"[](https://colab.research.google.com/github.com/mcint170/DataTools_Tutorial_Demo/blob/main/Auto-SKLearn_AutoML/Classification.ipynb)"
],
"metadata": {
"id": "-ZrgwiL9kR_L"
}
},
{
"cell_type": "code",
"source": [
"!pip install auto-sklearn"
],
"metadata": {
"id": "XAjlAHVRenet"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"After running this cell, Click Runtime -> Restart runtime. Then you can run the following cells."
],
"metadata": {
"id": "yqIcMA8hgZ8W"
}
},
{
"cell_type": "code",
"source": [
"# imports\n",
"from pprint import pprint\n",
"\n",
"import sklearn.datasets\n",
"import sklearn.metrics\n",
"import pickle\n",
"\n",
"import autosklearn.classification"
],
"metadata": {
"id": "BXuKNodQe7QZ"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# split the dataset\n",
"X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\n",
"X_train, X_test, y_train, y_test = \\\n",
" sklearn.model_selection.train_test_split(X, y, random_state=1)"
[](https://colab.research.google.com/github.com/mcint170/DataTools_Tutorial_Demo/blob/main/Auto-SKLearn_AutoML/Classification.ipynb)
%% Cell type:code id: tags:
```
!pip install auto-sklearn
```
%% Cell type:markdown id: tags:
After running this cell, Click Runtime -> Restart runtime. Then you can run the following cells.
%% Cell type:code id: tags:
```
# imports
from pprint import pprint
import sklearn.datasets
import sklearn.metrics
import pickle
import autosklearn.classification
```
%% Cell type:code id: tags:
```
# split the dataset
X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = \
sklearn.model_selection.train_test_split(X, y, random_state=1)