Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PK_Optimizer
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tu, Ethan
PK_Optimizer
Commits
7d5faff6
Commit
7d5faff6
authored
5 years ago
by
Tu, Ethan
Browse files
Options
Downloads
Patches
Plain Diff
Replace 1_Comp_Model_PK.ipynb
parent
0fe87d61
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pk_optimizer/1_Comp_Model_PK.ipynb
+109
-71
109 additions, 71 deletions
pk_optimizer/1_Comp_Model_PK.ipynb
with
109 additions
and
71 deletions
pk_optimizer/1_Comp_Model_PK.ipynb
+
109
−
71
View file @
7d5faff6
...
...
@@ -4,20 +4,7 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VOXZ+PHvnYSQsCRAgAAJu+w7YVOQTUFUcEVlEaVV0Vqr9q1tsbbV6u9tbatWqHZxq4gouKGoCLxVgqKyE2SHsKhh3wIJZCHw/P54JmMIITOEOXNmuT/Xda6ZOXOW+zBh7nnOs4kxBqWUUgogxu0AlFJKhQ5NCkoppbw0KSillPLSpKCUUspLk4JSSikvTQpKKaW8NCkopZTy0qSglFLKS5OCUkoprzi3Azhf9evXNy1atKjSvsePH6dmzZqBDSjE6TVHB73m6HAh17xy5cqDxpgGvrYLu6TQokULVqxYUaV9MzMzGTx4cGADCnF6zdFBrzk6XMg1i8i3/mynt4+UUkp5aVJQSinlpUlBKaWUV9jVKSilgu/kyZPk5ORQWFjodiheycnJbNy40e0wgsqfa05ISCA9PZ1q1apV6RyaFJRSPuXk5FC7dm1atGiBiLgdDgB5eXnUrl3b7TCCytc1G2M4dOgQOTk5tGzZskrn0NtHSimfCgsLSUlJCZmEoComIqSkpFxQiU6TglLKL5oQwsOFfk56+0j5VFgI06bB4cNw8iQkJcHdd0NiotuRKaUCTZOC8un3v4e//vXMdevWwUsvuROPik61atUiPz8/oMfcuXMnX331FePGjavwvQ4dOtCuXTvvumXLlhEfH+/IuVesWMFrr73G1KlTA3L8qtLbR6pS334LU6fChAlQUAAlJfDb38LLL8N//uN2dEpdmJ07d/LGG2+c8/3WrVuTlZXlXQKVECo6d69evVxPCKBJQfnw29+CCPzv/0JCAsTGwmOPwdChcO+9sGaN2xGqaFM61MOECRNo374948ePxxgD2GFwfv3rX9OnTx/69OlDdnY2ABMnTuSdd97xHqNWrVoATJ48mS+++ILu3bvzt7/9za/zP/bYYzz11FPe1507d2bnzp3eksVdd91Fp06dGD58OAUFBQBkZ2dz+eWX061bN3r27Mm2bdvOOndmZiYjR44E4PDhw1x33XV07dqVfv368c033wDwxz/+kR//+McMHjyYVq1aOZJE9PaROqfVq+H112HyZGja9If1sbHw5pvQoweMHg2rVkGUtQyMag8+CFlZgT1m9+7w7LP+b7969WqWLl1K27Zt6d+/P19++SUDBgwAICkpiWXLlvHaa6/x4IMP8tFHH53zOE8++SRPPfXUObfZtm0b3bt3B6B///48//zzlca1detW3nzzTV588UVuvvlm3n33XW699VbGjx/P5MmTuf766yksLOT06dNnnTszM9N7nEcffZQePXrw/vvv89lnn3HbbbeR5flH37RpEwsXLiQvL4927drxk5/8pMp9EiqiJQVVIWPgl7+ElBSbFMpr2NAmhuxs+Ne/gh+fim59+vQhLS2NmJgYunfvzs6dO73vjR071vv49ddfX9B5yt4+8pUQAFq2bOlNIhkZGezcuZO8vDx27drF9ddfD9jOZTVq1Kj0OIsXL2bChAkADB06lEOHDnH06FEArr76aqpXr079+vVp2LAh+/btu5BLPIuWFFSFMjPh009hyhRITq54m4ED7W2kqVPtr8cA/lhRIex8ftE7pXr16t7nsbGxlJSUeF+XbZJZ+jwuLo7Tp08DtoNXcXFxlc9d9ljAGX0CysdVUFDgvbV1Pirap/RaKrv2QNCSgqrQ3LkQHw933VX5dj//OeTkQJnbtUq5atasWd7Hiy++GLB1DStXrgTggw8+4OTJkwDUrl2bvLy88zp+ixYtWLVqFQCrVq1ix44dlW6flJREeno677//PgBFRUWcOHGi0nMPHDiQGTNmAPa2Uv369UlKSjqvOKtKk4Kq0BdfQJ8+vvsiXHUVtG0Lzzxjbzkp5baioiL69u3LlClTvJXHd911F4sWLaJPnz4sXbrUO1FN165diYuLo1u3bn5XNN94440cPnyY7t27889//pO2bdv63Gf69OlMnTqVrl27cskll7B3795Kz/3YY4+xYsUKunbtyuTJk5k2bdp5/itcAGNMWC0ZGRmmqhYuXFjlfcNVVa45P9+YuDhjJk/2b/t//MMYMOaLL877VI7QzznwNmzY4Ojxq+LYsWNnrWvevLk5cOCAC9EER0XXXJGKPi9ghfHjO1ZLCuosy5bZ/giXXurf9rfdBvXqgZ8/tJRSIUyTgjrLF1/YvgmXXOLf9jVr2mEvZs+G7dudjU2pyuzcuZP69eu7HUZY06SgzrJ4MXTpAnXq+L/Pvffax+nTnYlJKRUcmhTUGUpK4Ouv/b91VCo93TZRnTlTK5yVCmeaFNQZsrIgPx88nUPPy5gxsGkTeHrkK6XCkCYFdYbFi+1jVZLCjTfaITBmzgxsTEqp4NGkoM7wxRfQooW9HXS+GjSAYcP0FpJyxt69exkzZgytW7emY8eO3HjjjWzZsuW8j/Pss89y4sQJByKMDJoUlJcxtqRwvvUJZY0ZAzt32matSgWKMYbrr7+ewYMHs23bNjZs2MCjjz5apXF/NClUTpOC8tq6Ffbvv7CkcN11dngMvYWkAmnhwoVUq1aNe+65x7uua9euDBgwgF/+8pd07tyZLl26eIe4KDsMNcB9993Hq6++ytSpU9m9ezdDhgxhyJAhQb+OcKAD4imvr76yj/37V/0Yycl26ItZs+Cpp2wdg4osD857kKy9gR07u3uj7jw74twj7a1bt46MjIyz1r/33ntkZWWxZs0aDh48SO/evRk4cOA5j3P//ffzzDPPsHDhQu3PcA6OlhREZISIbBaRbBE5awBmEZkoIgdEJMuz3OlkPKpymzdDXByUmX2wSsaMgT17bP2EUk5avHgxY8eOJTY2ltTUVAYNGsTy5cvdDiusOVZSEJFY4HlgGJADLBeROcaYDeU2nWWMuc+pOJT/tm2zlcwX+ut+5EioXh0++AAGDw5EZCqUVPaL3imdOnU6Y+a0UuYcLRoqG95aVc7JkkIfINsYs90YUwzMBK518HzqAm3fDq1bX/hxata08yx8+KG2QlKBMXToUIqKinjxxRe961auXEndunWZNWsWp06d4sCBA3z++ef06dOH5s2bs2HDBoqKijh69Ciffvqpd7+qDJcdTZysU0gDvi/zOgfoW8F2N4rIQGAL8HNjzPcVbKOCYNs26FvRJ1QFo0bZoS82bYIOHQJzTBW9RITZs2fz4IMP8uSTT5KQkEB6ejrPPfcc+fn5dOvWDRHhL3/5C40aNQLg5ptvpmvXrrRp04YePXp4jzVp0iSuvPJKGjduzMKFC926pJAl5yp+XfCBRW4CrjDG3Ol5PQHoY4z5WZltUoB8Y0yRiNwD3GyMGVrBsSYBkwBSU1MzZlaxaUt+fr53wu5o4e81HzsWx7XXDuAnP8nm5ptzLvi8+/dX55ZbLmbSpG2MHRvcPK+fc+AlJydz0UUXOXb8qjh16hSxUdaSwd9rzs7O9k7fWWrIkCErjTG9fO7sz/jaVVmAi4H5ZV4/DDxcyfaxwFFfx9X5FM6Pv9e8fLmdE2H27MCdu3t3YwYMCNzx/KWfc+CFy3wKkS7c51NYDrQRkZYiEg+MAeaU3UBEGpd5eQ2w0cF4VCW2bbOPgahTKDVqlG3meuhQ4I6plHKWY0nBGFMC3AfMx37Zv2WMWS8ij4vINZ7N7heR9SKyBrgfmOhUPKpypUmhVavAHXPUKDh92s73rMKf0VYDYeFCPydHO68ZY+YCc8ut+32Z5w9jbyspl23bBqmptuVQoGRkQKNGthXShAmBO64KvoSEBA4dOkRKSgoi4nY46hyMMRw6dIiEhIQqH0N7NCsgcM1Ry4qJsX0WZs2C4mI7/IUKT+np6eTk5HDgwAG3Q/EqLCy8oC+/cOTPNZe2zKoqTQoKsCUFJzqajRoFL70En38Ol18e+OOr4KhWrRotW7Z0O4wzZGZmntHUNBoE45p1QDxFURHk5AS2PqHU5Zfb3s1ar6BUeNCkoNi50/Y8DvTtI4AaNew0nfPnB/7YSqnA06SgHGmOWtaIEbBhA3z3nTPHV0oFjiYFFZSkAFpaUCocaFJQbNtmm6I2bOjM8Tt0sNN7zpvnzPGVUoGjSUGxfbutZHaq+bmILS38979w8qQz51BKBYYmBcW2bc7dOio1YgQcOwZLlzp7HqXUhdGkEOVOn/6hpOCkyy6zk/foLSSlQpsmhSi3dy8UFjpfUqhTB/r106SgVKjTpBDlnG55VNaIEbByJezf7/y5lFJVo0khyjkxOuq5lDZNXbDA+XMppapGk0KU+94zKVqzZs6fq2dPSEnRpKBUKNOkEOX27bP3+6tXd/5cMTF2LKT/+z87rIZSKvRoUohy+/fbeRSCZfhwW7m9bl3wzqmU8p8mhSi3f79zPZkrMmyYfdRbSEqFJk0KUW7fvuCWFJo2tcNeaFJQKjRpUohywS4pgC0tfP657R+hlAotmhSi2MmTcPhw8JPC8OE2ISxeHNzzKqV806QQxUqn2w3m7SOAQYOgWjW9haRUKNKkEMVKexYHu6RQqxb072+bpiqlQosmhSjmVlIAW6+QlWUrupVSoaPSpCAix3wseSKyJVjBqsAq/UIO9u0jsPUKYOdYUEqFDl8lhW3GmKRKltrA8WAEqgLPzZJC6ZAXegtJqdDiKync6Mcx/NlGhaD9+yE+HpKSgn/u0iEvFizQIS+UCiWVJgVjzHZfB6hsGxEZISKbRSRbRCZXst1oETEi0svX+VTglHZcc2oaTl+GDYM9e2D9enfOr5Q6m686hbwK6hC8jz72jQWeB64EOgJjRaRjBdvVBu4HdKLGIHOj41pZOuSFUqHH1+2jT4ENwP8DOhtjapfWJRhjfN106ANkG2O2G2OKgZnAtRVs9wTwF0D7twaZ20mhWTNo317rFZQKJb5uH10HXAEcAF4UkUUicq+I1PPj2GnA92Ve53jWeYlID6CpMeaj8wtbBUKwxz2qyPDhsGiRDnmhVKiI87WBMeYo8B8RmQbcAvwdSACe8bFrRXeqvVWKIhID/A2Y6CsGEZkETAJITU0lMzPT1y4Vys/Pr/K+4epc12wM7Ns3kMLCHDIzfVYdOaZRoxQKCrrw/PNZZGTkBuSY+jlHB71mhxhjKl2AS7CJIAt4DrjU1z6e/S4G5pd5/TDwcJnXycBBYKdnKQR2A70qO25GRoapqoULF1Z533B1rmvOzTUGjHn66eDGU15enjHVqhnz618H7pj6OUcHvebzA6wwfnx3+6po3gn8A9iF/aX+CnBcRHqKSE8f+WY50EZEWopIPDAGmFMmGR01xtQ3xrQwxrQAlgDXGGNW+E5l6kKVdlxzs04B7JAXl1yilc1KhQpft492Ym/5XOFZyjLA0HPtaIwpEZH7gPlALPCKMWa9iDyOzVhzzrWvcp6bHdfKGz4cHnnE/YpvpZSPpGCMGXwhBzfGzAXmllv3eyfOpc5PaVJwu6IZbNPURx6xQ16MG+d2NEpFN58VzeDtc3A10KLsPsYYX5XNKkSFyu0jsENe1KtnbyFpUlDKXX4lBeBDbEXwWuC0c+GoYCktKdSv724cALGxtrRQOuSFWz2slVL+J4V0Y0xXRyNRQbVvnx2Qrlo1tyOxrrgCZs2CtWuhq/6lKeUaf+dT+EREhjsaiQqqUKvULR1Ke948d+NQKtr5mxSWALNFpMDfsY9UaAu1pJCWBp07w/z5bkeiVHTzNyk8je2MVsP4P/aRCmGhMMRFeVdcAYsXw3GdoUMp1/ibFLYC6zy94lQECLWSAtikUFwMUTZygVIhxd+K5j1Apoh8AhSVrtQmqeGpuBhyc0MvKVx6KSQm2ltIV1/tdjRKRSd/k8IOzxLvWVQYC6WOa2UlJMCgQVqvoJSb/EoKxpg/OB2ICp5QGuKivBEj4MEHYccOaNnS7WiUij6+BsR7zNcB/NlGhZZQLSmArVcALS0o5RZfJYU7fTQ9Fezop48FLCLluFAa4qK8du2geXPbX+Gee9yORqno4yspvAjU9mMbFUZC+faRCFx5Jbz+OhQVQfXqbkekVHTxNUqq1iVEoEOH7PAWtWq5HUnFrroK/vUv22fhssvcjkap6OJvPwUVQY4ehTp1QnfguaFDIT4e5s71va1SKrA0KUSh3FxITnY7inOrWdM2Tf3kE7cjUSr6aFKIQqUlhVB21VWwcaNtmqqUCh6/koKINBCR34jICyLySunidHDKGUePhnZJAWxSAC0tKBVs/pYUPgCSgf8CH5dZVBgKh6TQpg20aqVJQalg83eYixrGmF87GokKmtzc0L99JGJLCy+/DIWFdggMpZTz/C0pfCQiVzkaiQqacCgpgE0KBQWwaJHbkSgVPfxNCg9gE0OhZ4IdnWQnTJWUQH5+eCSFwYNtCUGbpioVPH4lBc+kOjHGmATPc51kJ0wd86TyUL99BHYY7csugw8/BJ3JQ6ng8LtJqohcIyJPeZaRTgalnHP0qH0Mh5ICwKhRtlnqhg1uR6JUdPC3SeqT2FtIGzzLA551KsyEW1IY6fn5MWeOu3EoFS38LSlcBQwzxrxijHkFGOFZp8JMbq59DIfbRwBpaZCRYW8hKaWcdz49mst+jfj1O1NERojIZhHJFpHJFbx/j4isFZEsEVksIh3PIx5VBeFWUgC45hpYsuSH0V2VUs7xNyn8CVgtIq+KyDRgJfDHynYQkVjgeeBKoCMwtoIv/TeMMV2MMd2BvwA657PDwjEpjBplK5o/1u6SSjnO39ZHbwL9gPc8y8XGmJk+dusDZBtjthtjioGZwLXljlu2WWtNQNuYOCzcbh8BdO8O6el6C0mpYPA1HWd7z2NPoDGQA3wPNPGsq0yaZ9tSOZ515c/xUxHZhi0p3O9/6KoqSksKSWHUoFjElhbmz7e9m5VSzvE1zMX/AJOApyt4zwBDK9m3otH6zyoJGGOeB54XkXHAb4HbzzqQyCRPHKSmppKZmekj7Irl5+dXed9wVf6a161rTUJCE7788gv3gqqC5s3rceJEV6ZM+Ya+fQ9Xuq1+ztFBr9khxhifC5Dgz7py718MzC/z+mHg4Uq2jwGO+oolIyPDVNXChQurvG+4Kn/Nd9xhTJMm7sRyIQoKjKlZ05i77/a9rX7O0UGv+fwAK4wf3/f+VjR/5ee6spYDbUSkpYjEA2OAM1qbi0ibMi+vBrb6GY+qonAZ96i8hAQYMQI++ABOn3Y7GqUiV6W3j0SkEbYeIFFEevDDLaEkoEZl+xpjSkTkPmA+EAu8YoxZLyKPYzPWHOA+EbkcOAkcoYJbRyqwwjUpANxwA7z7rm2eesklbkejVGTyVadwBTARSOfM5qJ5wG98HdwYMxeYW27d78s8f8DfQFVg5OZCSorbUVTN1VdDtWrw3nuaFJRySqW3j4wx04wxQ4CJxpghZZZrjDHvBSlGFUDhXFJITobLL7dJQQfIU8oZfk2yY4x5V0SuBjoBCWXWP+5UYMoZ4ZwUwN5CuusuWLPG9l9QSgWWvwPi/Qu4BfgZtl7hJqC5g3Eph4TDrGuVueYaiImxpQWlVOD52/roEmPMbcARY8wfsM1NmzoXlnJCUZFdwrmk0LAhXHqpJgWlnOJvUijtR3pCRJpgWwu1dCYk5ZRwHPeoIjfcAOvXw+bNbkeiVOTxNyl8KCJ1gL8Cq4CdwJtOBaWcEY7jHlXk+uvt4+zZ7sahVCTymRREJAb41BiTa4x5F1uX0L5s01IVHiKlpNC0KfTuDW+/7XYkSkUen0nBGHOaMmMfGWOKjDFHHY1KOSJSkgLALbfAqlWwVfvAKxVQ/t4+WiAiN4pIRYPcqTARKbePAG6+2T7OmuVuHEpFGn+Twv8AbwNFInJMRPJE5JivnVRoiaSSQtOmMGCAJgWlAs3fSXZqG2NijDHxxpgkz+swGpFfQWQlBYAxY2DdOrsopQLD385rn/qzToW23Fw7YU3t2m5HEhijR9uObFpaUCpwfM28liAi9YD6IlJXROp5lhZAk2AEqALn6FE741qMvzcNQ1xqKgwZYpOCjoWkVGD4+nq4G1gJtPc8li4fAM87G5oKtHAf96giY8bYFkirV7sdiVKRwdcoqVOMMS2Bh4wxrYwxLT1LN2PMc0GKUQVIuI97VJEbboC4OHhTu1IqFRD+jpL6dxG5BGhRdh9jzGsOxaUcEIklhXr14IorYOZMePJJiI11OyKlwpu/Fc3TgaeAAUBvz9LLwbiUAyIxKQDcdhvk5ECUzeGulCP8KilgE0BHz+TPKkzl5kKnTm5HEXjXXGOT3bRpcNllbkejVHjztx3KOqCRk4Eo50VqSSEhwQ578e67kJ/vdjRKhTd/k0J9YIOIzBeROaWLk4GpwDImcpMC2FtIJ07oPAtKXSh/bx895mQQynnHj8OpU5HX+qjUJZdA69b2FtLvfud2NEqFL3+HuViEnUOhmuf5cuy8CipMRNoQF+WJ2NLCwoWwb191t8NRKmz52/roLuAd4N+eVWnA+04FpQIv0pMCwIQJ9jbZf/+b6nYoSoUtf+sUfgr0B44BGGO2Ag2dCkoFXiQNm30uLVvCwIEwb14jHfZCqSryNykUGWOKS1+ISByg/+3CSDSUFADuvBNycmqwaJHbkSgVnvxNCotE5DdAoogMw86t8KFzYalAi5akMHo01Kp1khdecDsSpcKTv0lhMnAAWIsdJG8u8FtfO4nICBHZLCLZIjK5gvf/R0Q2iMg3IvKpiDQ/n+CV/6Lh9hFAYiIMH76Pd9+Fgwfdjkap8ONvUkgEXjHG3GSMGQ284ll3TiISix1J9UqgIzBWRDqW22w10MsY0xVbkf2X8wle+S9aSgoAI0fuprjYNk9VSp0ff5PCp5yZBBKB//rYpw+QbYzZ7qmPmAlcW3YDY8xCY8wJz8slQLqf8ajzdPSoHU00sdJUHhlatjxB//7wwgs6z4JS58vfpJBgjPEOIOB5XsPHPmnA92Ve53jWncsdwCd+xqPOU16enXFNxO1IgmPSJNiyBT7/3O1IlAov/vZoPi4iPY0xqwBEJAMo8LFPRV8/Ff5uE5FbsYPuDTrH+5OASQCpqalkVnE4zPz8/CrvG65Krzk7ux1xcXXJzFzidkiOy8/PJzX1c2rVupjHHz/M73630e2QHBfNf9vRJCjXbIzxuWCHyt4GfOFZsoEMH/tcDMwv8/ph4OEKtrsc2Ag09CeWjIwMU1ULFy6s8r7hqvSab77ZmHbt3I0lWEqv+YEHjKlWzZjdu92NJxii+W87mlzINQMrjB/fsf4Oc7EcOyXnT4B7gQ7GmJU+dlsOtBGRliISD4wBzhhET0R6YHtJX2OM2e9PLKpqjh+HmjXdjiK47rsPSkrgX/9yOxKlwsf5TOHeG+gK9MC2JLqtso2NMSXAfcB8bEngLWPMehF5XESu8Wz2V6AW8LaIZOnIq845cSL6ksJFF8HVV8M//wmFhW5Ho1R48KtOwTPzWmsgCzjlWW2ASqfjNMbMxfZpKLvu92WeX34+waqqO37cTl0ZbR54AIYNs9N1TpzodjRKhT6deS1KHD8OTZu6HUXwXXaZnW1uyhS4/fboaX2lVFXpzGtRIhrrFMAmgQcegKws+OILt6NRKvTpzGtRIlqTAsD48fbW2bPPuh2JUqFPZ16LEtGcFGrUgHvugT/9CTZvhnbt3I5IqdB1PjOvbQJqe5aNnnUqDJw+bVsf1fDVBz2CPfAAVK8Of/6z25EoFdr8nXntZmAZcBNwM7BUREY7GZgKnAJP3/NoLSkANGwId90F06fDd9+5HY1SocvfOoVHgN7GmNuNMbdhB7vT6dHDxPHj9jGakwLAQw/Zx6efdjcOpUKZv0khplyP40Pnsa9ymSYFq1kzuPVWePFFOHDA7WiUCk3+frHP87Q8migiE4GP0RFNw4YmhR/8+te2d/OUKW5HolRo8rei+ZfYMYq6At2AF4wxv3IyMBU4mhR+0L493Hgj/P3vcPiw29EoFXoqTQoicpGI9AcwxrxnjPkfY8zPgUMi0jooEaoLpknhTI8+aueX+IvO86fUWXyVFJ4F8ipYf8LzngoDmhTO1LkzjBsHU6fC3r1uR6NUaPGVFFoYY74pv9IYswJo4UhEKuA0KZztsceguBj+93/djkSp0OIrKSRU8l4UzPYbGTQpnO2ii+COO+Df/4Zvv3U7GqVCh6+ksFxE7iq/UkTuAHxNsqNChCaFiv3udxATA3/4g9uRKBU6fI199CAwW0TG80MS6AXEA9c7GZgKHE0KFUtPh3vvtc1TH3wQunZ1OyKl3FdpUjDG7AMuEZEhQGfP6o+NMZ85HpkKmOPH7S/i6tXdjsQ9JadLOHD8AIcKDnHoxCGOFh2lsKSQi24sJHH5SW75Mzz0C6FabByJcYkkVkukZrWa1E2sS92EutRLrEet+FqITsigIpxfo6QaYxYCCx2ORTmkdITUaPg+O3D8AMsPL2fV16tYt38dWw9v5buj37Hr2C5OmVMV73S5He3xzg8rP3ZiXCKNajWiUa1GpCel0zSpKc2Sm9Gqbita1W1Fy7otqVEtikcdVBHB36GzVRiL5GGzd+ftZl72PBZ9u4ivvv+K7MPZ9o21kFozlXb12zGo+SCaJzenSe0mpNRIISUxheSEZBLjEkmIS0BMNUaMgMIiw7wFJZyOKaDgZAF5xXnkFuZypOAIhwoOsf/4fvbm72VP/h6y9mbx4ZYPKSw5c/Ln9KR02qa0pW29tnRs0NG7NKrVSEsZKixoUogCkZYUNh/czBtr32DOljlk7c0CoEGNBvRv1p9JPScRtz+OW4ffSoOaDfw+5vN/hOHD4cNpdigMfxhjOHjiIDtyd7D9yHayD2ez9fBWthzawsz1M8ktzPVuWy+xHl0adqFrale6pXaje6PudGrYiYS4yhr4KRV8mhSiQCQkhWNFx5iWNY1pa6axcs9KBGFAswH86bI/cVWbq+jSsIv3l3hmZuZ5JQSAYcNg1Cj4f//PztSWnu57HxGhQc0GNKjZgD5pfc6YigyYAAAYbklEQVR4zxjDvuP72HBgA+v3r2ft/rWs3b+W/2T9h/zifABiJZaODTrSs3FP79KjUQ9qxof5h6XCmiaFKHDiRPgmhc0HN/P3ZX9n2ppp5Bfn07NxT54e/jRjOo+hSe0mAT3Xs8/a3s733QezZ19YHYyIeOsfhrYc6l1/2pxm+5HtZO3NImtvFqv3rmb+tvlMWzMNgBiJoX399vRu0tsuab3pltqN6nFR3EpABZUmhSgQjiWFzQc38/jnj/Pm2jepFluNMZ3H8LM+P6NXk16OnbNVK9tn4Ve/sknhhhsCf44YieGiehdxUb2LGN3xh3mq9uTtYeWelazYvYIVu1fwSfYn3kQRHxtP90bd6dOkD33T+9InrQ9t6rXROgrlCE0KUeD4cWhwfndTXLM7bze/+fQ3TP9mOglxCTx0yUP84uJfkForNSjn//nP4Y03bGlh6FCoUycop6Vx7caMrD2SkW1HAvb20/fHvmfZrmUs37WcZbuX8eqaV3lu+XMA1E2oS9/0vvRL60e/9H4UnywOTqAq4mlSiALhUFIoKini2SXP8sTnT3Dy9El+3u/n/Kr/r2hYs2FQ44iLs5Pw9O0LkyfDv/4V1NN7iQjNkpvRLLmZt0Rx6vQpNhzYwNJdS1mSs4Slu5byh+w/YDAAtN/Snn7p/byJonPDzsTGxLpzASpsaVKIAqGeFL76/it+9MGP2HJoC9e2u5anhz9N63rujczeqxc88AD87W8wejRcfrlroZwhNiaWLqld6JLahTt73gnYCvgVu1fwxudvsD9+Px9v+ZhXs14FoFZ8LXo36c3F6RfbZJHe77wr4FX0cTQpiMgIYAoQC7xkjHmy3PsDsUNwdwXGGGPecTKeaBWqSaHgZAG/W/g7nvn6GZolN+OT8Z8w4qIRbocF2FZI8+bB7bfD2rVQr57bEVUsqXoSQ1sOJebbGAYPHowxhu1HtrMkZwlf53zNkpwl/PnLP3s77rWu25p+6f28iaJraleqxVZz+SpUKHEsKYhILPA8MAzIwQ6uN8cYs6HMZt8BE4GHnIoj2hkTmklh7b613PLOLWw8uJF7Mu7hL8P+Qu3qtd0Oy6tGDXj9dejXD+6+G956Kzx6hIsIreu1pnW91ozvOh6AEydPsGL3CpbmLGXJriV8tuMzZqydAUBCXAK9mvTy3nLql96PtKQ0Ny9BuczJkkIfINsYsx1ARGYC1wLepGCM2el577SDcUS1kyeFU6dCKym8mvUq9358L8kJySy4dQHDWg9zO6QK9ewJTzxh6xamT4fbbnM7oqqpUa0GA5sPZGDzgcAPldhLcpbw9fdfs2TXEqYum8pTXz8FQFrtNPql96NvWl/6pvclo3GG9p2IIk4mhTTg+zKvc4C+Dp5PVaCw0FY01giBIXmKSoq49+N7eSXrFYa2HMobN7wRtFZFVfXQQzB3rm2NdPHF0KaN2xFduLKV2Dd3uhmwn03W3ixvBfbSXUt5d+O7gO1k17lhZ/qk9aFvmm0S27FBR63EjlBijHHmwCI3AVcYY+70vJ4A9DHG/KyCbV8FPjpXnYKITAImAaSmpmbMnDmzSjHl5+dTq1atKu0brnbsKOHHP76chx7azNVX73EtjtziXH63/nesO7aOCc0mcHuL24kVZ75UAv0579tXnUmTepGSUsTzz68iMTH0CrZO/G3nFueyMW8jG49tZGPeRjblbSK/xPbGTohJoF3tdrSv3Z52tdvRIakDqdVTg9p3Ihr/P1/INQ8ZMmSlMcZnRx8nSwo5QNMyr9OB3VU5kDHmBeAFgF69epnBgwdXKaDMzEyqum+4+u67ZQD07NmOwYPbuRLDxgMbuePNO9h9YjezRs/y/jp1ihOfc716cMUV1Zg+fSAzZoRe/YJTf9vXcZ33+WlzmuzD2SzNWcry3ctZtmsZs/fMpjjH9pGoX6M+vZv0pleTXt7HxrUbBzymUtH4/zkY1+xkUlgOtBGRlsAuYAwwzsHzqQoUFNjJ9dyqU1j83WJGvjGShLgEMm/PpG96eN5BHDbMtkh65BFb+Xz//W5HFHwxEmNHgE1py4RuEwAoPlXM2n1rbSe73ctZsXsF87fN57SxpanGtRrTq0kvMhpnkNEkg4zGGY4mCnXhHEsKxpgSEbkPmI9tkvqKMWa9iDwOrDDGzBGR3sBsoC4wSkT+YIzp5FRM0ai0TsGNpDAvex43zLqBpslNWXDrAprXaR78IAJo8mRYuhR+8Qvo1Akuu8ztiNwXHxtvv+ybZPATfgLA8eLjrN67mpW7V7Jyz0qW717OR1s+8naya1SrkU0SjTPo0bgHPRr1oFlyMx22I0Q42k/BGDMXmFtu3e/LPF+Ova2kHOJWUnhr/Vvc+t6tdG7YmXm3zgt6z2QnxMTAa6/BgAF2XKQvv7QD6Kkz1YyvyYBmAxjQbIB3XV5RHmv2rWHl7pWs2ruKVXtW8Un2J94SRb3EevRo1IPujbp7H9vVb0dcjPavDTb9F49wbiSFGd/M4Lb3b+OSppfw0diPSE5IDt7JHZacbFsj9e0LV10FS5ZAk8AO1hqRalevfVaiOHHyBGv3rWXVHpsksvZl8dyy5yg6VQTYPhSdG3ame2p3ujXqRrfUbnRN7RpRf0+hSJNChAt2ncKsdbO47f3bGNR8EB+N+ygip6ds2hQ+/hgGDoSRIyEzE5KS3I4q/NSoVoO+6X3PqGc6eeokmw5u8g4tnrUvi9mbZvPS6pe827So08Imh4Jk9jfYT5eGXWiT0kZLFQGi/4oRLpglhXc2vMP498YzoNkAPhz7YUQmhFI9etheztdcA1dfDZ98AlHWOtIR1WKrecd3Kq3MNsawO283a/at4Zt937Bm3xrW7F3D5oObmf7ddACqx1anQ4MOdGnYhS4Nu9C5YWc6N+xMelK61lWcJ00KES5YSWHu1rmMfXcs/dL78fG4j6OiB+yVV9phtseMscnh448hMdHtqCKPiJCWlEZaUhpXtbnKu37BZwto0KGBndVu31rWHVjHZzs+Y/o3073bJFVPomODjnRq0IlODTrZ5w07kVY7TZPFOWhSiHDB6NH85XdfMvqt0XRL7cbc8XOpFR89P5lvugmKi2HCBLj+enj/fUjQaZeDIj4m3rZeatzjjPVHCo6w/sB61u5by/oD61l/YD0fbP6Al1e/7N2mdnxtOjToQMcGHelQvwMd6negff32tKrbKup7amtSiHCFhTEkJtqWM05Yu28tI98cSdPkpnwy/hOSqkffzfXx46GoCO64A0aMgDlztI7BTXUT655VqQ1w4PgBO2f2gfVsPLCRDQc3MC97nneocbBNbNvUa0OHBh1ol9LOLvXtY7RUcGtSiHAFBbGO3Tr6Nvdbrnj9CmpWq8mCWxdE9Vj9P/6xLSHcfjsMGWLrGBqGfyvciNKgZgMG1RzEoBaDzlifW5jLpoOb2HhgI5sObmLToU18s+8bZm+c7R1yHCC1ZiptU9rSLqUdbVPa0ialDW1T2tKqbisS4iKneKhJIcIVFjqTFHILc7nqjasoKClg8Y8Wh33HtEAYNw7q1oUbb7R9GT75BFq7N1eQ8lOdhDreYcPLKj5VzPYj29l0cBObD25my6EtbDm8hQ82f8CBEwe82wl2gME2KW1oU68NF9W7iDb12tC6XuuwTBiaFCKcE0mh+FQxN8y6ga2HtrJgwgI6NdRO6KWuvBL+7/9sxXOfPvD223auZxV+4mPjaV+/Pe3rtz/rvdzCXLYe2sqWQ1vYenirXQ5t5c11b5JbmOvdTrCV5K3rtraLJ1G0rmsf6yXWC7kKb00KEa6oKCagScEYw51z7mThzoVMv346g1sMDtzBI0T//rBsGYwaBcOHw9SpcO+9bkelAqlOQh16p/Wmd1rvs947dOIQ2Yez2XZkm/dx2+FtzM2ey978vWdsm1Q9iVZ1W9GyTku71LWPLeq0oEWdFq604tOkEOEKCmIDOpXkE58/wfRvpvPEkCe4teutgTtwhGnd2vZ2HjcOfvpT+/wf/9C+DNEgpUYKKTVSKhz88XjxcXbk7mD7ke1sO7zN+3zTwU3My55HQUnBGds3qNGA5nWa2ySR3IJWha0YzGBH49ekEOECefto5rqZPJr5KLd3u51HLn0kMAeNYElJ8MEHdnTVxx+3iWHWLNvxTUWnmvE1vR3ryjPGsO/4PnYc2cHO3J3syN3BjiM7+Pbot3yz7xs+3PwhD1z0gOMxalKIcIWFgbl9tCRnCRPfn8ilzS7l3yP/HXL3QUNVbCw8+igMHmybrvbrZxPEL34Bcfq/T5UhIjSq1YhGtRpxcdOLz3r/tDnNZws/czwOh1qvq1ARiJLCd0e/47qZ15GWlMZ7t7xH9bjqgQkuigwaBFlZdqykyZNtcvjmG7ejUuEkRmKCMr6TJoUId6FJIa8oj1FvjqKwpJCPxn5E/Rr1AxdclKlfH95917ZI+v57yMiAX/0Kjh1zOzKlfqBJIcJdSOe1U6dPMf698azfv563b3qbDg06BDa4KDV6NGzYYIfG+OtfoV07ePVVOB16Uz+rKKRJIYKdOgUnT1a9TmHyfyfz4ZYPmTJiCsNaDwtscFEuJQVeecU2XW3RAn70I1sBPWcOGON2dCqaaVKIYMeP28eqJIWXV73MU18/xU97/5Sf9vlpYANTXr172xncZsyAEyfg2mvtBD4ffqglB+UOTQoRrKpJYcG2Bdz90d1c0foKnh3xbOADU2eIibH9GTZuhJdfhv37bY/ozp1taaKoyO0IVTTRpBDBSpPC+QybvXbfWka/NZqODTry1k1v6WxWQRQXZwfW27oVXn8d4uPtyKvp6bZCOjvb7QhVNNCkEMHOt6SwO283V79xNbWr1+bjcR9H5TDYoaBaNdunYfVq+O9/7bSfzzwDbdrYEVhffhlyc30fR6mq0KQQwc4nKRw6cYjh04dzpPAIH439iKbJTZ0NTvkkApddZpuxfvcdPPEE7NoFd94JjRrBddfBtGlw+LDbkapIokkhgvmbFPKK8rhyxpVkH85mzpg5Z81kpdzXpAn89rewebNtsXT33bByJUycaOdtePDB7jz5pO0gp62X1IXQpBDB/EkKBScLuGbmNazeu5q3b3qbIS2HBCc4VSUitsXSlCm29LBsma1vyM+P4+GHbbPW1FTbF+K552DNGigpcTtqFU60FjGC+UoKuYW5XDfzOj7/9nNm3DCDUe1GBS84dcFKE0Tv3jB8+Arath3MggXw2WewaJG97QT28y/drmdPmzjatHFuilYV3jQpRLDKksKuY7sYMWMEmw9uZsYNMxjbZWxwg1MB16SJvZ00caJ9vXMnfPWVHZ31669t6aK42L6XmAgdO0KnTvaxbVvbs7p1a6iuQ1tFNUeTgoiMAKYAscBLxpgny71fHXgNyAAOAbcYY3Y6GVM0OVdSWL1nNdfOvJbcwlw+Gf8Jl7W6LPjBKce1aGGXcePs6+Ji2xdi1So7GN/69XaWuNde+2EfEZtcWrWCli2haVNo1sw2i01Ls++lpGgpI5I5lhREJBZ4HhgG5ADLRWSOMWZDmc3uAI4YYy4SkTHAn4FbnIop2pRPCidOnuAPmX/g6a+fpmHNhiyauEgrlaNIfDx062aXso4etX0jtmyxjzt2wPbtsHAh7N5th0spKy7OVm43bGjrL+rX/2GpV8/OU123LiQnQ5069rF2bft3qMkk9DlZUugDZBtjtgOIyEzgWqBsUrgWeMzz/B3gORERY7T9RCAcPw6xcSVsOLSeRd8uYsrSKWw/sp07e9zJn4f9mXqJAZySTYWt5GTo1csu5ZWUwJ49dlTXPXtsktizB/bt+2HZsgUOHoS8vMrPI2JnnitNELVq2ccaNeySmHjmkpBgb2WVX+Lj7bJpUwonTth+HaVLXNwPj3Fxdj6Lss9Ll5iYs5/HxJy5ROuUIU4mhTTg+zKvc4Dy89N5tzHGlIjIUSAFOBjoYH409RVmbP8rMXOi56dKSQmcemg33f9tezp1btiZzNszGdRikMuRqXARF2dvITX1o9tKcTEcOWKXw4dtCeToUdvRLi/PDhGelwf5+fYHS14eFBTYbfbssc9Ll6Ii+1j5+E9dAnWZ51Q+SYic+byi15UtcPbz8usqWz9uXEMGD3b2mp1MChXl2fIlAH+2QUQmAZMAUlNTyczMPO9gio/mk1TcGpHoSQoAKSc7cWP3NnRJ7kKjhEaYnYbMnZluh+Wo/Pz8Kv2NhLNQvObSX/yNGlX9GCUlwsmTMRQX28fS1ydPxnDsWAHx8TU5dcquL11OnxZOnfrh+enTZz4/dQqMKX0Np08LxuB93xjb1+PUKfv1VH69MT88h9Jj/fC8/HtlX5eus4+c8VjR++XfS0w86vjn7GRSyAHK/r5IB3afY5scEYkDkoGz+mcaY14AXgDo1auXGVyFVDl48GAyM7tSlX3DWWZmpl5zFIjea85wO4ygyszc5Pjn7OTP5uVAGxFpKSLxwBhgTrlt5gC3e56PBj7T+gSllHKPYyUFTx3BfcB8bJPUV4wx60XkcWCFMWYO8DIwXUSysSWEMU7Fo5RSyjdH+ykYY+YCc8ut+32Z54XATU7GoJRSyn/RVeuqlFKqUpoUlFJKeWlSUEop5aVJQSmllJcmBaWUUl4Sbt0CROQA8G0Vd6+PA0NohDi95uig1xwdLuSamxtjGvjaKOySwoUQkRXGmAqG/Ypces3RQa85OgTjmvX2kVJKKS9NCkoppbyiLSm84HYALtBrjg56zdHB8WuOqjoFpZRSlYu2koJSSqlKRE1SEJERIrJZRLJFZLLb8ThNRJqKyEIR2Sgi60XkAbdjCgYRiRWR1SLykduxBIOI1BGRd0Rkk+ezvtjtmJwmIj/3/E2vE5E3RSTB7ZgCTUReEZH9IrKuzLp6IvJ/IrLV81jXiXNHRVIQkVjgeeBKoCMwVkQ6uhuV40qAXxhjOgD9gJ9GwTUDPABsdDuIIJoCzDPGtAe6EeHXLiJpwP1AL2NMZ+yw/JE45P6rwIhy6yYDnxpj2gCfel4HXFQkBaAPkG2M2W6MKQZmAte6HJOjjDF7jDGrPM/zsF8Wae5G5SwRSQeuBl5yO5ZgEJEkYCB2XhKMMcXGmFx3owqKOCDRM1tjDc6e0THsGWM+5+xZKK8FpnmeTwOuc+Lc0ZIU0oDvy7zOIcK/IMsSkRZAD2Cpu5E47lngV0Cl071HkFbAAeA/nltmL4lITbeDcpIxZhfwFPAdsAc4aoxZ4G5UQZNqjNkD9kcf0NCJk0RLUpAK1kVFsysRqQW8CzxojDnmdjxOEZGRwH5jzEq3YwmiOKAn8E9jTA/gOA7dUggVnvvo1wItgSZATRG51d2oIku0JIUcoGmZ1+lEYJGzPBGphk0IM4wx77kdj8P6A9eIyE7s7cGhIvK6uyE5LgfIMcaUlgDfwSaJSHY5sMMYc8AYcxJ4D7jE5ZiCZZ+INAbwPO534iTRkhSWA21EpKWIxGMrpua4HJOjRESw95o3GmOecTsepxljHjbGpBtjWmA/38+MMRH9C9IYsxf4XkTaeVZdBmxwMaRg+A7oJyI1PH/jlxHhletlzAFu9zy/HfjAiZM4OkdzqDDGlIjIfcB8bGuFV4wx610Oy2n9gQnAWhHJ8qz7jWfebBU5fgbM8PzY2Q78yOV4HGWMWSoi7wCrsC3sVhOBPZtF5E1gMFBfRHKAR4EngbdE5A5scnRkfnvt0ayUUsorWm4fKaWU8oMmBaWUUl6aFJRSSnlpUlBKKeWlSUEppZSXJgWllFJemhRU1BKRFBHJ8ix7RWRXmddfOXC+iSJyQETOOWCfiCR6zl8sIvUDHYNSvkRF5zWlKmKMOQR0BxCRx4B8Y8xTDp92ljHmvkpiKgC6e4brUCrotKSgVAVEJN/zOFhEFonIWyKyRUSeFJHxIrJMRNaKSGvPdg1E5F0RWe5Z+vtxjk6e42SJyDci0sbp61LKFy0pKOVbN6ADdnz77cBLxpg+ntnsfgY8iJ3s5m/GmMUi0gw7pEoHH8e9B5hijCkdpiLWsStQyk+aFJTybXnpOPYisg0oHb9/LTDE8/xyoKMdow2AJBGp7Zng6Fy+Bh7xTA70njFma+BDV+r86O0jpXwrKvP8dJnXp/nhh1UMcLExprtnSfOREDDGvAFcAxQA80VkaIDjVuq8aVJQKjAWAN4KZBHp7msHEWkFbDfGTMUOi9zVufCU8o8mBaUC436gl6fCeAO2vsCXW4B1nqHN2wOvORmgUv7QobOVChIRmQj0qqxJapltd3q2Peh0XEqVpSUFpYKnALjSn85rQDVsnYVSQaUlBaWUUl5aUlBKKeWlSUEppZSXJgWllFJemhSUUkp5aVJQSinl9f8BbT4hH144WfYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"outputs": [],
"source": [
"# Import commands\n",
"from scipy.stats import gamma\n",
...
...
@@ -27,74 +14,125 @@
"from scipy.integrate import odeint \n",
"import math as math\n",
"\n",
"\n",
"# Derivative function\n",
"def derivs(curr_vals, time):\n",
" \n",
" # Define value of input function Cin\n",
" Cin = rv.pdf(time) \n",
"class pk1Comp:\n",
" \n",
" # Unpack the current values of the variables we wish to \"update\" from the curr_vals list\n",
" C = curr_vals\n",
" \n",
" # Right-hand side of odes, which are used to computer the derivative\n",
" dC_dt = flow*(Cin - C)/Vol\n",
" #Cout = C\n",
" return dC_dt\n",
"\n",
"# Declare Variables for initial conditions\n",
"flow = .01 # Flow into capillary\n",
"Vol = 0.05 # Volume of compartment\n",
"C0 = 0 # Initial concentration of tracer in plasma\n",
"tmax = 10 #Time in seconds\n",
"dt = 0.1 #Time step\n",
"a = 2. # Alpha for gamma distribution\n",
"rv = gamma(a, loc = 2, scale = 0.65) #input function\n",
" \"\"\"The pk1Comp object is a one compartment PK model that outputs graphs of mass of tracer over time.\"\"\"\n",
"\n",
" def __init__ (self, numParam = 4, Flow = 1, Vp = 0.1, Visf = 0.5, PS = 0.15):\n",
" \n",
" \"\"\"Initializes the model with default parameter values for flow, Vp, Visf, and PS.\n",
" Parameters\n",
" ---------- \n",
" numParam: int\n",
" numParam is the number of parameters you want to optimize for the model. Defaults to 4.\n",
" \n",
" Flow : double\n",
" Flow is the flow of plasma through the blood vessel in mL/(mL*min). Defaults to 1.\n",
" \n",
" Vp : double\n",
" Vp is the volume of plasma in mL. Defaults to 0.1.\n",
" \n",
" Visf : double\n",
" Visf is the volume of interstitial fluid in mL. Defaults to 0.5.\n",
" \n",
" PS : double\n",
" PS is the permeability-surface area constant in mL/(g*min). Defaults to 0.15. \n",
" \"\"\"\n",
" \n",
" # Declare Variables for initial conditions\n",
" self.numParam = numParam\n",
" self.Flow = Flow\n",
" self.Vp = Vp\n",
" self.Visf = Visf\n",
" self.PS = PS\n",
" C0 = 0 # Initial concentration of tracer in plasma\n",
" tmax = 10 #Time in seconds\n",
" dt = 0.1 #Time step\n",
" a = 2. # Alpha for gamma distribution\n",
" rv = gamma(a, loc = 2, scale = 0.65) #input function\n",
"\n",
"# Define the time array\n",
"time = ls\n",
"np.arange(0, tmax + dt, dt)\n",
" # Define the time array\n",
" time = np.arange(0, tmax + dt, dt)\n",
" \n",
" # Derivative function\n",
" def derivs(curr_vals, time):\n",
" \"\"\"Finds derivatives of ODEs.\n",
" \n",
" Parameters\n",
" ---------- \n",
" curr_vals : double[]\n",
" curr_vals it he current values of the variables we wish to \"update\" from the curr_vals list.\n",
" \n",
" time : double[]\n",
" time is our time array from 0 to tmax with timestep dt.\n",
" \n",
" Returns\n",
" -------\n",
" dc_dt : double[]\n",
" contains the derivative of concentrations with respect to time.\n",
" \"\"\"\n",
"\n",
"
# Store the initial values in a list
\n",
"
init = [C0]
\n",
"
# Define value of input function Cin
\n",
"
Cin = rv.pdf(time)
\n",
"\n",
"
# Solve the odes with odein
t\n",
"
sol = odeint(derivs, init, time)
\n",
"
# Unpack the current values of the variables we wish to \"update\" from the curr_vals lis
t\n",
"
C = curr_vals
\n",
"\n",
"#Mass_plasma = Vp * sol[:,0] #mass of tracer in plasma\n",
"#Mass_isf = Visf * sol[:,1] #mass of tracer in isf\n",
"#Tp = Vp/(flow + PS) # mean transit time\n",
"#E = 1 - np.exp(-PS/flow) #extraction fraction\n",
"#Q = Mass_plasma + Mass_isf\n",
" # Right-hand side of odes, which are used to computer the derivative\n",
" dC_dt = flow*(Cin - C)/Vol\n",
" #Cout = C\n",
" return dC_dt\n",
" \n",
" def getPlot(self):\n",
" \"\"\"Plots the solution of the solved ODEs.\n",
" \n",
" Parameters\n",
" ---------- \n",
" self : self\n",
" Passes variables needed from self. \n",
" \"\"\"\n",
" \n",
" # Plot the results using the values stored in the solution variable, \"sol\"\n",
" # Plot Cp using the \"0\" element from the solution\n",
" plt.figure(1)\n",
" plt.plot(time, rv.pdf(time), color = 'blue', label = 'Input Function')\n",
" plt.plot(time, sol[:,0],color=\"green\", label = 'Cout')\n",
"\n",
"#print('The mean transit time is ' + str(Tp))\n",
"#print('The extraction fraction is ' + str(E))\n",
" # Plot Cisf using the \"1\" element from the solution\n",
" #plt.plot(time, sol[:,1],color=\"purple\", label = 'Cisf')\n",
" plt.xlabel('Time [s]')\n",
" plt.ylabel('Concentration [mM]')\n",
" plt.legend(loc = 'best')\n",
" plt.grid()\n",
" \n",
" def main(self):\n",
" \"\"\"Main function to run and solve ODEs\"\"\"\n",
" \n",
" # Store the initial values in a list\n",
" init = [C0]\n",
"\n",
" # Solve the odes with odeint\n",
" sol = odeint(derivs, init, time)\n",
"\n",
"
# Plot the results using the values stored in the solution variable, \"sol\"
\n",
"
# Plot Cp using the \"0\" element from the solution
\n",
"
plt.figure(1)
\n",
"
plt.plot(time, rv.pdf(time), color = 'blue', label = 'Input Fun
ction
')
\n",
"
plt.plot(time, sol[:,0],color=\"green\", label = 'Cout')
\n",
"
#Mass_plasma = Vp * sol[:,0] #mass of tracer in plasma
\n",
"
#Mass_isf = Visf * sol[:,1] #mass of tracer in isf
\n",
"
#Tp = Vp/(flow + PS) # mean transit time
\n",
"
#E = 1 - np.exp(-PS/flow) #extraction fra
ction\n",
"
#Q = Mass_plasma + Mass_isf
\n",
"\n",
"# Plot Cisf using the \"1\" element from the solution\n",
"#plt.plot(time, sol[:,1],color=\"purple\", label = 'Cisf')\n",
"plt.xlabel('Time [s]')\n",
"plt.ylabel('Concentration [mM]')\n",
"plt.legend(loc = 'best')\n",
"plt.grid()\n",
" #print('The mean transit time is ' + str(Tp))\n",
" #print('The extraction fraction is ' + str(E))\n",
"\n",
"# Plot mass of tracer using the \"2\" element from the solution\n",
"#plt.figure(2)\n",
"#plt.plot(time, Mass_plasma,color=\"red\", label = 'Plasma')\n",
"# Plot mass of tracer in tissue using the \"3\" element from the solution\n",
"#plt.plot(time, Mass_isf,color=\"black\", label = 'Interstitial Space')\n",
"#plt.plot(time, Q, color=\"blue\", label = 'Total mass')\n",
"#plt.xlabel('Time [s]')\n",
"#plt.ylabel('Mass [mg]')\n",
"#plt.legend(loc = 'best')\n",
"#plt.grid()\n",
"
# Plot mass of tracer using the \"2\" element from the solution\n",
"
#plt.figure(2)\n",
"
#plt.plot(time, Mass_plasma,color=\"red\", label = 'Plasma')\n",
"
# Plot mass of tracer in tissue using the \"3\" element from the solution\n",
"
#plt.plot(time, Mass_isf,color=\"black\", label = 'Interstitial Space')\n",
"
#plt.plot(time, Q, color=\"blue\", label = 'Total mass')\n",
"
#plt.xlabel('Time [s]')\n",
"
#plt.ylabel('Mass [mg]')\n",
"
#plt.legend(loc = 'best')\n",
"
#plt.grid()\n",
"\n"
]
},
...
...
%% Cell type:code id: tags:
```
python
# Import commands
from
scipy.stats
import
gamma
import
numpy
as
np
import
matplotlib.pyplot
as
plt
%
matplotlib
inline
from
scipy.integrate
import
odeint
import
math
as
math
class
pk1Comp
:
# Derivative function
def
derivs
(
curr_vals
,
time
):
"""
The pk1Comp object is a one compartment PK model that outputs graphs of mass of tracer over time.
"""
# Define value of input function Cin
Cin
=
rv
.
pdf
(
time
)
def
__init__
(
self
,
numParam
=
4
,
Flow
=
1
,
Vp
=
0.1
,
Visf
=
0.5
,
PS
=
0.15
):
# Unpack the current values of the variables we wish to "update" from the curr_vals list
C
=
curr_vals
# Right-hand side of odes, which are used to computer the derivative
dC_dt
=
flow
*
(
Cin
-
C
)
/
Vol
#Cout = C
return
dC_dt
# Declare Variables for initial conditions
flow
=
.
01
# Flow into capillary
Vol
=
0.05
# Volume of compartment
C0
=
0
# Initial concentration of tracer in plasma
tmax
=
10
#Time in seconds
dt
=
0.1
#Time step
a
=
2.
# Alpha for gamma distribution
rv
=
gamma
(
a
,
loc
=
2
,
scale
=
0.65
)
#input function
# Define the time array
time
=
ls
np
.
arange
(
0
,
tmax
+
dt
,
dt
)
# Store the initial values in a list
init
=
[
C0
]
# Solve the odes with odeint
sol
=
odeint
(
derivs
,
init
,
time
)
#Mass_plasma = Vp * sol[:,0] #mass of tracer in plasma
#Mass_isf = Visf * sol[:,1] #mass of tracer in isf
#Tp = Vp/(flow + PS) # mean transit time
#E = 1 - np.exp(-PS/flow) #extraction fraction
#Q = Mass_plasma + Mass_isf
#print('The mean transit time is ' + str(Tp))
#print('The extraction fraction is ' + str(E))
# Plot the results using the values stored in the solution variable, "sol"
# Plot Cp using the "0" element from the solution
plt
.
figure
(
1
)
plt
.
plot
(
time
,
rv
.
pdf
(
time
),
color
=
'
blue
'
,
label
=
'
Input Function
'
)
plt
.
plot
(
time
,
sol
[:,
0
],
color
=
"
green
"
,
label
=
'
Cout
'
)
# Plot Cisf using the "1" element from the solution
#plt.plot(time, sol[:,1],color="purple", label = 'Cisf')
plt
.
xlabel
(
'
Time [s]
'
)
plt
.
ylabel
(
'
Concentration [mM]
'
)
plt
.
legend
(
loc
=
'
best
'
)
plt
.
grid
()
# Plot mass of tracer using the "2" element from the solution
#plt.figure(2)
#plt.plot(time, Mass_plasma,color="red", label = 'Plasma')
# Plot mass of tracer in tissue using the "3" element from the solution
#plt.plot(time, Mass_isf,color="black", label = 'Interstitial Space')
#plt.plot(time, Q, color="blue", label = 'Total mass')
#plt.xlabel('Time [s]')
#plt.ylabel('Mass [mg]')
#plt.legend(loc = 'best')
#plt.grid()
"""
Initializes the model with default parameter values for flow, Vp, Visf, and PS.
Parameters
----------
numParam: int
numParam is the number of parameters you want to optimize for the model. Defaults to 4.
Flow : double
Flow is the flow of plasma through the blood vessel in mL/(mL*min). Defaults to 1.
Vp : double
Vp is the volume of plasma in mL. Defaults to 0.1.
Visf : double
Visf is the volume of interstitial fluid in mL. Defaults to 0.5.
PS : double
PS is the permeability-surface area constant in mL/(g*min). Defaults to 0.15.
"""
# Declare Variables for initial conditions
self
.
numParam
=
numParam
self
.
Flow
=
Flow
self
.
Vp
=
Vp
self
.
Visf
=
Visf
self
.
PS
=
PS
C0
=
0
# Initial concentration of tracer in plasma
tmax
=
10
#Time in seconds
dt
=
0.1
#Time step
a
=
2.
# Alpha for gamma distribution
rv
=
gamma
(
a
,
loc
=
2
,
scale
=
0.65
)
#input function
# Define the time array
time
=
np
.
arange
(
0
,
tmax
+
dt
,
dt
)
# Derivative function
def
derivs
(
curr_vals
,
time
):
"""
Finds derivatives of ODEs.
Parameters
----------
curr_vals : double[]
curr_vals it he current values of the variables we wish to
"
update
"
from the curr_vals list.
time : double[]
time is our time array from 0 to tmax with timestep dt.
Returns
-------
dc_dt : double[]
contains the derivative of concentrations with respect to time.
"""
# Define value of input function Cin
Cin
=
rv
.
pdf
(
time
)
# Unpack the current values of the variables we wish to "update" from the curr_vals list
C
=
curr_vals
# Right-hand side of odes, which are used to computer the derivative
dC_dt
=
flow
*
(
Cin
-
C
)
/
Vol
#Cout = C
return
dC_dt
def
getPlot
(
self
):
"""
Plots the solution of the solved ODEs.
Parameters
----------
self : self
Passes variables needed from self.
"""
# Plot the results using the values stored in the solution variable, "sol"
# Plot Cp using the "0" element from the solution
plt
.
figure
(
1
)
plt
.
plot
(
time
,
rv
.
pdf
(
time
),
color
=
'
blue
'
,
label
=
'
Input Function
'
)
plt
.
plot
(
time
,
sol
[:,
0
],
color
=
"
green
"
,
label
=
'
Cout
'
)
# Plot Cisf using the "1" element from the solution
#plt.plot(time, sol[:,1],color="purple", label = 'Cisf')
plt
.
xlabel
(
'
Time [s]
'
)
plt
.
ylabel
(
'
Concentration [mM]
'
)
plt
.
legend
(
loc
=
'
best
'
)
plt
.
grid
()
def
main
(
self
):
"""
Main function to run and solve ODEs
"""
# Store the initial values in a list
init
=
[
C0
]
# Solve the odes with odeint
sol
=
odeint
(
derivs
,
init
,
time
)
#Mass_plasma = Vp * sol[:,0] #mass of tracer in plasma
#Mass_isf = Visf * sol[:,1] #mass of tracer in isf
#Tp = Vp/(flow + PS) # mean transit time
#E = 1 - np.exp(-PS/flow) #extraction fraction
#Q = Mass_plasma + Mass_isf
#print('The mean transit time is ' + str(Tp))
#print('The extraction fraction is ' + str(E))
# Plot mass of tracer using the "2" element from the solution
#plt.figure(2)
#plt.plot(time, Mass_plasma,color="red", label = 'Plasma')
# Plot mass of tracer in tissue using the "3" element from the solution
#plt.plot(time, Mass_isf,color="black", label = 'Interstitial Space')
#plt.plot(time, Q, color="blue", label = 'Total mass')
#plt.xlabel('Time [s]')
#plt.ylabel('Mass [mg]')
#plt.legend(loc = 'best')
#plt.grid()
```
%% Output
%% Cell type:code id: tags:
```
python
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment