Skip to content
Snippets Groups Projects
Commit 423c9507 authored by shawk masboob's avatar shawk masboob
Browse files

deleted unnecessary tests

parent 233b81cb
No related branches found
No related tags found
No related merge requests found
import TDA_Prediction as tdap
from Topological_ML import TDA_Prediction as tdap
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import kmapper as km
import pandas as pd
from unittest.mock import patch, Mock
import numpy as np
import matplotlib.pyplot as plt
import sklearn
from sklearn import ensemble
def test_numpy_to_pandas():
from sklearn.datasets import fetch_california_housing
cal_housing = fetch_california_housing()
value = tdap.numpy_to_pandas(cal_housing)
assert value == df
def test_data_summary():
data = pd.DataFrame({"A": [1,2,3,4,5,6,7,8,9,10]})
correct_response = {"head": [1,2,3,4,5,6,7,8,9,10], "shape": [10, 1], "describe": 0}
values = tdap.data_summary(data, 5)
assert values == correct_response
return
def test_accuracy_metrics1():
values = tdap.accuracy_metrics(None, None)
assert values == None
return
def test_linear_regression():
a = pd.DataFrame({"A": [1,2,3,4,5,6,7,8,9,10]})
b = pd.DataFrame({"B": [2,4,6,8,10,12,14,16,18,20]})
correct_response = 1
values = tdap.linear_regression(a, b)
assert values == correct_response
return
def test_accuracy_metrics2():
values = tdap.accuracy_metrics({}, None)
assert values == None
return
def test_lens_1d():
a = pd.DataFrame({"A": [0,0]})
correct_response = np.array([[0., 0.],[0., 0.]])
values = tdap.lens_1d(a,123,1)
assert values == correct_response
return
def test_descriptive_statistic():
data = pd.DataFrame({'a':[1,2,3,4,5]})
values = tdap.descriptive_statistic(data, 5)
assert values == 5
return
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment