Newer
Older
# -*- coding: utf-8 -*-
"""
AP-S Tracker Class.
Author: Jason Merlo
Maintainer: Jason Merlo (merlojas@msu.edu)
"""
import numpy as np # Storing data
from pyratk.datatypes.ts_data import TimeSeries # storing data
from pyratk.datatypes.motion import StateMatrix
from pyratk.datatypes.geometry import Point
from pyratk.datatypes.radar import Detection
class ApsTracker(object):
"""Class to track detections using 4 doppler measurements."""
# === INITIALIZATION METHODS ============================================= #
def __init__(self, daq, receiver_array, moving_average_weight=1.0):
"""
Initialize tracker class.
"""
# copy arguments into attributes
self.daq = daq
self.receiver_array = receiver_array
self.detections = []
self.max_freq = np.zeros(len(receiver_array))
self.max_range = np.zeros(len(receiver_array))
self.weight = moving_average_weight
self.pulse = self.receiver_array[0].transmitter.pulses[0]
self.chirp_rate = self.pulse.bw / self.pulse.delay

Merlo, Jason
committed
# Configure control signals
self.connect_control_signals()
def connect_control_signals(self):
"""Initialize control signals."""
self.receiver_array.data_available_signal.connect(self.update)
self.daq.reset_signal.connect(self.reset)
# ====== CONTROL METHODS ================================================= #
def update(self):
"""
Update position of track based on new data.
Called by data_available_signal signal in DAQ.
"""
self.detections.clear()
# Add new Detection objects to detections list
fft_mats = [self.receiver_array[0].fft_mat, self.receiver_array[1].fft_mat]
var0 = np.power(np.mean(self.receiver_array[0].fft_mat,axis=0),2)
var1 = np.power(np.mean(self.receiver_array[1].fft_mat,axis=0),2)
#var0=signal.resample_poly(var00,4,1)
#var1=signal.resample_poly(var01,4,1)
self.max_freq[0] = (np.argmax(var0, axis=0) - self.receiver_array[0].fast_center_bin) * self.receiver_array[0].fast_bin_size
self.max_freq[1] = (np.argmax(var1, axis=0) - self.receiver_array[1].fast_center_bin) * self.receiver_array[1].fast_bin_size
self.max_range[0] += (np.abs(self.max_freq[0] * 3e8/self.chirp_rate/2) - 2.47) * self.weight
self.max_range[1] += (np.abs(self.max_freq[1] * 3e8/self.chirp_rate/2) - 2.47) * self.weight
theta = np.arcsin((self.max_range[0] - self.max_range[1]) / self.baseline) + np.pi * 0.5
# loc is cylindrical (R, theta, Z), but Z is ignored by plot
#R = np.random.rand() * 15
#theta = np.random.rand() * np.pi
loc = Point(R, theta, 0.0)
new_detection = Detection(loc)
self.detections.append(new_detection)
def reset(self):
"""Reset all temporal elements."""
print("(tracker.py) Resetting tracker...")
self.detections.clear()
# class TrackerEvaluator(Object):
# def __init__():