Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PK_Optimizer
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tu, Ethan
PK_Optimizer
Commits
3acf51d9
Commit
3acf51d9
authored
5 years ago
by
Tu, Ethan
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
c4b51dd5
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pk_optimizer/2_Comp_Model_PK.ipynb
+178
-0
178 additions, 0 deletions
pk_optimizer/2_Comp_Model_PK.ipynb
with
178 additions
and
0 deletions
pk_optimizer/2_Comp_Model_PK.ipynb
0 → 100644
+
178
−
0
View file @
3acf51d9
{
"cells": [
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The mean transit time is 1.5\n",
"The extraction fraction is 0.6321205588285577\n",
"Cp at 10 sec is 0.023400076577464173\n",
"Cisf at 10 sec is 0.038131979959528696\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VNX5+PHPk30PkEAQiBD2RQHZEQVEUFALUjcQF2wrRUWRWluwtqL9VmndsbTWBSr+VFRQoFRFEaKClU0R2ddowk6AkH09vz/uJAwhyyTMncnMPG9f93Xn3rnLc5k4z5xz7j1HjDEopZRSAEHeDkAppVTDoUlBKaVUBU0KSimlKmhSUEopVUGTglJKqQqaFJRSSlWwNSmIyEgR2Skie0RkehXvPy8imxzTLhE5ZWc8SimlaiZ2PacgIsHALmAEkAGsB8YbY7ZVs/39wCXGmF/YEpBSSqla2VlS6AfsMcbsM8YUAQuAMTVsPx54x8Z4lFJK1SLExmO3BNKdljOA/lVtKCKtgRRgZTXvTwImAURGRvZOTk6uV0BlZWUEBQVWM4pec2DQaw4M53PNu3btOm6MaVrbdnYmBaliXXV1VeOAhcaY0qreNMa8ArwC0KdPH7Nhw4Z6BZSamsrQoUPrta+v0msODHrNgeF8rllEfnRlOzvTbAbg/JO+FXCwmm3HoVVHSinldXYmhfVABxFJEZEwrC/+pZU3EpFOQGPgfzbGopRSygW2JQVjTAkwBVgObAfeM8ZsFZEnRGS006bjgQVGu2tVSimvs7NNAWPMR8BHldb9qdLyTDtjUEqdv+LiYjIyMigoKPB2KBXi4+PZvn27t8PwKFeuOSIiglatWhEaGlqvc9iaFJRS/iEjI4PY2FjatGmDSFX3kHhednY2sbGx3g7Do2q7ZmMMmZmZZGRkkJKSUq9zBNb9XEqpeikoKCAhIaHBJARVNREhISHhvEp0mhSUUi7RhOAbzvdz0uojVaXcXHj7bTh9GgoKICICHngA6llNqZTyEZoUVJVefBH+8Iez14WEwNSp3olHqZiYGHJyctx6zLS0NL7++mtuvfXWKt/r0qULnTp1qli3bt06wsLCbDn3hg0bmD9/PrNnz3bL8etLq4/UOYyBuXNh8GA4dQoKC2HECHj8cThxwtvRKeU+aWlpvP3229W+365dOzZt2lQxuSshVHXuPn36eD0hgCYFVYWvvoK9e+FXv4L4eAgLg2efhawseOIJb0enAl15Vw+33347nTt3ZsKECZQ/5tSmTRt+//vf069fP/r168eePXsAmDhxIgsXLqw4RkxMDADTp0/nq6++omfPnjz//PMunX/mzJk888wzFcsXXXQRaWlpFSWLu+++m27dunHVVVeRn58PwJ49exg+fDg9evSgV69e7N2795xzp6amct111wFw4sQJrr/+erp3786AAQPYvHkzAE8++SS/+MUvGDp0KG3btrUliWj1kTrHvHkQGws33HBm3cUXwy9/CXPmwL33QseO3otPedeDD8KmTe49Zs+e8MILrm//3XffsXbtWjp27MigQYNYs2YNl112GQBxcXGsW7eO+fPn8+CDD7Js2bJqjzNr1iyeeeaZarfZu3cvPXv2BGDQoEHMmTOnxrh2797NO++8w6uvvsrNN9/MokWLuO2225gwYQLTp09n7NixFBQUUFZWds65U1NTK47z2GOPcckll7B48WJWrlzJHXfcwSbHP/qOHTtYtWoV2dnZdOrUiXvuuafezyRURUsK6izZ2fDee3DLLRAVdfZ7f/6z1eD88MPeiU2pcv369aNly5YEBQXRs2dP0tLSKt4bP358xfx//zu/3nOcq49qSwgAKSkpFUmkd+/epKWlkZ2dzYEDBxg7dixgPVwWVfl/rkpWr17N7bffDsCwYcPIzMwkKysLgGuvvZbw8HASExNp1qwZR44cOZ9LPIeWFNRZ3n8f8vLgF1UMdZSUBI88Yk3r10Pfvp6PT3lfXX7R2yU8PLzidXBwMCUlJRXLzrdklr8OCQmhrKwMsB7wKioqqve5nY8FnPVMQOW48vPzqU8PPlXtU34tNV27O2hJQZ1l3jzo1AkGDKj6/XvusW5LXbDAs3Ep5ap33323Yj5w4EDAamvYuHEjAEuWLKG4uBiA2NhYsrOz63T8Nm3a8O233wLw7bffsn///hq3j4uLo1WrVixevBiAwsJC8vLyajz34MGDeeuttwCrWikxMZG4uLg6xVlfmhRUhV27YPVquOsuqO75l0aN4OqrrRKF048lpRqMwsJC+vfvz4svvljReHz33XfzxRdf0K9fP9auXUt0dDQA3bt3JyQkhB49erjc0HzDDTdw4sQJevbsyT//+U86utDA9uabbzJ79my6d+/OpZdeyuHDh2s898yZM9mwYQPdu3dn+vTpvPHGG3X8VzgPxhifmnr37m3qa9WqVfXe11fV5Zqfe84YMCY9vebt5s+3tvv66/OLzS76Obvftm3bbD1+fZw+ffqcda1btzbHjh3zQjSeUdU1V6WqzwvYYFz4jtWSgqqwbRs0bQqtWtW83ejR1m2q773nmbiUUp6jSUFV2L4dOneufbv4eBg5UquQVMOTlpZGYmKit8PwaZoUFGA9xbx9O3Tp4tr2N98MBw7Aed7xp5RqYDQpKACOHbO6sHA1KfzsZxAerlVISvkbTQoKsEoJ4HpSiIuDUaO0Ckkpf6NJQQF1TwpgVSEdOqRVSEr5E00KCrCSQnQ0JCe7vs+oURAUBJ9+al9cSpU7fPgw48aNo127dnTt2pUbbriBXbt2eTssv6NJQQFn7jyqy6BNjRpZXV189pl9cSkF1vNUY8eOZejQoezdu5dt27bx2GOPub3fH2VzUhCRkSKyU0T2iMj0ara5WUS2ichWEam+Y3Nlq7rceeRs+HBYt87qVlspu6xatYrQ0FAmT55csa579+6UlpYyePBgxo4dS9euXZk8efJZ/RKpurOtQzwRCQbmACOADGC9iCw1xmxz2qYDMAMYZIw5KSLN7IpHVS87GzIy6pcURoyAv/wFUlNhzBi3h6YaoAc/eZBNh93bd3bP5j15YWT1Pe1t2bKF3r17V/neunXr2LZtG61bt2bkyJF88MEH3HjjjW6NL5DYWVLoB+wxxuwzxhQBC4DKXxt3A3OMMScBjDFHbYxHVWPHDmten6QwYIDVxfaKFe6NSSlX9evXj7Zt2xIcHMz48eNZvXq1t0PyaXZ2nd0SSHdazgD6V9qmI4CIrAGCgZnGmE8qH0hEJgGTAJKSks4ajKIucnJy6r2vr3LlmpcvTwK6kJ29jtTUvDqf4+KLL2bJkkhuuGFd/YJ0M/2c3S8+Pr6iR88/D/qzLeeoqbfSlJQU3n333bO2KS0tJS8vj7Kysor1BQUFFBcX17nnU19RWlrq0rUVFBTU/+/BlQ6S6jMBNwGvOS3fDrxUaZtlwIdAKJCClTga1XRc7RCvbly55unTjQkJMaaoqH7nKO9I76ef6re/u+nn7H7e7hCvrKzM9OvXz7zyyisV61atWmVmzpxpIiIizL59+0xpaam56qqrzMKFC70Yqb18vUO8DMD5BsdWwMEqtllijCk2xuwHdgIdbIxJVWH7dmjf3honoT6GD7fmWoWk7CIifPjhh3z22We0a9eObt268dRTT9GiRQsGDhzI9OnTueiii0hJSakY4UzVj53VR+uBDiKSAhwAxgG3VtpmMTAe+LeIJGJVJ+2zMSZVhe3boVu3+u9/0UXWqGwrVlhjMShlhxYtWvCeU78q2dnZbNy4kaioqIqBddT5s62kYIwpAaYAy4HtwHvGmK0i8oSIjHZsthzIFJFtwCrgYWNMpl0xqXMVFcHevfVrZC4nYpUWVqzQLi+U8nW2jtFsjPkI+KjSuj85vTbAbxyT8oLdu6G09PySAli3pr71FvzwA/To4Z7YlKrN0KFDGTp0qLfD8Cv6RHOAq0+fR1UZNsyaB9hNP0r5HU0KAW7PHmvuwjCzNUpOhjZt4KuvzjskpZQXaVIIcEeOWB3hxcae/7EGD4Yvv7QG7FFK+SZNCgHuyBHrziF3uPxya7CenTvdczyllOdpUghw7kwKgwdbc61CUnaoquvsL7/8stZ+jmbPnk2XLl2YMGGChyL1bbbefaQaviNHoIObHhfs0MFKMF9+CXff7Z5jKgVnus6+8847WbBgAQBr1qyhrKyMhQsX1rjvP/7xDz7++GNSUlI8EarP05JCgHNnSUHEqkLSkoJyt+q6zk5OTuaiiy4CYOvWrfTr14+ePXvSvXt3du/ezeTJk9m3bx+jR4/m+eef91b4PkVLCgGspAQyM92XFMCqQlq4EH78EVq3dt9xVcPxyYOfcHjTYbces3nP5ox8YWS179fUdXa5l19+malTpzJhwgSKioooLS3l5Zdf5pNPPmHVqlUkJia6NWZ/pSWFAHb8uHWnUDM3jmJx+eXWXEsLytMGDhzIk08+yV//+ld+/PFHIiMjvR2ST9KSQgArH8nQnSWFiy+G+HgrKdx2m/uOqxqOmn7R26Vbt261th3ceuut9O/fn//+979cffXVvPbaawwrf6pSuUxLCgHMjqQQHAyDBlmNzUq5y7BhwygsLOTVV1+tWLdx40Z+/PHHiuV9+/bRtm1bHnjgAUaPHs3mzZu9EarP06QQwOxICmC1K+zYAUd1HD3lJjV1nV3u3Xff5aKLLqJnz57s2LGDO+64w4sR+y6tPgpg5V/a7k4K5e0Kq1fDz3/u3mOrwFVV19mxsbFs2bIFgBkzZjBjxoxz9ktLS/NUiH5BSwoB7MgRCAuDuDj3Hrd3bwgPhzVr3HtcpZT9NCkEsPJnFETce9zwcOjbV5OCUr5Ik0IAc+eDa5UNGgQbN0Jenj3HV55ntKdDn3C+n5MmhQBmd1IoKYH16+05vvKsiIgIMjMzNTE0cMYYMjMziYiIqPcxtKE5gB09Cr162XPsSy+15mvWwJAh9pxDeU6rVq3IyMjg2LFj3g6lQkFBwXl9+fkiV645IiKCVq1a1fscmhQCVFmZlRTsKikkJFijuWm7gn8IDQ1tcB3Kpaamcskll3g7DI/yxDVr9VGAOnnSqt5xZxcXlQ0aBF9/bSUgpZRv0KQQoOx6cM3ZoEFw6tSZcaCVUg2frUlBREaKyE4R2SMi06t4f6KIHBORTY7pV3bGo87wVFIArUJSypfYlhREJBiYA4wCugLjRaRrFZu+a4zp6ZhesysedTa7nmZ21r49NG2qSUEpX2JnSaEfsMcYs88YUwQsAMbYeD5VB54oKYhYpQVNCkr5DjvvPmoJpDstZwD9q9juBhEZDOwCphlj0itvICKTgEkASUlJpKam1iugnJyceu/rq6q75nXrUggKupDNm78gyMafBs2bJ7N4cTs++GANTZoU23ciJ/o5Bwa9ZpsYY2yZgJuA15yWbwdeqrRNAhDueD0ZWFnbcXv37m3qa9WqVfXe11dVd82//KUxzZvbf/6vvzYGjFm0yP5zldPPOTDoNdcNsMG48N1d429EETldy5QtIruq2T0DSHZabgUcrJSQMo0xhY7FV4Gax9tTbmPn08zOevXSzvGU8iW1VRzsNcbE1TDFArnV7Lse6CAiKSISBowDljpvICIXOC2OBvTmRQ+x88E1Z9o5nlK+pbakcIMLx6hyG2NMCTAFWI71Zf+eMWariDwhIqMdmz0gIltF5HvgAWCia2Gr8+WpkgJYjc3ffgv5+Z45n1Kq/mpMCsaYfbUdoKZtjDEfGWM6GmPaGWP+4lj3J2PMUsfrGcaYbsaYHsaYK4wxO+p6AarujPF8Uigu1s7xlPIFtbUpZFfRhlAx91SQyr2ys6GgwN4uLpw5d46nlGrYarsl9XOgOfABsMAY85P9ISm7eeIZBWcJCdC5syYFpXxBbdVH1wNXA8eAV0XkCxG5V0SaeCQ6ZQtPPM1cmXaOp5RvqPWxJWNMljFmHlZ3FS8DT6ANwj7N0yUFsJLCyZOwQ1uNlGrQak0KInKpiLwEfAsMAsYaY56zPTJlG28lBdAqJKUautoamtOAfwAHsLqZmAvkikgvEbFpzC5lt/Lqo6ZNPXfODh20czylfEFtDc1pgMFqV7i60nsGGGZDTMpmWVkQEwMhHhx3TzvHU8o31Pi1YIwZ6qE4lAedPg1xcZ4/76BBsHixZ5+RUErVjUu/FR1jI1wLtHHeR9sWfNPp0xAf7/nzlrcrfP01jB3r+fMrpWrnaqfJ/8G64ygBiHWalA/KyvJOSaFXL4iI0CokpRoyV2uVWxljutsaifIYb1UfhYdDv37w1VeeP7dSyjWulhQ+FpGrbI1EeYy3kgLAZZdZnePlVte3rlLKq1xNCt8AH4pIvvZ95Pu81aYAcPnlUFICa9d65/xKqZq5mhSeBQYCUeXjKBhjvPRbU50vb7UpgNU5XlCQViEp1VC5mhR2A1scQ7opH1ZWZvWS6q2kEBcH3btrUlCqoXK1ofkQkCoiHwPlw2fqLak+KCfHmnur+gisKqS5c60xFkJDvReHUupcrpYU9mN1ox2G3pLq07KyrLm3SgpgNTbn5sKmTd6LQSlVNZdKCsaYx+0ORHnGacftAd5OCmBVIfXt6704lFLnqq1DvJm1HcCVbVTD0RCSQosW0LYtrF7tvRiUUlWrraTwq1puPRVgHDDTbREpW5UnBW+2KYDVrvDRR9Z40SLejUUpdUZtbQqvcnYbQuUpxrFNlURkpIjsFJE9IjK9hu1uFBEjIn3qegGqbhpCmwJYSeHYMdi507txKKXOVlsvqfVuS3B0ojcHGAFkAOtFZKkxZlul7WKBBwB9nMkDGkL1EZzdrtC5s3djUUqd4erdR/XRD9hjjNlnjCkCFgBjqtjuz8DfgAIbY1EODSUpdOwIzZrBl196Nw6l1NnsHGalJZDutJwB9HfeQEQuAZKNMctE5LfVHUhEJmGN/EZSUhKpqan1CignJ6fe+/qqyte8eXMboA0bN6YSZOdPAhd07dqV5cvjWLXqG7e2K+jnHBj0mu1hZ1Ko6n/ziieiRSQIeB6rS+4aGWNeAV4B6NOnjxk6dGi9AkpNTaW++/qqyte8ZAnExsKwYUOr2cNztm2D1FRo3Xoobdu677j6OQcGvWZ7uDrITlPgbs4dZOcXNeyWASQ7LbcCDjotxwIXYT0pDdAcWCoio40xG1yJS9WdN3tIraz8bzs1FbcmBaVU/blagbAEiAdWAP91mmqyHuggIikiEoZ16+rS8jeNMVnGmERjTBtjTBusnlg1IdjMmz2kVtalCzRtaiUFpVTD4Gr1UZQx5vd1ObAxpkREpgDLgWBgrjFmq4g8AWwwxiyt+QjKDg2ppCACQ4bAF1/o8wpKNRSuJoVlInKNMeajuhzcsf1Hldb9qZpth9bl2Kp+srIaTkkBrCqkhQshLQ1SUrwdjVLK1eqjqViJocAxwI4OsuOjGlJJAaySAlilBaWU97mUFByD6gQZYyIcr3WQHR/VkNoUALp2hcREbVdQqqFw+ZZUERkNDHYsphpjltkTkrJTQyspBAVZpQVNCko1DC6VFERkFlYV0jbHNNWxTvmQ0lLvjrpWnSFD4McfrXYFpZR3uVpSuAboaYwpAxCRN4DvgGo7uVMNT/moaw0tKZQ/r/DFF9CmjTcjUUrVpaODRk6vG1CttHJVQ+k2u7Ju3ax2hZUrvR2JUsrVksJTwHcisgqr+4rBwAzbolK2aCjdZlcWFATDhsHnn+vzCkp5m6t3H70DDAA+cEwDjTEL7AxMuV9D6SG1KsOHw4EDOr6CUt5W23CcnR3zXsAFWP0ZpQMtHOuUD2mo1UcAV15pzVes8G4cSgW62qqPfoPVZfWzVbxngGFuj0jZpiGXFNq2tZ5oXrECpkzxdjRKBa7aRl6b5Hg5yhhz1iA4IhJhW1TKFg21TaHc8OHw3ntQUgIhdnbqrpSqlqt3H33t4jrVgDXkkgJYSSErCzZu9HYkSgWuGn+PiUhzrBHUIh2jpJXfFxIHRNkcm3Kz06etO3tiYrwdSdWGOSojV6yA/v1r3lYpZY/aCulXY42M1gp4zml9NvCITTEpm5w+bY265u1hOKuTmAg9e1pJ4Q9/8HY0SgWm2toU3gDeEJEbjDGLPBSTsklWVsOtOio3fDjMng15eRClZVGlPM7V5xQWici1IvI7EflT+WR3cMq9GloPqVUZPhyKimD1am9HolRgcrVDvJeBW4D7sdoVbgJa2xiXskFD6yG1KpdfDmFh8Nln3o5EqcDkau3ypcaYO4CTxpjHgYFAsn1hKTv4QlKIirISw8cfezsSpQKTq0mh/BmFPBFpARQDOniij/GFNgWAUaNg61ZIT/d2JEoFHleTwn9EpBHwNPAtkAa8Y1dQyh6+0KYAVlIALS0o5Q21JgURCQI+N8acctyB1BrobIzRhmYf4wvVRwBdusCFF2pSUMobak0KjoF1nnVaLjTGZLlycBEZKSI7RWSPiJwzII+ITBaRH0Rkk4isFpGudYpeuay01BpkxxeSgohVWlixwroTSSnlOa5WH30qIjeIuN7TvYgEA3OAUUBXYHwVX/pvG2MuNsb0BP7G2Q/IKTfKzrbmvpAUwEoKOTl6a6pSnuZqUvgN8D5QKCKnRSRbRE7Xsk8/YI8xZp8xpghYAIxx3sAY43yMaKyeV5UNGnK32VW58koIDdUqJKU8zaW+KI0xsfU4dkussRfKZQDn9GgjIvdhJZ0wqumKW0QmYXXhTVJSEqmpqfUIB3Jycuq9r68qv+b9+6OBvqSnbyU19Zi3w3LJxRf3YOHCMK69dn2d9gvkzzmQ6DXbxBhT64TV0Fzrukrv3wS85rR8O/BSDdvfCrxRWyy9e/c29bVq1ap67+uryq959WpjwJjly70bT10884wV808/1W2/QP6cA4lec90AG4wL3/e1jbwWISJNgEQRaSwiTRxTG6BFLfkmg7MfcGsFHKxh+wXA9bUcU9WTr1Ufgd6aqpQ31Nam8GtgI9DZMS+flmA1ItdkPdBBRFJEJAwYByx13kBEOjgtXgvsdj10VRcNfSyFqnTpAq1bw7Jl3o5EqcBRWy+pLwIvisj9xpiX6nJgY0yJiEwBlgPBwFxjzFYReQKrGLMUmCIiw7GekD4J3Fmvq1C18sWkIAJjxsArr0BuLkRHezsipfyfqw3NL4nIpUAb532MMfNr2e8j4KNK6/7k9HpqXYJV9dfQh+KszvXXW11pf/opjB3r7WiU8n+u9pL6JvAMcBnQ1zH1sTEu5WYNfdS16lx+OTRuDIsXezsSpQKDq8Oj9wG6OlqwlQ/KybESguuPHzYMISFw3XXwn/9ASYm1rJSyj6sPr20BmtsZiLKXL49kdv31cPIkfPWVtyNRyv+5+rsrEdgmIuuAwvKVxpjRtkSl3C4vDyIjvR1F/Vx9NUREwJIlcMUV3o5GKf/malKYaWcQyn75+b5bUoiOhhEjrHaF55/3vSowpXyJq2M0f4E1hkKo4/V6rHEVlI/w5ZICWFVIP/4I33/v7UiU8m+u3n10N7AQ+JdjVUtA7wfxIb5cUgCrsVkEPvzQ25Eo5d9cbWi+DxgEnAYwxuwGmtkVlHI/Xy8pNGtm3Z66aJG3I1HKv7maFAqN1f01ACISgnZz7VN8vaQAcMst1tjNW7Z4OxKl/JerSeELEXkEiBSREVhjK/zHvrCUu/nyLanlbrwRgoJgwQJvR6KU/3I1KUwHjgE/YHWS9xHwqF1BKffLz/ft6iOwqpCGDbOSgj5GqZQ9XE0KkVgd2t1kjLkRmOtYp3yEP5QUAMaNg7174Vu9900pW7iaFD7n7CQQCaxwfzjKLv5QUgCrU7zQUK1CUsouriaFCGNMTvmC47Uf/O4MDGVlUFDgHyWFJk2sJ5zffde6LqWUe7maFHJFpFf5goj0BvLtCUm5W0GBNfeHkgJYdyGlp8M333g7EqX8j6vdXDwIvC8i5cNpXgDcYk9Iyt3y8qy5P5QUAEaPtvpCeucduPRSb0ejlH9xtZuL9VhDct4D3At0McZstDMw5T7lScFfSgpxcfCzn1ntCkVFtW+vlHKdq9VHYA2s0x24BBgvInfYE5Jyt3xHRZ+/lBQA7roLjh/X8ZuVcjcdeS0A+FtJAeCqq6BFC5g3z9uRKOVfdOS1AOCPJYXgYLjjDnj6aTh8GJrrEFBKuYWOvBYA/LGkAFYVUmkpvPmmtyNRyn+4mhTKR15bLiJLy6fadhKRkSKyU0T2iMj0Kt7/jYhsE5HNIvK5iLSu6wWo2vljSQGgY0fr7qO5c7XbC6XcxbaR10QkGJgDjAAygPUistQYs81ps++APsaYPBG5B/gbequr2/lrSQGs0sLdd8PatTBggLejUcr31WXktR1ArGPa7lhXk37AHmPMPke32wuAMZWOu8oY4/jK4hugVV2CV67x15ICwM03W8lOG5yVcg+XSgoicjPwNJAKCPCSiDxsjFlYw24tgXSn5Qygfw3b/xL4uJrzTwImASQlJZGamupK2OfIycmp976+Kicnh02bdgEd+fbbNaSlFXs7JLcbMqQT8+c342c/+5qYmNKA/Zz1mv2fJ67Z1eqjPwB9jTFHAUSkKVaHeDUlhaqGV6+y5ldEbsO6w2lIVe8bY14BXgHo06ePGTp0qIthny01NZX67uurUlNTSU7uCMCIEYOIjfVyQDaIjYU+fWDfvst54IHA/Zz1mv2fJ67Z1YbmoPKE4JDpwr4ZQLLTcivgYOWNRGQ4VtIZbYwpdDEeVQf+3KYA0Lu31Z4wZ452kqfU+XI1KXziuPNooohMBP5LNVU9TtYDHUQkRUTCgHHAWXcsicglwL+wEsLRKo6h3CA/3+puOsTVcqEPmjIFdu2CFdqhu1LnxdWG5oexvry7Az2AV4wxv6tlnxJgCrAc2A68Z4zZKiJPiMhox2ZPAzFYne1tcuU2V1V3/jLATk1uvNEame3vf/d2JEr5thp/O4pIeyDJGLPGGPMB8IFj/WARaWeM2VvT/saYj7CG7nRe9yen18PrHblymb8MsFOT8HD49a/h//4Pxo+P8HY4Svms2koKLwDZVazPc7ynfEAglBTASgpBQbBkSQtvh6KUz6otKbQxxmyuvNIYswFoY0tEyu1SGIxNAAAfJklEQVTy8vy/pADQsiXccAMsW9aCrCxvR6OUb6otKdRUDg+Arxn/kJ8fGCUFgN//HnJzQ/jnP70diVK+qbaksF5E7q68UkR+CeggOz4iUEoKAL16QZ8+J3j++TNPciulXFfbTYoPAh+KyATOJIE+QBgw1s7AlPvk51sD3vuCotIiMk5nkFuUS6kppcyUERcexwUxFxAdFu3SMSZM+Ilp05owbx7ce6/NASvlZ2pMCsaYI8ClInIFcJFj9X+NMSttj0y5TV6eVd/e0JSWlbLp8CY+2/cZK/evZMfxHRzIPkCZqfoJtJiwGNo1bkeP5j3okdSD/i3707dlX8KCw87arkePUwwYYI21MGmSfz+foZS7ufS/izFmFbDK5liUTRpam0LG6Qz+teFfvPrtqxzJPQLARc0uYkibIbRt1JY2jdoQHxFPkAQhCFmFWRzKPsShnEPsOL6Dz/Z+xvzv5wMQFRrFZRdextXtrub6ztfTtnFbRGDGDBgzxhrH+bbbvHm1SvkW/Q0VABpKm8LeE3t5ZOUjLNq2iDJTxrUdr2Vct3Fc2fZKmsfUbQyno7lHWfPTGlbuX8nKtJU89OlDPPTpQ3RP6k7vyN48ct2FdOvWliefhPHjrZHalFK106QQALxdUsgrzmPW6ln8bc3fCA0O5TcDf8M9fe4hpXFKvY/ZLLoZY7uMZWwXq2lr/8n9LN6xmA92fMC8tHnM+/s8Ot0xiJ3v3smr88cx+S4/7AlQKRtoUggA3iwprM1Yy7hF40g7lcatF9/K34b/jZZx7m/gSGmcwrSB05g2cBrvfvIu+6L38ebmN2H0JO7d+xs2LLmVe/v9ml4X9HL7uZXyJ652iKd8VGkpFBV5vqRgjOHlDS9z+bzLAUi9M5W3fv6WLQmhsqSIJGZcPoOt927lxYu/xmy5kfmb3qT3K70ZNHcQC7YsoLjU/8aVUModNCn4uaIiqzLdkyWFwpJC7lpyF/f89x6Gtx3OxkkbGdKmyqEybCUiPPDzgVyZM4/YVw7y1NDnOZJzhPGLxtPmxTbMWj2LE/knPB6XUg2ZJgU/V1hofcSeKikUlBTw8/d+zhvfv8FjQx5j2a3LaBLp3YcknnoKThxsRGHqg+y6fxfLxi+jW9NuzPh8BsnPJzPloynsO7nPqzEq1VBoUvBzBQXWR+yJkkJecR6j3xnNx7s/5l/X/YuZQ2cSJN7/E+vb1+pa++mn4eCBIK7teC2f3v4p30/+npu73cwrG1+hw0sduGXhLWw4uMHb4SrlVd7/P1bZqrDQqj6yu6SQX5zPdW9fx4p9K5g7Zi6Tek+y94R19PTTVvvKQw+dWdc9qTvzxswj7cE0Hr70YZbvWU7fV/ty5fwrWb5nOcZUOXqsUn5Nk4Kf80T1UZkp487Fd5KalsqbY99kYs+J9p2sntq0gUcegffeO3d0thaxLZg1fBY/TfuJZ0Y8w47jOxj51kgu+dclvPPDO5SUlXglZqW8QZOCnysvKdhZffToykd5f9v7PHPVM0zoPsG+E52nhx+Gdu3g/vutO7IqiwuP46FLH2LfA/t4ffTrFJYWcusHt9LxpY7MWTeHvOI8zwetlIdpUvBzdpcU5n03j6dWP8WkXpOYNmCaPSdxk4gIeOkl2LEDXqhhiKjwkHB+cckv2HrvVhbfspjmMc2Z8vEUWr/Qmie+eILMvEzPBa2Uh2lS8HN2NjT/L/1/TFo2ieFth/P3a/6OiLj/JG42ahRcfz08/jjs2VPztkESxJjOY1jzizV8OfFLBrQawGOpj3HhCxdy/0f3s//kfs8ErZQHaVLwc+XPKbi7pHCq4BTjF40nOS6Z9296n9DgUPeewEZ//zuEhcHEiVbjc21EhMtbX85/xv+HLfds4eZuN/Ovjf+i/UvtuWXhLazNWGt7zEp5iq1JQURGishOEdkjItOreH+wiHwrIiUicqOdsQQqO0oKxhju/s/dHMg+wDs3vEOjiEbuO7gHtGxpJYY1a+D55+u2b7dm3c65Y2nA6wMYNHcQi7Yt0kZp5fNsSwoiEgzMAUYBXYHxItK10mY/AROBt+2KI9DZ0abw6revsnDbQv7viv+jf6v+7juwB916K4wdC3/4A2zdWvf9y+9YSp+WzosjX+RQ9iFufP9G2s9uzzNfP8OpglPuD1opD7CzpNAP2GOM2WeMKQIWAGOcNzDGpBljNgNVj6qizpu77z7afmw7Uz+Zyoi2I3h40MPuOagXiMDLL0NcHNxxBxQW1u84seGxPND/AXbfv5tFNy+idaPWPPzZw7R6rhX3LLuHLUe3uDdwpWwmdj2g46gOGmmM+ZVj+XagvzFmShXb/htYZoxZWM2xJgGTAJKSknovWLCgXjHl5OQQExNTr3191auvXsDbb3dixYrU8x5ToNSUMnXTVNLz0pnXdx5NwhrmGJ91+ZxXr07gj3+8mNGjDzBt2m63nH9Pzh4WHVjE50c+p9gU0zO+J6NbjOayxMsIDbKn7SUQ/7b1muvmiiuu2GiM6VPrhsYYWybgJuA1p+XbgZeq2fbfwI2uHLd3796mvlatWlXvfX3V+PE/mrAw9xxr9jezDTMx8zfNd88BbVLXz/nhh40BY+a7+bKO5R4zf139V9P6+daGmZikp5PMIyseMXtP7HXviUxg/m3rNdcNsMG48B1rZ/VRBpDstNwKOGjj+VQVCguD3NKekHYqjRmfz2Bk+5Hc1t2/xrd88kkYPBh+/Wv44Qf3HTcxKpHfDfodex/Yy0e3fkT/Vv2ZtWYW7Wa3Y8SbI3h3y7sUlBS474RKuYGdSWE90EFEUkQkDBgHLLXxfKoKhYVB592eYIzh18t+jYjw8rUv+8TzCHUREgLvvgvx8fDzn0Omm59NCw4KZlSHUSwZt4S0qWk8MfQJdmfuZtyicbR4tgX3/fc+1h9Yr30tqQbBtqRgjCkBpgDLge3Ae8aYrSLyhIiMBhCRviKSgVXV9C8Rqcd9IKomhYXB511SeOuHt/h076fMunIWrRu1dk9gDUzz5rBwIaSnw5gxUGDTD/jk+GT+OOSP7Ju6j09v+5RRHUYxd9Nc+r3Wj67/6MpfvvyLPhSnvMrW5xSMMR8ZYzoaY9oZY/7iWPcnY8xSx+v1xphWxphoY0yCMaabnfEEovMtKZwuPM3Dnz1M3xZ9uafvPe4LrAEaNAjmz7eeX7j9diiz8Z64IAliRLsRvPXztzj80GFeue4VmkU349FVj9J2dlsGzR3E7LWzOZR9yL4glKqCPtHs5woKzq+k8Hjq4xzJOcKca+Y0iLER7HbzzfDss1ap4aGHwBM1OvER8dzd+26+mPgFaVPTeHLYk+QU5TD1k6m0fK4lQ/89lL+v+zsHs7VJTtnP//8vD3DnU1LYenQrL659kV/1+hV9W/Z1b2AN2LRpMHWq1Wneo496JjGUa92oNTMun8H3k79n671b+ePgP3Is7xj3f3w/LZ9rycDXBzJr9Sx2HN/huaBUQAnxdgDKXvW9+8gYwwOfPEBceBxPXvmk+wNrwETguecgP9+6M8kY+MtfrPWe1LVpVx6/4nEev+Jxth/bzqLti1i8YzEzPp/BjM9n0KFJB67tcC3XdbyOMjvrulRA0aTg5woLg+tVUli0fREr96/kH9f8g8SoRPcH1sAFBcE//2klgqeestoXnnrK84mhXJemXXi06aM8OvhR0rPSWbpzKct2L+OfG/7JC2tfIDI4kuFHhjOy/UiuancV7Rq387u7xJRnaFLwc/UpKRSUFPDbT39Lj6QeDW5YTU8KCoJ//MNKBH/9Kxw7ZnWNEerlDmGT45O5r9993NfvPnKLcvl8/+e8/uXr/HD0B/6z6z8AtI5vzZUpV3Jl2ysZ0noILeNaejdo5TM0Kfi5+iSF5/73HD9m/ci8MfMIDjrPvjF8XHliaNoU/vxn65bV99+3nmloCKLDohndaTRxh+IYMmQIe07sYcW+FazYv4IPdnzA3E1zAWjfpD2DLxzM5a0v57ILL9OShKqWJgU/V9fqo0PZh3jyqycZ23ksV6RcYV9gPkQEnngCUlJg0iS47DJYvNga2rMhERE6JHSgQ0IH7ul7D6VlpWw+spnUtFRWpa3iwx0fViSJZtHNGNhqoDUlD6TXBb2ICQusfoRU1TQp+Lm6lhQeWfkIxWXFPD3iafuC8lF33QXJydZtq716wbx51hPQDVVwUDCXXHAJl1xwCdMGTqPMlLH92Ha++ukrvk7/mm8yvmHJziWA9dxE16Zd6duiL70v6E2vC3rRo3kPokJtGsdVNViaFPxYSQmUlLh+S+qGgxv496Z/87tLf0e7Jg3sZ3ADMXw4fPedlRhuuMG6dXXWLGv854YuSILo1qwb3Zp1Y3KfyQAczzvOugPrWHdgHesPrmfZrmXM2zSvYvuOCR3p2bwnPZJ6cFGzi7i42cVcGH+hVj35MU0Kfiw/35q7UlIwxjD1k6k0i27GHwb/wd7AfFzr1vDVV/D731vPMixfDnPnwsCB3o6s7hKjErmmwzVc0+EawPo7OJB9gI0HN/Ld4e/4/sj3fJPxDQu2nOmuPjYslq5Nu9K1aVe6JHahc2JnOid2JqVxCiFB+pXi6/QT9GN5edbclZLC2z+8zdfpX/P66NeJC4+zNzA/EBZmDeU5ahTcfbfVRcaDD8Ljj0NsrLejqz8RoVVcK1rFtWJM5zNjYmUVZLHl6Ba2HN3CD0d/YPvx7Xy852OrVGFAjBAaFEpKoxTaN2lPxyYdadu4LSmNUmjXpB0Xxl9IeEh4ledDKs2VV2lS8GOulhRyinL43Yrf0adFHyb2nGh7XP7kqqus7rZ//3srSbzzjvU8wx13WHcu1YcxhpL8EopyiyjKKaI4t5jivGKKcosoyS+hOM9aLikooTjfmqftSGPF8hWUFpZSUlBCSWEJpYWllBZZU1lxWcXr0mJruaykzHpdYr02pcZ6XXpm2ZQZykrLMGWmYjmpLIlmZc0YbAZDDU97Zzr+28CGuv8jCEiQICJIkJxZdlpXWlbKurB1SLCceS9ICAoOOrMc7LQuuNL7wdbroJCgitdnzUOCzn0/5Mw+FeudtqtuXXVTxbYuTiU59o8BrknBj7laUnjqq6c4mH2QhTctDIj+jdwtLs560O3OO63Swq/uKuHV5/P57b35XNIln8JTBeSfzKfgVAEFJwsoyCqg8FShNT9dWDEVZRdRmF1IUU5RjV+21UkPTSckPISQiBCCw4MJDrOmkPAQgsOCCQoNIjgsmLDoMOt1aHCVX1LOX2rOX7hnfdkGOX1ZV/Fr3xhDTnEOJ/JPcCL/BCcLTnIy/yQnC05yquAUpwtOV3QVLsYqHYQHhRMXHkdcWBwxoTHEhsUSExJDTGgM0SHRRIVEERUSRaiEgoGM9AxaXNCCstIyMFQkMAxWgnNKZjW9Lispo6y4jJKCkjPvOyXIqpJlxX7OybTEOq6dOkzrANfZegpNCv6sPCnUVFLYd3Ifz/7vWW7rfhsDk32wUtwDykrLyDueR87hnIop92guuUdzyTuaR+6xXPKO5ZF3PI8xx/MYRRFshs2TYXMVxwuLDSMiPoLw+HAi4iOIbBJJo9aNCIsLIzw2nLCYMMJiwwiLDiM0OrRiHhrlNEWGEhIZYs0jQlj9zWquGOY7txCXlJVwMPsg6VnppJ9OJz0rnQPZB8g4ncG27G0cyj7EweyDFJcVn7NveHA4zaKbEZkcSdvmbWka1ZSmUU1JjEokMSqRhKgEEiITaBLZhIQoax4R4pk7AYwx5yQR58RRWlxa5euzti+u5nVJGeml6bZfgyYFP1ZefVRdScEYwz3/vYeQoBBmXTnLc4E1IMX5xZxOP01WehanM05zOv00pw+cJvtANtkHs8k5lEPOkRxM6bm/AEMiQohuFk1U0yiim0aT2DmRyMRIohKiCI2PZO3mKN5dGsmPRyNI7hDJxMkR3ParcGLj3F8akyDfqosPCQrhwvgLuTD+wmq3McaQmZ/JkZwjHM45zKGcQxzJOcLR3KMcyT3CjvQdHM87zvZj2zmed5zc4txqjxUREkHjiMY0jmxM44jGNIpoVDHFh8cTHxFfMY8LjyMuPI7YsFhrHh5LbFgsYcFhtbZ5iIhVxRRiT4k7M9XNI0BVQZOCH6utpDD/+/l8uvdTXhr1kt92g1CcV8zJ/Sc5tf8Up9LOTFk/ZpH1Uxa5R8/9IolsEklsy1jiWsaR1COJ2Atiibkgxpo3jyE6KZqYpBhCo0Nr/JIYCNw7B95+G2bPhnsfgkf+DBMmWFVNffp4ry8lXyAiFb/+uzU7d6iV1NRUhg4dWrGcX5zP8bzjZOZnciL/BJl5mRXVV5n5mZwqOFVRjXUo5xDbj2/nVMEpThWcoszU3qFgSFCIVaUVFlMxRYdFW/PQaKJDo4kKjSI6zJpXniJDIokMjTzrdWRIJBEhEUSGWvPQoJr/pjxBk4Ifq6mkcDjnMNOWT2NQ8iDu7XuvZwNzs4JTBWTuzuTEnhOc2H2CHat3sO/RfZzce5KcwzlnbRsSEUKjNo2Ibx1P817Nib8wnvjkeOIvjCeuVRyxLWMJjXRf50ZhYTBxopUE1qyBOXPgtdesedeucMst1gNw3bppgjhfkaGRJMcnkxyfXPvGTowx5BbnklWQRVZhFtmF2WQXZXO68DTZhY55UTY5RTnkFOWQXZRNblFuxfLB7IPkFuWSW5xbMS8qLarXNQhCREgEESERhIeEn3kdHE54SDjXxl/LUIbW69iu0qTgx2oqKUz5aAp5xXm8Pvp1n2hcLiko4cSeExzfeZzMXZlk7szkxO4TZO7KJO943lnbhiWGcUHXC2g/qj2N2zamcbvGNE5pTKM2jYhOivbKLzERq3uMyy6DU6fgvffgzTdh5kx47DHo0AGuvRauvhqGDHHtNmLlHiJS8cu/Je4pMZeUlZBfnE9ecR65xbnkF+eTX2It5xfnU1BSQH5J/lmvC0oKrNfF+RSWFlasLywppLC0kMKSQkKD7O+NUZOCH6uupLBgywIWbV/Ek8OepFNiJ88HVg1jDHnH8ji+4/hZU+bOTE7uP3nWHTmxLWJp0qEJncd2JqFjAk3aN6FJhyY0btuYNWvXnFWt0NA0amT1oTRpEhw6BEuWwIcfWncwvfAChIfDgAFw+eXW1L9/w+mAT7kmJCjEaosId+9DK6mpqW49XlU0KfixqkoK32R8w11L7mJgq4H89tLfeiWu0uJSTu47SebOzHMSQMHJgortQiJDSOiYQIu+Leh+e3cSOiWQ0NGawmPPfRDKF11wAUyebE15efDll/Dpp9b8ySfPjBPdsSP07Qs9e0L37nDxxdC8uVY5KffTpODHKpcU9p7Yy+h3RtMitgVLxi0hNNi+oqgxhpxDOWTuzrSqe3ZlcmKXVf1zcu9JykrONOzFNI8hoVMC3W7pRmLnRBI7JZLYJZH45Hifu6vmfERFwciR1gSQnQ3/+x+sX29Nqanw1ltntm/UCDp1shJGcHBrMjKsnlxbt7aSTXBg93qu6snWpCAiI4EXgWDgNWPMrErvhwPzgd5AJnCLMSbNzpgCifPDa8dyj3HN29dQakr5eMLHNI1uet7HL8gq4HT66bPu6jm59yQn9p7g5L6TFOeeucc8ODyYJu2b0LRrU7r8vAsJnRKsL//OiUQ08oHe5LwgNtZ6Yvqqq86sy8y0nqDevBl27ICdO2HlSjhwIIV///vMdsHB0KIFtGxplSiaN4ekJGtciPKpSRNo3NiaYmK01KEstiUFEQkG5gAjgAxgvYgsNcZsc9rsl8BJY0x7ERkH/BW4xa6YAk1+PoQ0PsCMz2fz8saXKSgp4PM7PqdjQsdzti0rLaM4t5iinCLrydss6+nb8gezco/mknMoh+xD1r37WelZFGWffYdFSERIRcNuypUpNGnfxKru6ZBAXHIcQcENv0G7oUtIgKFDrcnZ8uVf0rr1YPbvh59+sgYDSk+Hgwdhzx6rA7/MGm5xDwqy2i3i461kFBNjzaOjz0xRUdYPjKgoq1fY8ik8/MwUFmZNoaFn5uVTSMiZKTj4zNx5Cgo6M69vNyHq/NhZUugH7DHG7AMQkQXAGMA5KYwBZjpeLwT+LiJiyp9/d6P7b52NWZ7GQpa6+9AN2q+Di8m91XBf+H0kRCTw3RvfsbF0o/VEZWEpJYUllBRY/eTUJDgsmJjmMcS2iCWhUwIpV6YQlxxHfHI8jdo0olFKI6KbeefOHgXh4WV07gydO1e/TUmJlRiOHYPjx+HkSThxwpqyss5M2dnWdOoUHDgAubnWlJ9vlT7Lar+l323Kk4PzJGLNy8ouIyTkzLry9eWvyyeofl25mtbX97Wzuq6vzk03NTvnB4G72ZkUWgLOz2RnAP2r28YYUyIiWUACcNx5IxGZBEwCSEpKqlcLfCFF5DUqDbgvrfCgCLokNScyJLKiUzGCsPq3CXX0dxMmBEcGExwRTHBkMCExIRVTaHwooY1CCY4KPuffrphijnOc4wXHYTvW1ADk5OR45C6NhqQ+11xedVSXEeSMgZISoagoqGIqLramoiKhtDSI4mKhuDiIkhKhpMRaV1oqlJZay2VlUrFcWgplZdY6Y6C09Mxr5/Xl7wEV64qKigkJCXO8f2Y759dn4j53XeX3yq+v6usWp9dU+br6f7Oqv3Pq89M3NPS07X/bdiaFqv4lKv8zuLINxphXgFcA+vTpY+pzu+HQoUPPeQIyEOg1Bwa95sCQmrrN9mu2s9YuA3B+tLAVcLC6bUQkBIgHTtgYk1JKqRrYmRTWAx1EJEVEwoBxcE6F/lLgTsfrG4GVdrQnKKWUco1t1UeONoIpwHKsW1LnGmO2isgTwAZjzFLgdeBNEdmDVUIYZ1c8SimlamfrcwrGmI+Ajyqt+5PT6wLgJjtjUEop5Tq9E1gppVQFTQpKKaUqaFJQSilVQZOCUkqpCuJrd4CKyDHgx3runkilp6UDgF5zYNBrDgznc82tjTG19oTpc0nhfIjIBmNMH2/H4Ul6zYFBrzkweOKatfpIKaVUBU0KSimlKgRaUnjF2wF4gV5zYNBrDgy2X3NAtSkopZSqWaCVFJRSStVAk4JSSqkKAZMURGSkiOwUkT0iMt3b8dhNRJJFZJWIbBeRrSIy1dsxeYKIBIvIdyKyzNuxeIKINBKRhSKyw/FZD/R2THYTkWmOv+ktIvKOiER4OyZ3E5G5InJURLY4rWsiIp+JyG7HvLEd5w6IpCAiwcAcYBTQFRgvIl29G5XtSoCHjDFdgAHAfQFwzQBTaTADg3rEi8AnxpjOQA/8/NpFpCXwANDHGHMRVrf8/tjl/r+BkZXWTQc+N8Z0AD53LLtdQCQFoB+wxxizzxhTBCwAxng5JlsZYw4ZY751vM7G+rJo6d2o7CUirYBrgde8HYsniEgcMBhrXBKMMUXGmFPejcojQoBIx2iNUZw7oqPPM8Z8ybmjUI4B3nC8fgO43o5zB0pSaAmkOy1n4OdfkM5EpA1wCbDWu5HY7gXgd0CZtwPxkLbAMWCeo8rsNRGJ9nZQdjLGHACeAX4CDgFZxphPvRuVxyQZYw6B9aMPaGbHSQIlKUgV6wLiXlwRiQEWAQ8aY057Ox67iMh1wFFjzEZvx+JBIUAv4J/GmEuAXGyqUmgoHPXoY4AUoAUQLSK3eTcq/xIoSSEDSHZaboUfFjkrE5FQrITwljHmA2/HY7NBwGgRScOqHhwmIv/PuyHZLgPIMMaUlwAXYiUJfzYc2G+MOWaMKQY+AC71ckyeckRELgBwzI/acZJASQrrgQ4ikiIiYVgNU0u9HJOtRESw6pq3G2Oe83Y8djPGzDDGtDLGtMH6fFcaY/z6F6Qx5jCQLiKdHKuuBLZ5MSRP+AkYICJRjr/xK/HzxnUnS4E7Ha/vBJbYcRJbx2huKIwxJSIyBViOdbfCXGPMVi+HZbdBwO3ADyKyybHuEce42cp/3A+85fixsw+4y8vx2MoYs1ZEFgLfYt1h9x1+2N2FiLwDDAUSRSQDeAyYBbwnIr/ESo62jG+v3VwopZSqECjVR0oppVygSUEppVQFTQpKKaUqaFJQSilVQZOCUkqpCpoUlFJKVdCkoAKWiCSIyCbHdFhEDjgtf23D+SaKyDERqbbDPhGJdJy/SEQS3R2DUrUJiIfXlKqKMSYT6AkgIjOBHGPMMzaf9l1jzJQaYsoHejq661DK47SkoFQVRCTHMR8qIl+IyHsisktEZonIBBFZJyI/iEg7x3ZNRWSRiKx3TINcOEc3x3E2ichmEelg93UpVRstKShVux5AF6z+7fcBrxlj+jlGs7sfeBBrsJvnjTGrReRCrC5VutRy3MnAi8aY8m4qgm27AqVcpElBqdqtL+/HXkT2AuX99/8AXOF4PRzoavXRBkCciMQ6Bjiqzv+APzgGB/rAGLPb/aErVTdafaRU7QqdXpc5LZdx5odVEDDQGNPTMbWsJSFgjHkbGA3kA8tFZJib41aqzjQpKOUenwIVDcgi0rO2HUSkLbDPGDMbq1vk7vaFp5RrNCko5R4PAH0cDcbbsNoLanMLsMXRtXlnYL6dASrlCu06WykPEZGJQJ+abkl12jbNse1xu+NSypmWFJTynHxglCsPrwGhWG0WSnmUlhSUUkpV0JKCUkqpCpoUlFJKVdCkoJRSqoImBaWUUhX+PwqCFoWJvoJmAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEKCAYAAAA4t9PUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XdcleX7wPHPDTJUwIGKAxXcAxAQd6amJqap/dJy5O5rNr9pWlrfzCzTTHNUZlstR87cSpaYeyviRtRcqTgQUJBx//64j4TIOAKH5xy436/XeXE45xnXI8h1nntct5BSommapmk5ZWd0AJqmaZpt04lE0zRNyxWdSDRN07Rc0YlE0zRNyxWdSDRN07Rc0YlE0zRNyxWdSDRN07Rc0YlE0zRNyxWdSDRN07RcKWJ0APmhTJky0svLK0f7xsXFUbx48bwNyMrpay74Ctv1gr7mR7Vv374oKWVZc7YtFInEy8uLvXv35mjf0NBQWrdunbcBWTl9zQVfYbte0Nf8qIQQ58zdVjdtaZqmabmiE4mmaZqWKzqRaJqmablSKPpINE3LncTERC5cuEB8fLzRoeRYiRIlOHbsmNFh5CtzrtnZ2RlPT08cHBxyfB6dSDRNy9aFCxdwdXXFy8sLIYTR4eRITEwMrq6uRoeRr7K7Zikl169f58KFC3h7e+f4PLppS9O0bMXHx+Pu7m6zSUTLmBACd3f3XN9p6kSiaZpZdBIpmPLi56qbtrRCLyoKwsPd+PtvOGcaOe/kBM7O4O0N9eqBlxfY2xsapqZZLZ1ItELp7FlYsgQWL4bduwECs9ze2RmaN4cOHeDJJ6FBA9Af0POXvb09vr6+JCUlUbduXebMmUOxYsVwcXEhNjbW6PAKNd20pRUqf/8N/fqpO42RIyE5GcaPhwkTwjh+HOLjITER4uLg2jXYsQN++AGGDlXfv/MOBARA7drw8cf/3sFolle0aFEOHjxIeHg4jo6OzJo1y+iQNBOdSLRC4e5dePddlQAWLYK334bTp2HvXvV606Y3qF1bNWkVKQLFikGZMtC0KQwaBFOnQlgYXLwI330HlSrB+++rJq9OneDPP0FKo6+y8GjZsiUREREPvBYbG0vbtm0JDAzE19eXFStWAKreVKdOnWjevDk+Pj78+uuvgCqd9O6779KsWTOCgoLYv38/HTp0oHr16qlJKrNjag/STVtagXf+PHTrBvv3Q58+8MknUKVKzo5VsSK8+KJ6nD0Ls2fD119D27aquWvUKHjuObAryB/R3nwTDh7M22P6+8O0aWZtmpSUxLp16wgODn7gdWdnZ5YvX46bmxtRUVE0bdqULl26sH79eipWrMjChQtxdXUlOjo6dZ/KlSuzY8cOhg0bxoABA9i2bRvx8fHUr1+foUOHZnpMPfDgQQX5113T2LYNgoLg1ClYuRJ++SXnSSQ9Ly8YO1Y1b/3wg2oS69UL/PxU/0tKSt6cR1Pu3r2Lv78/QUFBVKlShcGDBz/wvpSSd999Fz8/P9q1a8fFixe5cuUKvr6+bNy4kTFjxrBlyxZKlCiRuk+XLl0A8PX1pUmTJri6ulK2bFmcnZ25detWpsfUHqTvSLQCa8UK6NEDqlaF0FCoW9cy53F2Vs1fAwaozvuxY9V5AwNh8mRo08Yy5zWMmXcOee1+H0lm5s2bx7Vr19i3bx8ODg54eXkRHx9PrVq12LdvH0uXLmX06NE8+eSTjBkzBgAnJycA7OzsUp/f/z4pKSnTY2oP0nckWoG0dSv07Kk6xnfvtlwSScvODp5/HsLDYe5c1Tn/xBPw9NNw/Ljlz1/YRUdHU65cORwcHNi0aRPnTCMhLl26RLFixejZsycjRoxg//79uT6m9iB9R6IVOEeOqD/eVavCmjVQqlT+nt/eHvr2he7dYfp01Sfj66u6Ft5/H9zc8jeewqJPnz48/fTTBAUF4e/vT506dQA4fPgwI0eOBNQdyNdff53rY2rpSCkL/KNhw4YypzZt2pTjfW2VLV/zhQtSenpKWaGClGfPmr+fJa/5yhUpBw2SEqQsX17KX36RMiXFYqczy6Ne79GjRy0TSD66ffu20SHkO3OvOaOfL7BXmvk3VjdtaQVGSoq6E7h5E9avV3ck1qBcOdUZv3MneHrCCy9Au3Zw4oTRkWla3tCJRCswZsyATZtUX7Cfn9HRPKxJE5VMZs6EfftUjGPHQkKC0ZFpWu7oRKIVCEePqjkcTz8N6UaFWhV7e3j5ZdX53r07fPihmn/y119GR6ZpOacTiWbz7t1TTVqurmrWuS3MFStfHubNU01wCQnQqhUMGQK3bhkdmaY9Op1INJv3+edq1vq334KHh9HRPJoOHdRw4bfeUv0o9erBb78ZHZWmPRqLJhIhRLAQ4oQQIkIIMSqD952EEL+a3t8lhPAyve4uhNgkhIgVQnyZbp+GQojDpn1mCF2roFC7dk0Nr+3SBZ55xuhocqZ4cTVxcdcuKFtWXcdzz4GeQK3ZCoslEiGEPfAV0BGoB/QSQtRLt9lg4KaUsgYwFfjU9Ho88D4wIoNDfw0MAWqaHsEZbKMVEuPGwZ078Omn2W9r7YKCVBHJjz9Ws/Lr1lUTG3UxSMXFxSXbbaZNm8adO3fy5HyhoaFs37499ftZs2Yxd+5cAGbPns2lS5dS33vxxRc5evRolsdr3bo1e/fufej11atXExAQQIMGDahXrx7ffPNNnsSfnyx5R9IYiJBSRkop7wELga7ptukKzDE9XwK0FUIIKWWclHIrKqGkEkJUANyklDtM45znAt0seA2aFTt1CmbNUgUUC8o8MQcHeO89OHRIJZL+/eGpp1T5ey17OUkkycnJGb6ePpEMHTqUfv36AQ8nku+//5569dJ/Ts5eYmIiQ4YMYdWqVRw6dIgDBw7QunXrRz6O0SyZSCoB59N8f8H0WobbSCmTgGjAPZtjXsjmmFohMXq0Kvs+dqzRkeS9OnXUSK7p02HLFqhfH776SheCBPUHvnXr1nTv3p06derQp08fpJTMmDGDS5cu0aZNG9qYCpyFhITQrFkzAgMD6devX+oCWF5eXowbN47HHnuMxYsXM2PGDOrVq4efnx89e/bk7NmzzJo1i6lTp+Lv78+WLVsYO3YskydPZsmSJezdu5c+ffrg7+/P3bt3H7jbePnllwkKCqJ+/fp88MEHWV5LTEwMSUlJuLurP3tOTk7Url0bgAEDBjB06FBatmxJrVq1WL16NQBnz56lZcuWBAYGEhgY+ECymzRpEr6+vjRo0IBRo1RvwunTpwkODqZhw4a0bNmS4xao12PJEikZ9V2kv0k3Z5scbS+EGIJqAsPDw4PQ0NAsDpu52NjYHO9rq2zhmo8ccWPp0kAGDDjD8ePncl3Lylqv2c8Pvv/emSlTavHaa6X55ptbjBhxgipV7ubquI96vSVKlCAmJgaAd955h8OHD+fq/On5+vryqRntkzExMdy5c4cDBw6wa9cuKlSoQPv27fn9998ZOHAgU6ZMYdWqVbi7u3P27Fk+/PBDli9fTvHixZkyZQoTJkxg1KhRSCkRQrBu3ToAatWqxeHDh3FycuLWrVuULFmSgQMH4uLiwhtvvAHA2rVrcXBwoEOHDgQEBPDxxx8TGBhIUlISycnJxMXFERMTw6hRoyhdujTJyck8/fTTBAcH4+Pj88A29zk4ONCxY0eqVKlCq1atCA4OpkePHtjZ2ZGYmMiFCxdYvXo1kZGRdO7cmYMHD1K0aFGWLVuGs7MzERERDB48mM2bNxMSEsLSpUvZuHEjxYoV48aNGyQnJzN48GCmTp1KjRo12LNnDy+99FJqUrovPj4+V7//lkwkF4DKab73BC5lss0FIUQRoARwI5tjemZzTACklN8C3wIEBQXJnN4u3v/0U5jYwjVPnqw6pr/4whsXF+9cH8/ar/n552HOHBg+vCRDhjThgw9gxAjVFJYTj3q9x44dw9XVFQBHR0fs83gBe0dHx9TjZ8XV1ZVixYrRuHHj1LpXDRs25OrVq7i6uiKEwMXFBVdXVzZv3syJEydS1y2Jj4+nRYsWqdv169cv9ZwNGjRg6NChdOvWjW7duuHi4oKTkxNOTk6p26T93t7enuLFi6e+l/b7efPm8e2335KUlMTly5c5d+4czZo1e2if++bMmcPhw4fZuHEjX331FVu3bmX27Nk4ODjQu3dvSpQoQUBAANWrV+fixYt4e3vz2muvcfDgQezt7Tl58iSurq5s376dF198EQ/T0EVXV1cuX77Mrl27GDhwYOr5EhISHorB2dmZgICAnPzoAMsmkj1ATSGEN3AR6An0TrfNSqA/sAPoDvxp6vvIkJTyshAiRgjRFNgF9AO+sETwmvU6flwVYxw7Fszofy0QhFBl6oOD4fXX1aqOixbB999Dw4b5G8s0g8rIp5W25Lu9vT1JSUkPbSOlpH379ixYsABQdzNp/4AWL1489fmaNWv466+/WLlyJR999BFHjhzJUVxnzpxh8uTJ7Nmzh1KlSjFgwACzys77+vri6+tL37598fb2Zvbs2QAPLaAlhGDq1Kl4eHhw6NAhUlJScHZ2Tr3e9NunpKRQsmTJLMvv5wWL9ZGY+jxeAzYAx4BFUsojQohxQogups1+ANyFEBHAcCB1iLAQ4izwOTBACHEhzYivl4HvgQjgNLDOUtegWaepU1XfyMsvGx1J/itfXq15smyZGh7cuLFaez6PBirZPFdX19Smo6ZNm7Jt27bUJXnv3LnDyZMnH9onJSWF8+fP06ZNGyZNmsStW7eIjY194FhZnSet27dvU7x4cUqUKMGVK1dSm84yk76J8eDBg1RNUyRu8eLFpKSkcPr0aSIjI6lduzbR0dFUqFABOzs7fv7559TBAk8++SQ//vhj6mCDGzdu4Obmhre3N4sXLwZUsjl06FCWMeWERcvISynXAmvTvTYmzfN4oEcm+3pl8vpewCfvotRsybVrakhsv36qGGJh9cwzasGsUaNUM9/SpWrJ3w4djI7MWEOGDKFjx45UqFCBTZs2MXv2bHr16kVCQgIpKSl88skn1KpV64F9kpOTeeGFF4iOjkZKybBhwyhZsiRPP/003bt3Z8WKFXzxxYMNH/c7wosWLcqOHTtSX2/QoAEBAQHUr1+fatWq0aJFiyzjlVIyadIkXnrpJYoWLUrx4sVT70YAateuTatWrbhy5QqzZs3C2dmZV155hWeffZbFixfTpk2b1Dur4OBgDh48SFBQEI6Ojjz11FOMHj2aefPm8fLLL/Pxxx+TmJhIz549adCgQS7/pTO4kIL+0GXkH401X/OHH6py7Hld1dyarzk7mzdLWbu2+nfp1UvKf/7Jfh9dRt769e/fXy5evDhXx9Bl5DUtnfh4NQT2qafyZ8VDW/H442reyQcfqDuTOnVUuRg9VFjLLzqRaDZj/ny4elXVpdIedH8+zaFDqprwSy/BY49BWJjRkWk5NXv2bLp37250GGbRiUSzGfeLGprmmmkZqFNHrckyZ46a+R8YCMOHw+3bRkemFWQ6kWg24eRJ2L5dDYHVZTqzJoQajHD8uFqbZdo0lWAWLtR1uzTL0IlEswlz54KdnVqmVjOPuzt8841albFiRejVC554AvJ4Urqm6USiWb+UFPj5Z3jySahQwehobE/jxqpE/axZqs8kIABmzKjBzZtGR6YVFDqRaFYvNFRVv+3f3+hIbJe9veqAP3lSrcS4YkUlatZUc08ymBRuda5fv46/vz/+/v6UL1+eSpUqpX5/7969h7a/ceMGs2bNyva4SUlJlCxZ0hIhFyo6kWhWb/ZsKFECuqZfhEB7ZO7uMHMmfPPNXnx94ZVXVIf8778bHVnW3N3dOXjwIAcPHmTo0KEMGzYs9XtHR8eHtjc3kWh5QycSzarFxKi5Ec8/D0WLGh1NwVGjRhx//glLlkBsrGo27NQJslmbySpNmjQJHx8ffHx8Umegjxo1ihMnTuDv78+oUaO4ffs2nTt3JjAwED8/v4eq36YXERGBj48PgwYNon79+vTr148NGzbQvHlzatWqlVoyfufOnTRr1oyAgABatGjBqVOnADh8+DCNGjXC398fPz8/IiMjiYmJoWPHjjRo0AAfHx+WLFli2X+YfGTREimalltLl6o6UrpZK+8JAc8+C507wxdfqJUZ/fzUQmEffJB5f9Sbb0Je1wD091ejyx7V7t27mTdvHrt37yY5OZnGjRvTqlUrJk6cSERERGqxwsTERBYsWEDFihW5evUqLVq0oHPnzlke+8SJEyxatIg6deoQGBiIk5MT27dvZ+nSpUycOJElS5ZQt25dtm7dir29PevXr+d///sfv/76KzNnzmTEiBE8//zzJCQkIKVkxYoVeHl5pdbfio6OfvQLtlL6jkSzar/+CtWqQbNmRkdScDk5qZL0ERGqqeuHH6BGDZVMrH3+yZYtW3j22WcpVqwYrq6udOvWja1btz60nZSSMWPG4Ofnx5NPPsn58+eJiorK8tg1atSgXr162NnZUa9ePdq1aweoSr1nz54F4NatW/zf//0fPj4+jBgxIrVqcPPmzfn444+ZNGkS58+fx9nZGT8/P9avX8+oUaPYtm0bJUqUyNt/DAPpOxLNat2+DX/8AW+8oeeO5IcyZWDGDPXv/d57MG6c6k957z3V9HWfFVSRTyXNnBgzd+5cbt++zf79+ylSpAienp7ZlndPW6rezs4u9Xs7O7vUsvXvvfceHTp04JVXXiEiIiJ17ZO+ffvSrFkz1qxZQ/v27ZkzZw6PP/44e/fuZe3atYwcOZLOnTvz7rvv5uSyrY6+I9Gs1tq1kJioKt1q+adGDXUnuHu3anIaNgwuXlSVl62tftfjjz/O8uXLuXv3LrGxsaxYsYKWLVs+VOY9OjqasmXLUqRIEX7//XcuXryYJ+ePjo6mUiW12nfaqr2RkZHUqFGD//73v3Tq1ImwsDAuXryIi4sLffv2Zfjw4ezfvz9PYrAG+o5Es1rLl4OHBzRtanQkhVOjRmo01x9/qDvCc+fgn3/U5MbSpa3jLrFx48b06tWLRo0aAWq9dF9fXwCCgoLw9fWlU6dODB8+nKeeeoqgoCACAwOpWbNmnpz/nXfeYdCgQUyaNCl1nXiA+fPns2DBAhwcHKhYsSIff/wx27dvZ9SoUdjZ2eHo6FigRpUJc28NbVlQUJC8P8riUVn7EqyWYA3XnJCgmlp69VKVbC3NGq45P+Vkqd0KFepy8SLcvQvOzqoz3loSijnSr5BYGJh7zceOHaNuupLaQoh9Usogc86j70g0q/THH2pYqm7Wsh4lS6r5PDdvwuXLcOaM+mprCUXLezqRaFZp+XJwdVW1oTTrIYRKGqVKwa1bcOmSSiiXLqllgN3dVU00rXDRiUSzOsnJsGKFWsAqzcAZzWBSSoTptkMIlUxKloToaHVncu6cSigeHlC2rCrLolm/vOje0IlEszo7dqgRQrpZy3o4Oztz/fp13N3dU5MJqIRyv8nr9m3VGX/hgkos5cqph4ODgYFrWZJScv36dZydnXN1HJ1INKvz22/g6AgdOxodiXafp6cnFy5c4Nq1a9luW6SISipXrqhEU7w4uLkZn1Di4+Nz/QfT1phzzc7Oznh6eubqPDqRaFZnwwZo2VL98dGsg4ODA97e3o+0z8mT8PnnquhmQoL6YDBsGLRrZ0zHfGhoKAEBAfl/YgPl1zXrbjHNqly6BOHhD86k1mxTrVpqDZS//4YPP4T9+9XP1cdHLbgVF2d0hFpe0YlEsyobN6qvOpEUHOXKwZgxqjP+p5/UAIqhQ8HTE956S9X40mybTiSaVQkJUSN+/PyMjkTLa05OMGAA7NsHW7eqDwszZkDNmhAcrEbq2cIiW9rDdCLRrEZKirojad9ez0UoyISAFi1UPa9z51Sz1+HD0K0beHnB2LFq5JdmO/R/V81qHD6sRvq0b290JFp+qVhRNXudPQvLlqn+k3HjoGpVtdDWb7+pwp2adbNoIhFCBAshTgghIoQQozJ430kI8avp/V1CCK807402vX5CCNEhzevDhBBHhBDhQogFQojCNZ6vALu/3KtOJIWPg4OaN7R+PZw+DaNHq8WznnkGKleGt9+GY8eMjlLLjMUSiRDCHvgK6AjUA3oJIeql22wwcFNKWQOYCnxq2rce0BOoDwQDM4UQ9kKISsAbQJCU0gewN22nFQAhIVCvHpiqcmuFlLe3Wq3x3DlYuVItajZ1qvrdaNoUvv5a1fvSrIcl70gaAxFSykgp5T1gIdA13TZdgTmm50uAtkJNm+0KLJRSJkgpzwARpuOBmvtSVAhRBCgGXLLgNWj55O5d2LJFj9bS/lWkCDz9tKq7dvEiTJ6sll1+5RVV16t7d9VBf++e0ZFqlpyQWAk4n+b7C0CTzLaRUiYJIaIBd9PrO9PtW0lKuUMIMRn4G7gLhEgpQywUv5aPtm6F+PgcJJL4eNWQ/scf6vm9e2pafJs2agZcZguPazalXDk1VHj4cNXkNWcOLFgAS5eqIpLPPQe9e6tOfD1QI/9ZMpFkNHc1fXWwzLbJ8HUhRCnU3Yo3cAtYLIR4QUr5y0MnF2IIMATAw8OD0NDQRwj9X7GxsTne11YZcc0//FANBwdPYCuhodkvw+d4/TqVFy6kfEgIDrdvk+jmRpKLCylFilAkNhanX9SvxO3atTnXrx/XmzXLcjp1Yfs52/r1dusGnTsL9u0rRUiIBz/9VIZZs+zx8IinTZurPPHEVWrUiH3gR27r15wT+XbNUkqLPIBmwIY0348GRqfbZgPQzPS8CBCFSiIPbHt/O6AH8EOa1/sBM7OLpWHDhjKnNm3alON9bZUR19yokZQtW5q58fbtUpYvL6WDg5TPPSdlSIiUycn/vp+SIuWhQ1JOmCBlrVpSgpRt2ki5b1+mhyxsP+eCdr0xMVLOmyflU09JWaSI+pHXrCnl++9LGRamfiUK2jWbIzfXDOyVZv69t+RN4B6gphDCWwjhiOoUX5lum5VAf9Pz7sCfpgtYCfQ0jeryBmoCu1FNWk2FEMVMfSltAT2Ww8bFxqryGY8/bsbGP/4IrVtDsWJqp19/fXjiiRBqRuOoUareypdfqrHFQUHw0UfWt/C4lmsuLqppa80aVYH422/VaK/x49WvQt268OOPXhw6BIVgUdh8Z7FEIqVMAl5D3U0cAxZJKY8IIcYJIbqYNvsBcBdCRADDgVGmfY8Ai4CjwHrgVSllspRyF6pTfj9w2BR/PizEqlnSzp1qDZKWLbPZcOJEGDwYWrWCPXvUpIPsODjAq6+qOhx9+qhJC1266GE/BZi7O/znP6rb7NIlmDlTzVeZN68q/v6qBtioUbB7t/5MkWfMvXWx5Ydu2no0+X3NY8ZIaWcnZXR0FhutXy+lEFL27CllYmLOTpSSIuVXX6kmMW9vKY8dS32rsP2cC9v1SinlsmVb5TffSPnkk/82f1WqJOWrr0r5++9S3rtndIR5ryA0bWmaWbZsgQYNsigbf/asarfw9YUfflDjQnNCCDV29K+/VOnZVq0gLCynYWs2plSpRIYMUcsUXL0Kc+dCo0bqV6p9ezUyrE8f1VoaHW10tLZFJxLNUPfuqaatTJu14uPh2WdV29fSpapvJLeaNlXJxMFB9bfs2ZP7Y2o2pVQp6NtXzVG5fl2NIO/WTU2K7dkTypRR66ZMnw6RkUZHa/10ItEMdeCAmoyYaSJ57z3VqT53LtSokXcnrl1b3QqVKAFt2+Kq628UWsWKQdeuqsT9P/+oOU3Dh6tJkG++CdWrq1n1I0dCaKiu/ZURnUg0Q23Zor5mmEgiIuCLL+DFF1UHeV7z9lYBlCmD7+jRcOJE3p9Dsyn29mpS46efqtpeERHqrqRSJVXyvk0bdbfSvbtqErt40eiIrYNOJJqhtmxR61F4eGTw5ujRapb6uHGWC8DTU7VnCAEdOqhhPppmUr06vPGGKih6vwns+edh1y71+cbTUw0vHjlSLYEQH290xMbQiUQzTEqKakbI8G5k+3ZYskSVfbV0mZMaNQibOFH9pQgOhlu3LHs+zSa5uKgmsG+/VcsHHz4MkyaphdimT1cd9qVLw1NPwbRpcORI4ZmzohOJZphjx+DGjQwSiZSqsFKFCuprPoitXVt93Dx+XPW26qX6tCwIoaYxjRyp5qvcuKEqFQ8erMrgDxum3vf0hP794ZdfVP9LQaUTiWaYTPtHlixRQ7k+/hiKF8+/gNq2VbPXNmxQd0KaZiYXF1Wp+IsvVFfbmTPw3Xfw2GNqtn3fvupzka+v6sBfubJgDTG2ZNFGTcvS1q3qP1e1amlelBImTFA1Lfr3z3Rfi3nxRdVmMXWq+kg5aFD+x6DZPC8v9av04ouqCffgQdWHsnGjahqbPl1V9QkKUh34TzyhOvnz83NTXtKJRDPMzp1q0aIHivLu2KHGBM+apYbQGGHKFNXuNnQo1KkDzZsbE4dWINjZQWCgerz9NiQkqN/9P/6ATZvUr9unn6ppTY0bq6lNrVurX7u8mDaVH3TTlmaI69dVW3KT9CvUfPmlmtvRp48hcQFq5vyvv0KVKtCjh5oGrWl5xMlJFVUYN0417968qZYYHj5cdc1NnKg67kuWVE1j772nBhbGxhodeeZ0ItEMcX8yeePGaV68fBkWL4aBA1Wjs5FKlVIz6W/cgF691Mx6TbMAFxc18nziRHWncuMGrF2rOuwTE9XdSocOKrE0aaI6+Fetsq66ozqRaIbYtUs1aTVsmObF775TH8leecWwuB7QoIFaIPzPP1XVYE3LB25uanHPTz9V/09u3VLjP955R02rmjFDzc8tXVp13r/yilot8vz57I9tKbqPRDPE7t1Qvz64uppeSExU/SLBwWqGorUYMAC2bYNPPlEdOp07Gx2RVsi4uKglqO8vQx0frxLMli3q8fPP6vMOQNWqqjmsRQv1Nb/K5OtEouU7KVUieaDqyfLlqmnru+8MiytTX3wBe/eqUWSHDqnJAZpmEGdn1cfSqpX6PilJFbHeulUllj//hHnz1Hvu7s24etXy69jrpi0t3509C1FR6fpHvv9ejZkMDjYoqiw4O6vO94QEVc5eT1bUrEiRImpE2BtvqC7GixfVQJa5c6FpHl+dAAAgAElEQVR79wsWTyKQxR2JEGK4GfvHSSm/ycN4tEJg1y71NTWRXLumPka9845xQ36zU6uWaj/o108Nt7Fk/S9NywUh1NysatWgcuXzQHWLnzOrXDUScAFcs3jkT/0KrUDZvRuKFk2zUu6yZWpU1HPPGRpXtvr2Vc1bH3+sEp+maUDWfSQ/Symz/NglhLDReZiakXbvVrfiDg6mF379Va0P4udnaFxm+fJLNUazb1/VX1KmjNERaZrhMr0jkVJmW2zInG00La3ERNi3L02z1j//wObN6m7kgSnuVsrFRY21vHZN1b8oLOVdNS0L2Y7ayqSvJBrYJ6U8mPchaQVZeLgavpg6o33pUjVG8fnnDY3rkQQEqNljb70F33yjSqloWiFmTn9+EDAUqGR6DAFaA98JIfQdifZIdu9WX1PvSBYtUuuY1q9vWEw58uabamD/sGFw9KjR0WiaocxJJO5AoJTyLSnlW6jEUhZ4HBhgwdi0AmjXLtWt4OWFWo1wyxbr72TPiJ0dzJmjZlT27q2GBmtaIWVOIqkC3EvzfSJQVUp5F9D/e7RHsnevKp0tBGrdESltM5EAlC8PP/6oOt3fe8/oaDTNMOYkkvnATiHEB0KID4BtwALTiC19T6+ZLT5etQKl1tdatkyNAa5b19C4cqVzZ3j5ZVULfONGo6PRNENkm0iklB8B/wFuoTrZh0opx0kp46SUBtb61mxNeLiaLhIQANy+rWpYdepkdFi5N3myWrekf39VH1/TChlzJ89HApuAv4AUIUSg5ULSCqr9+9XXgADUij5JSdZZEuVRFSsG8+erIcFDhughwVqhY87w349Qneqngfv/QyTwhBn7BgPTAXvgeynlxHTvOwFzgYbAdeB5KeVZ03ujgcFAMvCGlHKD6fWSwPeAjymOQVLKHdnFohnvwAG1ZpW3N/DZejUno6CsPhgQAOPHqyXwfvqp0C7RGx8fz5UrV/jnn3+IiooiKiqK69evc+vWLaKjo7l9+zaxsbHcuXOHuLg44uPjuXfvHgkJCSQmJpKcnEyyae0XYZpXZG9vT5EiRbC3t8fBwQEnJyecnJxwdnamWLFiqQ8XFxdcXV1xcXGhRIkSuLm5UaJECUqWLEmpUqW4fv069+7dw9HR0ch/ogLJnOq/zwHVpZT3st0yDSGEPfAV0B64AOwRQqyUUqbtVxkM3JRS1hBC9AQ+BZ4XQtQDegL1gYrARiFELSllMioxrZdSdhdCOAI2shiltn+/+nsrkGpJuCeeUAssFBRvvQXr1qnqeS1bWlc5/DySkJBAREQEERERnD59msjISM6dO8f58+c5f/48N27cyHA/IQRubm64ubnh6uqa+se/ZMmSODo64ujoiIODA/b29tinqbcmpUxNLklJSSQmJpKQkEBCQgIxMTFcvXo1NSnFxcURExNDSja1011cXHB3d6dMmTKULVuWsmXLUq5cOcqVK4eHhwfly5dPfZQpU+aBeLSMmZNIwoGSwKOuN9oYiJBSRgIIIRYCXXmwg74rMNb0fAnwpVAfQ7oCC6WUCcAZIUQE0FgIcYQ0w45Nye2REpxmjPulrl95BTh5UpUAfruATUO6PyS4QQN44QVV1zu1DoxtkVJy9uxZDh48yMGDBzl06BBHjx4lMjIy9Y4BoESJEnh5eVG5cmWaN29OxYoVqVChAuXLl6ds2bK4u7vj7u6Om5sbdvlQhlZKyd27d7l9+zbR0dFER0dz8+ZNbt68ya5du3B3d+fGjRupd0tRUVEcO3aMq1evcvfu3YeOZ29vj4eHBxUqVKBSpUqpD09PzwcexYsX7mpR5iSSCcABIUQ4aYb7Sim7ZL4LoCYvpl2z6wKQfoXu1G2klElCiGjUvJVKwM50+1YC7gLXgJ+EEA2AfcB/pZRxZlyHZqATJ9SorYAA1HJvoNYPLWgqV1az3Z97TlUI/ugjoyMyS1xcHDt37mTLli3s3r2b3bt3c900cMDOzo5atWrh5+fH888/T926dalZsybVq1endOnSBkf+ICFE6t1O+fLlH3ivfPnytG7dOtN9Y2NjuXLlSmrT3OXLl1Mfly5d4syZM2zdujXDu67SpUtTuXJlqlSpkvqoWrUqVatWxcvLCw8Pj9SmuoLInEQyB9XkdBh4lPW2MvpXS98Lmdk2mb1eBAgEXpdS7hJCTAdGAe8/dHIhhqBm4ePh4UFoaKj5kacRGxub431tlSWuOSTEA6hLYuJurs+fT1FPT3b//Tf8/Xeenien8vSay5aldnAw5T/5hINlyxJthcUob968ybRp09i3bx/79u3j5MmTJCcnI4TAy8uLxo0bU6dOHWrVqoWXlxfOzs4P7B8XF0dYWJhB0efMo/yMS5cuTenSpamfQcWFhIQEoqKiuHbtGteuXePq1atcvXqVa9euceTIETZt2kRsbOwD+zg4OFC+fPnUprP7d20VKlSgYsWKuLm5WSTR5NffL3MSSZSUckYOjn0BqJzme0/gUibbXBBCFAFKADey2PcCcEFKaVrRgiWoRPIQKeW3wLcAQUFBMqtPIlkJDQ3N8lNMQWSJa165UpWO79vDjyKvhsGLL1rVv2ueX3PDhhAQQMCUKWrCYsmSeXfsHLp27Rpr1qxh5cqVrFu3jvj4eOzt7WnSpAlvv/02jz/+OM2bN8fNzc3oUC0iP/8v3759m7///puzZ89y7tw5zp07x9mzZzlz5gw7d+4kKirqge1dXV3x9vamWrVqVK9enWrVqqU+9/LywiGHTaT5dc3mJJJ9QogJwEoebNran81+e4CaQghv4CKq87x3um1WAv2BHUB34E8ppRRCrATmCyE+R3W21wR2SymThRDnhRC1pZQngLboSZE24cABVSW+yI4tcPduwRj2mxVXV7XeaYsW8Oqr/659ms+uXr3K0qVLWbRoEZs3b0ZKiaenJ08++SSDBg2idevWlChRwpDYCjI3Nzd8fHzwSV1050ExMTGpiSUyMpLIyEjOnDnDyZMnWb9+PfHx8anb2tvbU6VKFapXr06NGjUeeFSrVo2iRYvm12VlypxEEmD62jTNa9kO/zX1ebwGbEAN//1RSnlECDEO2CulXAn8APxs6ky/gUo2mLZbhEoSScCrphFbAK8D80wjtiKBgWZcg2YgKVUi6d0bNVrLyenfBacLsiZNYOxYeP996NhRdcDng/j4eFasWMHs2bMJCQkhJSWFOnXq8P7779OtWzf8/f3ZvHmzVd0RFjaurq74+vri6+v70HspKSlcvnyZyMhITp8+zenTp1NHyi1cuJBbt26lbiuEwNPTkxo1alCzZk1q1qyZ+rx6dcuvjHhftolEStkmpweXUq4F1qZ7bUya5/FAj0z2HQ+Mz+D1g6jCkZqNOHMGoqNNHe1fblSf0gvLKJfRo9XggldegWbNwIL/uY8dO8bXX3/Nzz//zK1bt6hcuTKjRo2iZ8+e+Pj4FOjO3oLEzs4udXRYy5YtH3r/xo0bqcOvT506xalTp4iIiGDZsmUPNJkJIahSpQpnzpyx+M8+qzXbO0spV2e1sznbaFrqjPbqt+HwYfjwQ2MDyk/29qpZq0EDdUuWx0OCk5OTWblyJTNmzCA0NBRHR0e6d+/OoEGDaNOmTb4MudXyV+nSpWncuDGNU9di+NfNmzeJiIhITTAnTpzIlw8QWd2RfCaEuEjGI6ju+wTQiUTL0oEDUKQI+Nzaqtq5MviUVaBVqQLffQc9esAHH8Ann+T6kHfu3GHOnDl8/vnnRERE4OXlxcSJExk0aBBly5bNg6A1W1SqVCkaNWpEo0aNAPJtxGlWieQK8Hk2+5/Kw1i0AurAAbV2lfPOUPVpvEn66USFQPfuamneiROhXTs1qz8H4uLimDVrFp999hlXrlyhcePGLF68mGeeeUbPwNYMk2kikVK2zsc4tALs0CFo2xa1iFWjRmoccGE0bZpq2nrhBTh4EMqVM3vX+Ph4Zs6cycSJE7l27Rrt2rVj0aJFtGzZUvd9aIbTDaiaRUVFqYUQG9RNUKtaPf640SEZp3hx+PVXuHFDlZzPpiYUqD6QuXPnUrt2bd566y38/f3Ztm0bv//+O48//rhOIppV0IlEs6jDh9VXP/ujquBWYU4koCbTTJ2qhkFPmZLlplu3biUoKIj+/ftTtmxZNm7cSEhICM0LSsVkrcDQiUSzqPtVNPyublTr6+o/gjB0KDz7LLz7Luzc+dDbFy9epE+fPrRs2ZKoqCjmz5/P7t27adu2rQHBalr2sk0kQogeQghX0/P/CSGW6YWtNHOFhamuAI/968DfXy1IUtgJAd9/D56e0LOnaupCTUSbOXMmdevWZenSpbz//vscP36cXr166WG8mlUz57fzfSlljBDiMaADqojj15YNSysowsLAt36K+uRd2Ib9ZqVkSdVfcukS9O/P0fBwHnvsMV599VWaNGnCkSNHGDduXKEvT67ZBnMSyf3SJJ2Ar6WUK4ACtBqRZinJyWqddr9y/6j6WoW9fyS9xo1J/uwzJq9eTYC/PydPnmTu3LmEhITka3kLTcstc2ptXRRCfAO0Az41LY+r77O1bJ0+rdYg8Us5qF7QdyQPiIyMZMDSpWwBnklOZtZPP1Hu6aeNDkvTHpk5CeE5VOHFYCnlLaA0MNKiUWkFQmpH++UNULv2I82bKOgWLlyIv78/hw4dYs6sWSytXp1yL70E//xjdGia9sjMSSQVgDVSylNCiNaoIou7LRqVViCEhYGdnaTe0SV6tJbJnTt3+M9//kOvXr3w8fEhLCyMfi+9hFi2DG7dguefh8REo8PUtEdiTiJZCiQLIWqgyr57A/MtGpVWIISFQW3vRJxvXCqcZVHSiYiIoGnTpvzwww+MHj2azZs3U7VqVfWmnx98+y389ZeqGKxpNsScPpIU09oi/wdMk1J+IYQ4YOnANNsXFgaNPS7DaQp9Ilm7di19+vTBzs6OdevW0SGj9epfeAF27VITFZs0UUUeNc0GmHNHkiiE6AX0499Kv3lXB1srkG7fVuuQ+IpwVVsrk5XiCjopJePHj6dz5854eXmxd+/ejJPIfVOmqHVLBg78tyyAplk5cxLJQKAZMF5Keca0dO4vlg1Ls3Xh4eqr341QtX55EXNufguW+Ph4+vbty//+9z969+7Ntm3b8Pb2znonR0dYsgTc3KBbt9TJippmzbJNJFLKo1LKN6SUC0zfn5FSTrR8aJotSx2xdWZFoWzWunbtGm3btmXevHmMHz+en3/+mWLFipm3c8WKsHw5XLigOt+TkiwbrKblkjklUmoKIZYIIY4KISLvP/IjOM12hYWBW/Ekqtw7BRms5FaQnTp1iqZNm7J//34WLVrEu+++++hVeps0gVmzYONGePttywSqaXnEnPaGn4APgKlAG1RTl65drWUpLAz8yl9FFLKO9r179/LUU08hpSQ0NJQmubn2gQPVuiVTp0L9+jB4cN4Fqml5yJw+kqJSyj8AIaU8J6UcC+RseTetUJBS9ZH42B8DDw+11Gwh8Pvvv9O6dWuKFSvGtm3bcpdE7psyBTp0UBWD82nZVE17VOYkknghhB1wSgjxmhDiGUBPUdYydfEiREeD762tqlmrECy+tHz5cjp16kT16tXZvn07tWrVypsDFymiijvWrKlKz5/Sq1tr1secRPImUAx4A2gI9AX6WzIozbbdH7FV/+qfhaJZa+HChfTo0YOGDRuyefNmKlasmLcnKFECVq9WCblzZ7h+PW+Pr2m5ZM6orT1Sylgp5QUp5UAp5f9JKR9ejUfTTFITCUcKfCKZPXs2vXv3pkWLFoSEhFCyZEnLnKhaNVixAs6dg65dVTVMTbMSmXa2CyFWZrWjlLJL3oejFQTh4VDeJYYysdchKMjocCxm9uzZDBo0iHbt2vHbb7+ZP7w3p1q0gJ9/hueeg379YOFC0AteaVYgq1FbzYDzwAJgF3qklmam8HDwcY4AzzpqAacC6JdffklNIitXrsTZ2Tl/TtyjB0yeDCNGqEEMkyfnz3k1LQtZJZLyQHugF9AbWAMskFIeyY/ANNuUkgJHj8JLYg80amR0OBaxcOFC+vfvT5s2bfjtt9/yL4ncN3w4nD2rRnSVL6+SiqYZKNP7YillspRyvZSyP9AUiABChRCvm3twIUSwEOKEECJCCDEqg/edhBC/mt7fJYTwSvPeaNPrJ4QQHdLtZy+EOCCEWJ3+mJqxzpxRiyH63NmlSqMUMKtWreKFF17gscceY+XKlZZvzsqIEDBtmpr1PnIkzJ6d/zFoWhpZTkg0rYbYCXVX4gXMAJaZc2AhhD3wFequ5gKwRwixUkp5NM1mg4GbUsoaQoiewKfA80KIekBPoD5QEdgohKglpby/7O9/gWOAm1lXqeWb+x3tPoRD4ABDY8lroaGh9OjRg8DAQFavXm3seur29jB3rqrF9eKLULo0dNHdlpoxMr0jEULMAbYDgcCHUspGUsqPpJQXzTx2YyBCShkppbwHLAS6ptumKzDH9HwJ0FaoWhJdgYVSygQp5RnU3VBjU1yeqOT2vZlxaPnofiKpxzHw9zc2mDy0b98+unTpQvXq1Vm3bh2urq5Gh6QKPC5bBoGBqgP+jz+MjkgrpLIa8tEXqIX69L9dCHHb9IgRQtw249iVUJ31910wvZbhNlLKJCAacM9m32nA20CKGTFo+Sw8HKoWvYpr7YpgDX9s88CpU6cIDg6mdOnShISE4O7ubnRI/3JxgXXr1ITFLl1g2zajI9IKoUybtqSUuR1XmNEoL2nmNhm+LoToDFyVUu4zLfub+cmFGAIMAfDw8CA0h+UlYmNjc7yvrcrNNe/aFUS95ENcqVSJYzb075bZNd+8eZPXXnuNxMREPvroI06dOsUpK5xd7vjhh/i/+SaOHTpwaMoUYmrXznJ7/XtdOOTbNUspLfJADR/ekOb70cDodNtsAJqZnhcBolBJ5IFt728HTEDdnZwF/gHuAL9kF0vDhg1lTm3atCnH+9qqnF7zvXtSOjikyHeYIOVnn+VtUBaW0TXHxsbKRo0ayaJFi8odO3bkf1CP6u+/pfTykrJUKSn3789yU/17XTjk5pqBvdLMv/eWnM20B6gphPAWQjiiOs/TT3Jcyb/lVroDf5ouYCXQ0zSqyxuoCeyWUo6WUnpKKb1Mx/tTSvmCBa9BewSnTkFiojB1tAcaHU6uJCcn06tXL/bt28eCBQto2rSp0SFlr3Jl+PNP1aTYti3s3290RFohYbFEIlWfx2uou4ljwCIp5REhxDghxP3hJT8A7kKICGA4MMq07xFgEXAUWA+8Kv8dsaVZqQdHbNl2IhkxYgSrVq1ixowZdO2afoyIFfP2VlWC3dxUMtm3z+iItELAouufSinXAmvTvTYmzfN4oEcm+44Hxmdx7FAgNC/i1PJGeDjYkUIdrwSbntH+zTffMG3aNP773//y6quvGh3Oo7ufTNq0Uclk3Tq1DrymWYgu1KPlmfBwqOlwBucgH6NDybE//viDV199lY4dOzJlyhSjw8k5Ly/YvBnKloX27dVKi5pmITqRaHkmPCyZ+okHbbZZ69SpU3Tv3p06deqwcOFC7O3tjQ4pd6pUgS1bVOXgTp1U9WBNswCdSLQ8cfcunD5jp/pHbLA0SlxcHF27dsXe3p5Vq1bh5lZAiiaUL6+aufz91cJYP/5odERaAWTRPhKt8Dh+HFJShFqDJOAVo8N5JCkpKUyYMIGTJ0/y+++/4+3tbXRIeat0adW01b27Wvf90iVVkl7T8oi+I9HyxBFTTWif8tdVu7wNGTduHNu2bePzzz+nTZs2RodjGa6usGoVvPACvP8+NadNg6Qko6PSCgidSLQ8ER4ODtyjZiPbGq21atUqPvzwQzp06MDrr5td2No2OTrCnDnw9ttUWrlSlVS5bU61I03Lmk4kWp44EpZEbU7g0NDP6FDMdvr0afr27UtgYCDDhw9H1Qst4Ozs4NNPOTFsGISEqCauc+eMjkqzcTqRaHki/GCS6mi3kYq/d+7c4dlnn8XOzo4lS5bg6OhodEj56nKXLrB+PZw/D40b62KPWq7oRKLlWmwsnL3sbOpoDzA6nGxJKXnllVcICwtj3rx5Ba9z3Vzt2sGOHWoWfJs28M03Rkek2SidSLRcO2paqsyn+FlV78nK/fjjj8yZM4cxY8bQsWNHo8MxVt26sHu3SipDh8KQIZCQYHRUmo3RiUTLtfsjtur7CLUMrBU7fPgwr732Gu3ateP99983OhzrUKqUGtE1ejR8953qNzlzxuioNBuiE4mWa+FhKThzl2pNyxkdSpZiY2Pp0aMHJUuW5JdffrH9met5yd4ePvkEfvsNTp9WTZR6JrxmJp1ItFwL33OHehzFPrCB0aFkSkrJyy+/zKlTp5g/fz4eHh5Gh2SdunZV5edr1oRu3eD111XZAk3Lgk4kWq4dOWZn9R3tP/30E7/88gtjx44tuJMO84q3N2zdCm++CV9+qUZ13V8jQNMyoBOJliu3bsHFG8XwsT8OdeoYHU6Gjh07xuuvv06bNm149913jQ7HNjg5wdSpqgT9tWsQFASffw7Jelkg7WE6kWi5ktrR7hUHDg7GBpOB+Ph4evXqRbFixXS/SE4EB0NYGDz5JLz1FrRurfpQNC0NnUi0XAk/LAHwaehkcCQZe/vttzl06BCzZ8+mYsWKRodjm8qVUx3vs2fD4cPg5wfTpum7Ey2VTiRarhzZE4cLMVRpYX3zR1atWsUXX3zBm2++SadOnYwOx7YJAf37q76S1q1h2DC16uKhQ0ZHplkBnUi0XAnfG099jiACrauj/fLlywwaNAh/f38mTpxodDgFh6cnrF4NCxaoGl1BQTByJMTEGB2ZZiCdSLRcOXK6qBqx5Wc9xRpTUlIYMGAAcXFxLFiwACcn62x2s1lCQM+ecOwYDBgAkyergRYLF4KURkenGUAnEi3HrlyBq3HF8XO/pOo1WYnp06cTEhLC1KlTqWOlI8kKhNKl1Uz4nTuhQgXo1QtatYK9e42OTMtnOpFoOXb4sPrqW896Ol0PHTrEqFGj6Nq1K0OGDDE6nMKhSRPYtUsVfTxxAho1gn79VGVhrVDQiUTLsbDd8QD4trCOu5G7d+/Sp08fSpcuzffff1841hexFvb2quDjqVMwahQsWqRmx7/1FkRFGR2dZmE6kWg5FrYlmvJcpuxjtY0OBYDRo0dz5MgRZs+eTZkyZYwOp3Byc4MJE9SdSe/eaphwtWrwwQdq9qpWIOlEouXY4XCBH2FWURolJCSE6dOn88Ybb9ChQwejw9GqVoUff1Ttn+3awbhx6rUPPoCbN42OTstjOpFoOZKUBEculcK3WKTqaDVQVFQUAwYMoH79+nqor7WpVw+WLYMDB6BtW5VQqlRRQ4YvXTI6Oi2P6ESi5UhEBCSkOOBXPc7QNUiklLz00ktERUUxb948ihYtalgsWhb8/VVCOXQIunRRdbu8vWHw4H9HbWg2y6KJRAgRLIQ4IYSIEEKMyuB9JyHEr6b3dwkhvNK8N9r0+gkhRAfTa5WFEJuEEMeEEEeEEP+1ZPxa5sL2JQLgG2TsHI05c+awbNkyxo8fT4MG1lvGXjPx84N581Sn/ODBamKjnx+0b68mOuqyKzbJYolECGEPfAV0BOoBvYQQ9dJtNhi4KaWsAUwFPjXtWw/oCdQHgoGZpuMlAW9JKesCTYFXMzimlg8Ob4rCniTqtjWuflVkZCSvv/46rVq1Yvjw4YbFoeVAtWowc6YaIjxhgprc+PTTUL06TJwIV68aHaH2CCx5R9IYiJBSRkop7wELga7ptukKzDE9XwK0FWrMZldgoZQyQUp5BogAGkspL0sp9wNIKWOAY0AlC16DlomwffeoxUmcmxhzF5CcnEy/fv2ws7Njzpw5uqqvrXJ3V8OFz5yBxYtVghk9WpVi6dEDNmzQdyk2wJKJpBKQdkbSBR7+o5+6jZQyCYgG3M3Z19QMFgDsysOYNTOFnS6OX5Fj6j++AT799FO2bdvGV199RdWqVQ2JQctDDg7QvTv8+adam+D112HTJlXG3stLJZdjx4yOUstEEQseO6Me2PSFeDLbJst9hRAuwFLgTSnl7QxPLsQQYAiAh4cHoaGhZoT8sNjY2Bzva6uyu+a4OHvOxrSkj8clQv/6K/8CMzlx4gRjxoyhdevWVKpUKU9+PoXt52z11/v004gOHSizfTvlN2yg9KRJiIkTialZk6tPPMHVNm1IeMTlkq3+mi0g365ZSmmRB9AM2JDm+9HA6HTbbACamZ4XAaJQSeSBbdNt52D6fri5sTRs2FDm1KZNm3K8r63K7pq3/ZUkQcqVnb/Jn4DSiIuLk7Vr15aVKlWSN27cyLPjFrafs81d7z//SDl1qpSNG0upSkNK2ayZlJMnSxkZadYhbO6a80BurhnYK838G2vJpq09QE0hhLcQwhHVeb4y3TYrgf6m592BP00XsBLoaRrV5Q3UBHab+k9+AI5JKT+3YOxaFg7/eQ0A31al8/3cI0eO5MSJE8yZM4dSpUrl+/k1g3h4qDXkd+1SY88//hju3oURI1TzakAAjB0L+/frCsQGsFgikarP4zXU3cMxYJGU8ogQYpwQootpsx8AdyFEBDAcGGXa9wiwCDgKrAdelVImAy2AvsATQoiDpsdTlroGLWNh227jym2qtquZr+ddu3YtM2fOZNiwYbRt2zZfz61ZkerV4b331CTHiAiYNAmKF1eTHRs2VB31L74IS5dCdLTR0RYKluwjQUq5Flib7rUxaZ7HAz0y2Xc8MD7da1vJuP9Ey0dhRx3wFeGI+o3y7ZxXr15l4MCB+Pj48Mknn+TbeTUrV726miU/ciRcuwZr1qjHkiXwww+qmGSTJtC+PSXc3aF5c3B0NDrqAseiiUQreKSEw1fK0tN9nxppky/nlAwaNIjo6Gg2btyIs7NzvpxXszFly6qFtgYMgMREtZ0HBdkAAA3xSURBVE7K+vWwcSN89BEBKSnwzjvQogW0aQMtW6qS9/r3Kdd0ItEeyekISXSSCw1rx+XbOb/++mvWrFnD9OnT8fX1zbfzajbMwUElipYtYfx4uHmT8C+/xCcqSg0rfu89tZ2jIzRurNafv/8oX97Y2G2QTiTaI9m79irgQVCr4vlyvqNHj/LWW28RHBzM66+/ni/n1AqgUqWIatkSWrdW31+/Dtu2wZYtsHUrTJ8On32m3qtSRSWXRo1Un0tgIOiBHVnSiUR7JHt/v4ETJajfzfId7fHx8fTs2RNXV1d++uknvVCVlnfc3VXxyC6mcT/x8WrE186dsGcP7N6t+lnuq1ZNFZ68//D1VWXx9e8koBOJ9oj2HnSggTiMYz6sQTJixAgOHz7M2rVrKa+bGzRLcnZWHfHNm//7WlSUGhm2b596HDqkKhjf5+oKPj7qUa+eetStq0aNFbIEoxOJZraUFNh3uQL9yodBEcuO2Prtt9/46quvGD58OB07drTouTQtQ2XKqKrE7dv/+1pMjCp7n/axfDl8992/2xQvDnXqQK1a/z5q1lQjzErn/9yr/KATiWa2k+H3iE0pTiO/exY9z/nz5xk0aBANGzZkwoQJFj2Xpj0SV9eH71xAVSs+cgSOH1ePY8dgxw5YuPDBCZKlSqmEUq2aenh7qyYyLy/VN2Oj6+noRKKZbe9vF4BqBLW3XMdjYmIivXr1IjExkQULFuCox/xrtqBcOfVo0+bB1+Pj4fRp9YiIUI/ISNVktny5Gqac/jhVq0Llyurh6am+VqqknlesaJXzYHQi0cy2d1MMxYijTrc6FjvHe++9x7Zt25g/fz41a+bvzHlNy3POzlC/vnqkl5yslhs+e1aV0f/7b/U4d07d0YSEQGzsw/uVKaMSSoUK6lG+vPrq4fHgIx9HmulEoplt75GiBDiEU6RaY4scf+XKlXz22We8/PLL9OrVyyLn0DSrYW//751Hy5YPvy+lKvFy8SJcuKAely6px8WL8M8/qjntn38gKenh/YsUoVGlSipRWZhOJJpZkpLgQJQn//E+bpERKWfOnKF///40bNiQqVOn5vnxNc3mCAElS6pHRnc096WkwI0bcOWKSipXrqg+mytXuH7uHPkx40snEs0sx3dFc0eWIKhh3ldWvXPnDs8++yxSShYtWoSTk7HrwGuaTbGzU81dZco8lHAiQ0Opkg8h6ESimWXPsvNACYKCy+bpcaWU/Oc//+HgwYOsWrWKagatuKhpWs7pRKKZZe/Wu7gQQ61nsrjFzoEpU6Ywf/58xo8fT6dOnfL02Jqm5Q9LLmylFSB7T7rRsNgx7EqVyLNjhoSE8M4779C9e3dGjx6dZ8fVNC1/6USiZSv+ruTQraoEed/Is2OGh4fTo0cP6tevr+toaZqN04lEy9aWuWdIwJkn2uXNr8ulS5d46qmnKF68OGvWrMHFxSVPjqtpmjF0H4mWrfW/ROFIJVq9lvu1QGJiYujcuTM3b97kr7/+onLlynkQoaZpRtJ3JFq2NuwvS0uXAxSvUSFXx4mPj6d79+6EhYWxaNEiAvKhgrCmaZanE4mWpQtHb3PkjjcdGuWuf+TevXv06NGDkJAQvvvuO13RV9MKEJ1ItCxt+PIUAMH9PHJ8jKSkJHr16sXq1auZOXMmAwcOzKvwNE2zAjqRaFnasD6FiuISPn0a5Gj/hIQEevfuzbJly5g2bRovv/xyHkeoaZrRdCLRMpWUKNl4tgZPVjmBcHj0cRnR0dEEBwezePFipkyZwn//+18LRKlp2v+3d/8xUpR3HMffHw9t0Rawd0orXAsCqaBFNHdWqyFYtELbSP8oqT+oWk0MqYI2mkbbRMwlJrYxtTa1TYhV9LAiQZuShhSNsq21LRyIqcLVcoLoUdRTqZWGgle+/WMHu7nuegtzswO7n1eyuZnZZ575PtnNfXfmmXmevPmuLauo65EedsUkLpp18M947Nixg9mzZ9Pd3U1nZyfz5s3LIEIzOxz4jMQqWv3QG4j9XLjg4OYfWbNmDe3t7Wzbto1Vq1Y5iZjVOScSq2j1uuNpP3YTzad+sqry/f39LFq0iJkzZzJixAieffZZLiyd79rM6pITiZW1ccXLrHvvFGad2VdV+Q0bNjB9+nQ6Ojq44oorWL9+PVOnTs04SjM7HGSaSCTNkvSSpB5Jt5R5/yOSHk3eXytpXMl7tybbX5J0UbV1Wnr73uvn8nkw+qg+Fi4+7UPL7ty5k6uvvpr29nZ6enro7OxkyZIlHvbErIFklkgkNQH3ArOBKcClkqYMKHYNsCsiJgJ3Az9I9p0CXAKcCswCfiapqco6LaVlN+2je+8Elix6hebJJ/7f+xFBoVDgsssuY9y4cSxdupSbb76ZLVu2uD/ErAFledfWWUBPRGwFkLQMmANsLikzB7g9WV4B/FTFYWDnAMsiYi+wTVJPUh9V1GkpPPnDjTyw5css+NwavnTb+UQEu3btore3l66uLp555hkKhQLbt29n1KhRzJ8/n4ULFzJhwoS8QzeznGSZSMYAr5Ws9wKfr1QmIvolvQs0J9v/PGDfMcnyYHUOmeOanqN//4lIjZOn3o8JHE03K9/9Nr9q3U1fXx979+794P2WlhbOO+88Ojo6mDt3LsOHD88xWjM7HGSZSMo9fDBwwu9KZSptL3cpruwk4pKuBa4FGD16NIVCoWKglTQf8zbv7x+GyoZTn47SZsZOXM6Ik1ppampi5MiRNDc309zczMSJE2ltbf1g7pC1a9fmHO3Q2b179yF9R45UjdZecJuzlGUi6QVKxwgfC/y9QpleScOAkcA7g+w7WJ0ARMRiYDFAW1tbzJgx46Ab8OoeKBQKHMq+R7JCoaUB29xYn3OjtRfc5ixleddWFzBJ0nhJx1DsPF85oMxK4Mpk+evA0xERyfZLkru6xgOTgHVV1mlmZjWU2RlJ0udxPbAaaALuj4hNkjqA9RGxEvgF0Jl0pr9DMTGQlFtOsRO9H7guIv4DUK7OrNpgZmaDy3SsrYhYBawasO22kuV/A3Mr7HsHcEc1dZqZWX78ZLuZmaXiRGJmZqk4kZiZWSpOJGZmlooTiZmZpaLiYxv1TVIfsP0Qd28B3hrCcI4EbnP9a7T2gtt8sD4TESdUU7AhEkkaktZHRFvecdSS21z/Gq294DZnyZe2zMwsFScSMzNLxYlkcIvzDiAHbnP9a7T2gtucGfeRmJlZKj4jMTOzVJxIKpA0S9JLknok3ZJ3PFmT1CppjaRuSZsk3ZB3TLUiqUnSRkm/yTuWWpA0StIKSX9NPu9z8o4pa5K+k3yvX5T0iKSP5h3TUJN0v6Q3Jb1Ysu0Tkp6UtCX5e3wWx3YiKUNSE3AvMBuYAlwqaUq+UWWuH7gpIiYDZwPXNUCbD7gB6M47iBq6B/htRJwCnE6dt13SGGAh0BYRp1GcguKSfKPKxBJg1oBttwBPRcQk4Klkfcg5kZR3FtATEVsjYh+wDJiTc0yZioidEfFcsvwexX8uY/KNKnuSxgJfAe7LO5ZakDQCmE5xLiAiYl9E/CPfqGpiGDA8mYn1WCrMrHoki4jfU5zXqdQc4MFk+UHga1kc24mkvDHAayXrvTTAP9UDJI0DzgDqZ1L2yn4MfBfYn3cgNXIy0Ac8kFzOu0/ScXkHlaWI2AHcBbwK7ATejYgn8o2qZkZHxE4o/lgETsziIE4k5anMtoa4vU3Sx4DHgBsj4p95x5MlSV8F3oyIDXnHUkPDgDOBn0fEGcC/yOhyx+Ei6ReYA4wHTgKOkzQv36jqixNJeb1Aa8n6WOrwVHggSUdTTCIPR8TjecdTA+cCF0t6heLlyy9KWppvSJnrBXoj4sDZ5gqKiaWeXQBsi4i+iHgfeBz4Qs4x1cobkj4FkPx9M4uDOJGU1wVMkjRe0jEUO+ZW5hxTpiSJ4nXz7oj4Ud7x1EJE3BoRYyNiHMXP+OmIqOtfqhHxOvCapM8mm2YCm3MMqRZeBc6WdGzyPZ9Jnd9gUGIlcGWyfCXw6ywOkumc7UeqiOiXdD2wmuIdHvdHxKacw8raucA3gRckPZ9s+15ErMoxJsvGAuDh5EfSVuBbOceTqYhYK2kF8BzFuxM3UodPuUt6BJgBtEjqBRYBdwLLJV1DMaHOzeTYfrLdzMzS8KUtMzNLxYnEzMxScSIxM7NUnEjMzCwVJxIzM0vFicTMzFJxIjGrkqRmSc8nr9cl7ShZ/2MGx7tKUp+kigNKShqeHH+fpJahjsGsGn4g0axKEfE2MA1A0u3A7oi4K+PDPhoR139ITHuAackwL2a58BmJ2RCQtDv5O0PS7yQtl/Q3SXdKulzSOkkvSJqQlDtB0mOSupLXuVUc49Sknucl/UXSpKzbZVYNn5GYDb3TgckU54bYCtwXEWcls04uAG6kOLnU3RHxB0mfpjgcz+RB6p0P3BMRB4Y3acqsBWYHwYnEbOh1HZgDQtLLwIG5L14Azk+WLwCmFMcQBGCEpI8nk4pV8ifg+8lkXI9HxJahD93s4PnSltnQ21uyvL9kfT//+/F2FHBORExLXmMGSSJExC+Bi4E9wGpJXxziuM0OiROJWT6eAD7oRJc0bbAdJJ0MbI2In1AcHnxqduGZVc+JxCwfC4G2pNN8M8X+j8F8A3gxGeb/FOChLAM0q5aHkTc7TEm6Cmj7sNt/S8q+kpR9K+u4zAbyGYnZ4WsPMLuaBxKBoyn2wZjVnM9IzMwsFZ+RmJlZKk4kZmaWihOJmZml4kRiZmapOJGYmVkq/wUpd+tmEMghrwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Put your code here\n",
"# Import commands\n",
"from scipy.stats import gamma\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"from scipy.integrate import odeint \n",
"import math as math\n",
"\n",
"\n",
"# Derivative function\n",
"def derivs(curr_vals, time):\n",
" \n",
" # Unpack the current values of the variables we wish to \"update\" from the curr_vals list\n",
" Cp, Cisf = curr_vals\n",
"\n",
" # Define value of input function Cin\n",
" Cin = rv.pdf(time) \n",
" \n",
" # Right-hand side of odes, which are used to computer the derivative\n",
" dCp_dt = (flow/Vp)*(Cin - Cp) + (PS/Vp)*(Cisf - Cp)\n",
" dCisf_dt = (PS/Visf)*(Cp - Cisf)\n",
" \n",
" return dCp_dt, dCisf_dt\n",
"\n",
"# Declare Variables for initial conditions\n",
"flow = 1/60 # Flow into capillary\n",
"Vp = 0.05 # Volume of plasma\n",
"Visf = 0.15 # Volume of interstitial space\n",
"PS = 1/60 # Permeability-Surface area product\n",
"Cp0 = 0 # Initial concentration of tracer in plasma\n",
"Cisf0 = 0 # Initial concentration of tracer in interstitial space\n",
"tmax = 10 #Time in seconds\n",
"dt = 0.1 #Time step\n",
"a = 2. # Alpha for gamma distribution\n",
"rv = gamma(a, loc = 2, scale = 0.55) #input function\n",
"\n",
"# Define the time array\n",
"time = np.arange(0, tmax + dt, dt)\n",
"\n",
"# Store the initial values in a list\n",
"init = [Cp0, Cisf0]\n",
"\n",
"# Solve the odes with odeint\n",
"sol = odeint(derivs, init, time)\n",
"\n",
"Mass_plasma = Vp * sol[:,0] #mass of tracer in plasma\n",
"Mass_isf = Visf * sol[:,1] #mass of tracer in isf\n",
"Tp = Vp/(flow + PS) # mean transit time\n",
"E = 1 - np.exp(-PS/flow) #extraction fraction\n",
"Q = Mass_plasma + Mass_isf\n",
"\n",
"print('The mean transit time is ' + str(Tp))\n",
"print('The extraction fraction is ' + str(E))\n",
"\n",
"\n",
"# Plot the results using the values stored in the solution variable, \"sol\"\n",
"# Plot Cp using the \"0\" element from the solution\n",
"plt.figure(1)\n",
"plt.plot(time, rv.pdf(time), color = 'blue', label = 'Input Function')\n",
"plt.plot(time, sol[:,0],color=\"green\", label = 'Cp')\n",
"\n",
"# Plot Cisf using the \"1\" element from the solution\n",
"plt.plot(time, sol[:,1],color=\"purple\", label = 'Cisf')\n",
"plt.xlabel('Time [s]')\n",
"plt.ylabel('Concentration [mM]')\n",
"plt.legend(loc = 'best')\n",
"plt.grid()\n",
"\n",
"# Plot mass of tracer using the \"2\" element from the solution\n",
"plt.figure(2)\n",
"plt.plot(time, Mass_plasma,color=\"red\", label = 'Plasma')\n",
"# Plot mass of tracer in tissue using the \"3\" element from the solution\n",
"plt.plot(time, Mass_isf,color=\"black\", label = 'Interstitial Space')\n",
"plt.plot(time, Q, color=\"blue\", label = 'Total mass')\n",
"plt.xlabel('Time [s]')\n",
"plt.ylabel('Mass [mg]')\n",
"plt.legend(loc = 'best')\n",
"plt.grid()\n",
"\n",
"print('Cp at 10 sec is ' + str(sol[100,0]))\n",
"print('Cisf at 10 sec is ' + str(sol[100,1]))\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.007018384196576239"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Q[99]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
%% Cell type:code id: tags:
```
python
# Put your code here
# Import commands
from
scipy.stats
import
gamma
import
numpy
as
np
import
matplotlib.pyplot
as
plt
%
matplotlib
inline
from
scipy.integrate
import
odeint
import
math
as
math
# Derivative function
def
derivs
(
curr_vals
,
time
):
# Unpack the current values of the variables we wish to "update" from the curr_vals list
Cp
,
Cisf
=
curr_vals
# Define value of input function Cin
Cin
=
rv
.
pdf
(
time
)
# Right-hand side of odes, which are used to computer the derivative
dCp_dt
=
(
flow
/
Vp
)
*
(
Cin
-
Cp
)
+
(
PS
/
Vp
)
*
(
Cisf
-
Cp
)
dCisf_dt
=
(
PS
/
Visf
)
*
(
Cp
-
Cisf
)
return
dCp_dt
,
dCisf_dt
# Declare Variables for initial conditions
flow
=
1
/
60
# Flow into capillary
Vp
=
0.05
# Volume of plasma
Visf
=
0.15
# Volume of interstitial space
PS
=
1
/
60
# Permeability-Surface area product
Cp0
=
0
# Initial concentration of tracer in plasma
Cisf0
=
0
# Initial concentration of tracer in interstitial space
tmax
=
10
#Time in seconds
dt
=
0.1
#Time step
a
=
2.
# Alpha for gamma distribution
rv
=
gamma
(
a
,
loc
=
2
,
scale
=
0.55
)
#input function
# Define the time array
time
=
np
.
arange
(
0
,
tmax
+
dt
,
dt
)
# Store the initial values in a list
init
=
[
Cp0
,
Cisf0
]
# Solve the odes with odeint
sol
=
odeint
(
derivs
,
init
,
time
)
Mass_plasma
=
Vp
*
sol
[:,
0
]
#mass of tracer in plasma
Mass_isf
=
Visf
*
sol
[:,
1
]
#mass of tracer in isf
Tp
=
Vp
/
(
flow
+
PS
)
# mean transit time
E
=
1
-
np
.
exp
(
-
PS
/
flow
)
#extraction fraction
Q
=
Mass_plasma
+
Mass_isf
print
(
'
The mean transit time is
'
+
str
(
Tp
))
print
(
'
The extraction fraction is
'
+
str
(
E
))
# Plot the results using the values stored in the solution variable, "sol"
# Plot Cp using the "0" element from the solution
plt
.
figure
(
1
)
plt
.
plot
(
time
,
rv
.
pdf
(
time
),
color
=
'
blue
'
,
label
=
'
Input Function
'
)
plt
.
plot
(
time
,
sol
[:,
0
],
color
=
"
green
"
,
label
=
'
Cp
'
)
# Plot Cisf using the "1" element from the solution
plt
.
plot
(
time
,
sol
[:,
1
],
color
=
"
purple
"
,
label
=
'
Cisf
'
)
plt
.
xlabel
(
'
Time [s]
'
)
plt
.
ylabel
(
'
Concentration [mM]
'
)
plt
.
legend
(
loc
=
'
best
'
)
plt
.
grid
()
# Plot mass of tracer using the "2" element from the solution
plt
.
figure
(
2
)
plt
.
plot
(
time
,
Mass_plasma
,
color
=
"
red
"
,
label
=
'
Plasma
'
)
# Plot mass of tracer in tissue using the "3" element from the solution
plt
.
plot
(
time
,
Mass_isf
,
color
=
"
black
"
,
label
=
'
Interstitial Space
'
)
plt
.
plot
(
time
,
Q
,
color
=
"
blue
"
,
label
=
'
Total mass
'
)
plt
.
xlabel
(
'
Time [s]
'
)
plt
.
ylabel
(
'
Mass [mg]
'
)
plt
.
legend
(
loc
=
'
best
'
)
plt
.
grid
()
print
(
'
Cp at 10 sec is
'
+
str
(
sol
[
100
,
0
]))
print
(
'
Cisf at 10 sec is
'
+
str
(
sol
[
100
,
1
]))
```
%% Output
The mean transit time is 1.5
The extraction fraction is 0.6321205588285577
Cp at 10 sec is 0.023400076577464173
Cisf at 10 sec is 0.038131979959528696
%% Cell type:code id: tags:
```
python
Q
[
99
]
```
%% Output
0.007018384196576239
%% Cell type:code id: tags:
```
python
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment