Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# -*- coding: utf-8 -*-
"""
Data-Cube Widget Class.
Contains RadarWidget class used to visualize a radar Data-Cube represenataion
of fast- and slow-time data.
Author: Jason Merlo
Maintainer: Jason Merlo (merlojas@msu.edu)
"""
import pyqtgraph as pg # Used for RadarWidget superclass
import numpy as np # Used for numerical operations
from scipy import signal # Used for upsampling
import time # Used for FPS calculations
from matplotlib import cm # Used for colormaps
class DataCubeWidget(pg.PlotWidget):
def __init__(self, radar, fast_time_yrange=[-90,20],
fast_time_xrange=[-5e3,5e3]):
super(SpectrogramWidget, self).__init__()
# Copy arguments to member variables
self.data_mgr = radar.data_mgr
self.source = self.data_mgr.source
self.radar = radar
self.spectrogram_length = spectrogram_length
self.update_period = \
self.source.sample_chunk_size / self.source.sample_rate
self.show_max_plot = show_max_plot
# TODO temp
self.downsample = 10
# FPS ticker data
self.lastTime = time.time()
self.fps = None
# -----
self.img = pg.ImageItem()
self.addItem(self.img)
# Allocate image array to store spectrogram
self.img_array = np.zeros((int(self.radar.cfft_data.size / self.downsample), spectrogram_length))
# Get the colormap
colormap = cm.get_cmap("jet") # cm.get_cmap("CMRmap")
colormap._init()
lut = (colormap._lut * 255).view(np.ndarray)
# set colormap
self.img.setLookupTable(lut)
self.img.setLevels([-90, 0])
self.img.scale(1, self.radar.bin_size * self.downsample)
self.setRange(disableAutoRange=True, yRange=np.array(fft_xrange))
self.setLimits(
yMin=-self.source.sample_rate/2, yMax=self.source.sample_rate/2)
self.img.translate(0, -self.radar.cfft_data.size / (2 * self.downsample))
self.setLabel('left', 'Frequency', units='Hz')
self.showGrid(x=False, y=True)
left_axis=self.getAxis('left')
left_axis.setGrid(255)
self.img.setCompositionMode(pg.QtGui.QPainter.CompositionMode_Plus)
def update_datacube(self):
if self.radar.cfft_data is not None:
pass
def update_plot(self):
ALPHA = 0.75
AVG_SAMPLES = 2*self.speed
if self.radar.cfft_data is not None:
downsampled = self.radar.cfft_data[::self.downsample]
log_fft = 10 * np.log(downsampled)
avg_samples = self.img_array[:, -AVG_SAMPLES:]
avg_psd = np.average(avg_samples, axis=1)
new_psd = avg_psd * (1-ALPHA)/self.speed + log_fft * ALPHA
self.img_array = np.roll(self.img_array, -self.speed, 1)
self.img_array[:,-self.speed:] = np.repeat(np.expand_dims(new_psd, axis=1), self.speed,axis=1)
self.img.setImage(self.img_array.T, autoLevels=False, autoDownsample=True)
print(self.getAxis("left").range)
def update_fps(self):
now = time.time()
dt = now - self.lastTime
self.lastTime = now
if self.fps is None:
self.fps = 1.0 / dt
else:
s = np.clip(dt * 3., 0, 1)
self.fps = self.fps * (1 - s) + (1.0 / dt) * s
print('%0.2f fps' % self.fps)
def update(self):
self.update_spectrogram()
self.update_fps()
def reset(self):
self.fmax_data = []
# When paused, redraw after reset
if self.data_mgr.paused:
self.update()