( stderr, "%.6f ", h[i][j] );
// fprintf( stderr, "\n" );
// fprintf( stderr, "%12.6f\n", w[j+1] );
}
/* solve Hy = w.
H is now upper-triangular, do back-substitution */
for ( i = j - 1; i >= 0; i-- )
{
temp = w[i];
for ( k = j - 1; k > i; k-- )
{
temp -= workspace->h[i][k] * workspace->y[k];
}
workspace->y[i] = temp / workspace->h[i][i];
}
// fprintf( stderr, "y: " );
// for( i = 0; i < control->cm_solver_restart+1; ++i )
// fprintf( stderr, "%8.3f ", workspace->y[i] );
/* update x = x_0 + Vy */
// memset( z, 0, sizeof(real) * N );
// for( i = j-1; i >= 0; i-- )
// {
// Vector_Copy( v, z, N );
// v[i] += workspace->y[i];
//
// Vector_Sum( z, 1., v, -2 * Dot( u[i], v, N ), u[i], N );
// }
//
// fprintf( stderr, "\nz: " );
// for( k = 0; k < N; ++k )
// fprintf( stderr, "%6.2f ", z[k] );
// fprintf( stderr, "\nx_bef: " );
// for( i = 0; i < N; ++i )
// fprintf( stderr, "%6.2f ", x[i] );
// Vector_Add( x, 1, z, N );
for ( i = j - 1; i >= 0; i-- )
{
Vector_Add( x, workspace->y[i], z[i], N );
}
/* stopping condition */
if ( fabs( w[j] ) / bnorm <= tol )
{
break;
}
}
if ( itr >= control->cm_solver_max_iters )
{
fprintf( stderr, "GMRES convergence failed\n" );
return itr * (control->cm_solver_restart + 1) + j + 1;
}
return itr * (control->cm_solver_restart + 1) + j + 1;
}
/* Conjugate Gradient */
int CG( const static_storage * const workspace, const control_params * const control,
const sparse_matrix * const H, const real * const b, const real tol,
real * const x, const int fresh_pre )
{
int i, itr, N;
real tmp, alpha, beta, b_norm, r_norm;
real *d, *r, *p, *z;
real sig_old, sig_new;
N = H->n;
d = workspace->d;
r = workspace->r;
p = workspace->q;
z = workspace->p;
#pragma omp parallel default(none) private(i, tmp, alpha, beta, b_norm, r_norm, sig_old, sig_new) \
shared(itr, N, d, r, p, z)
{
b_norm = Norm( b, N );
Sparse_MatVec( H, x, d );
Vector_Sum( r, 1.0, b, -1.0, d, N );
r_norm = Norm( r, N );
apply_preconditioner( workspace, control, r, z, fresh_pre );
Vector_Copy( p, z, N );
sig_new = Dot( r, z, N );
for ( i = 0; i < control->cm_solver_max_iters && r_norm / b_norm > tol; ++i )
{
Sparse_MatVec( H, p, d );
tmp = Dot( d, p, N );
alpha = sig_new / tmp;
Vector_Add( x, alpha, p, N );
Vector_Add( r, -alpha, d, N );
r_norm = Norm( r, N );
apply_preconditioner( workspace, control, r, z, FALSE );
sig_old = sig_new;
sig_new = Dot( r, z, N );
beta = sig_new / sig_old;
Vector_Sum( p, 1., z, beta, p, N );
}
#pragma omp single
itr = i;
}
if ( itr >= control->cm_solver_max_iters )
{
fprintf( stderr, "[WARNING] CG convergence failed (%d iters)\n", itr );
return itr;
}
return itr;
}
/* Steepest Descent */
int SDM( const static_storage * const workspace, const control_params * const control,
const sparse_matrix * const H, const real * const b, const real tol,
real * const x, const int fresh_pre )
{
int i, itr, N;
real tmp, alpha, b_norm;
real sig;
N = H->n;
#pragma omp parallel default(none) private(i, tmp, alpha, b_norm, sig) \
shared(itr, N)
{
b_norm = Norm( b, N );
Sparse_MatVec( H, x, workspace->q );
Vector_Sum( workspace->r , 1.0, b, -1.0, workspace->q, N );
apply_preconditioner( workspace, control, workspace->r, workspace->d, fresh_pre );
sig = Dot( workspace->r, workspace->d, N );
for ( i = 0; i < control->cm_solver_max_iters && SQRT(sig) / b_norm > tol; ++i )
{
Sparse_MatVec( H, workspace->d, workspace->q );
sig = Dot( workspace->r, workspace->d, N );
/* ensure each thread gets a local copy of
* the function return value
* (which is stored as global inside the function)
* before proceeding */
#pragma omp barrier
tmp = Dot( workspace->d, workspace->q, N );
alpha = sig / tmp;
Vector_Add( x, alpha, workspace->d, N );
Vector_Add( workspace->r, -alpha, workspace->q, N );
apply_preconditioner( workspace, control, workspace->r, workspace->d, FALSE );
}
#pragma omp single
itr = i;
}
if ( itr >= control->cm_solver_max_iters )
{
fprintf( stderr, "[WARNING] SDM convergence failed (%d iters)\n", itr );
return itr;
}
return itr;
}
/* Estimate the stability of a 2-side preconditioning scheme
* using the factorization A \approx LU. Specifically, estimate the 1-norm of A^{-1}
* using the 1-norm of (LU)^{-1}e, with e = [1 1 ... 1]^T through 2 triangular solves:
* 1) Ly = e
* 2) Ux = y where y = Ux
* That is, we seek to solve e = LUx for unknown x
*
* Reference: Incomplete LU Preconditioning with the Multilevel Fast Multipole Algorithm
* for Electromagnetic Scattering, SIAM J. Sci. Computing, 2007 */
real condest( const sparse_matrix * const L, const sparse_matrix * const U )
{
unsigned int i, N;
real *e, c;
N = L->n;
if ( (e = (real*) malloc(sizeof(real) * N)) == NULL )
{
fprintf( stderr, "Not enough memory for condest. Terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
memset( e, 1., N * sizeof(real) );
tri_solve( L, e, e, L->n, LOWER );
tri_solve( U, e, e, U->n, UPPER );
/* compute 1-norm of vector e */
c = FABS(e[0]);
for ( i = 1; i < N; ++i)
{
if ( FABS(e[i]) > c )
{
c = FABS(e[i]);
}
}
free( e );
return c;
}