Skip to content
Snippets Groups Projects

Added PTest and CLT

Merged harr1907 requested to merge JasmineBranch into main
2 files
+ 150
0
Compare changes
  • Side-by-side
  • Inline
Files
2
+ 175
0
{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"id": "6f3d3c8e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Volume in drive C is Windows\n",
" Volume Serial Number is 9804-D0F8\n",
"\n",
" Directory of C:\\Users\\12058\n",
"\n",
"06/28/2022 09:42 AM <DIR> .\n",
"06/28/2022 09:42 AM <DIR> ..\n",
"06/28/2022 07:50 AM <DIR> .ipynb_checkpoints\n",
"06/01/2022 09:53 AM <DIR> .ipython\n",
"06/02/2022 07:27 PM <DIR> .jupyter\n",
"06/02/2022 08:03 PM <DIR> .matplotlib\n",
"06/28/2022 09:43 AM <DIR> .ssh\n",
"06/08/2022 10:09 AM 248,337 01-Python_Packages.ipynb\n",
"06/08/2022 09:17 AM 98,945 04--Gauss_Jordan_pre-class-assignment.ipynb\n",
"06/08/2022 10:53 AM 39,849 04-Gauss_Jordan_in-class-assignment.ipynb\n",
"06/10/2022 09:59 AM 32,829 05--Gauss_Jordan2_pre-class-assignment.ipynb\n",
"06/12/2022 07:06 PM 9,262 05-Gauss_Jordan2_in-class-assignment.ipynb\n",
"06/13/2022 09:29 AM 27,253 06--Mechanics_pre-class-assignment.ipynb\n",
"06/13/2022 09:22 PM 19,582 06-Mechanics_in-class-assignment.ipynb\n",
"06/15/2022 09:34 AM 64,736 07--Transformations_pre-class-assignment.ipynb\n",
"06/15/2022 10:51 AM 82,657 07-Transformations_in-class-assignment.ipynb\n",
"06/20/2022 09:23 AM 15,503 11--Vector_Spaces_pre-class-assignment.ipynb\n",
"06/20/2022 10:39 AM 17,851 11-Vector_Spaces_in-class-assignment.ipynb\n",
"06/22/2022 10:56 AM 13,714 14-Fundamental_Spaces_in-class-assignment(1).ipynb\n",
"04/29/2021 12:44 AM <DIR> 3D Objects\n",
"06/01/2022 10:34 AM 2,675 6-1 LA Practice .ipynb\n",
"06/01/2022 09:50 AM <DIR> anaconda3\n",
"06/28/2022 07:51 AM 6,858 answercheck.py\n",
"10/06/2020 08:59 PM <DIR> Apple\n",
"06/27/2022 10:33 AM 33,584 banner.png\n",
"06/27/2022 10:33 AM 53,166 beaumont.png\n",
"06/27/2022 10:33 AM 31,359 billboard.png\n",
"08/22/2021 02:05 PM 151 BullseyeCoverageError.txt\n",
"06/28/2022 07:57 AM 2,174 Central Limit Theorem .ipynb\n",
"04/29/2021 12:44 AM <DIR> Contacts\n",
"06/28/2022 09:43 AM <DIR> data_science_bridge_curriculum\n",
"01/04/2021 01:01 PM <DIR> Documents\n",
"06/28/2022 09:13 AM <DIR> Downloads\n",
"06/10/2022 10:50 AM 2,193 Example 6.10 OneNote .ipynb\n",
"04/29/2021 12:44 AM <DIR> Favorites\n",
"06/17/2022 11:00 PM 69,632 HW1-Systems_of_linear_equations-STUDENT(1).ipynb\n",
"06/27/2022 10:38 AM 335,400 HW2-Affine_transform-STUDENT(1).ipynb\n",
"06/24/2022 10:36 AM 22,996 Intro_to_Statistics.ipynb\n",
"04/29/2021 12:44 AM <DIR> Links\n",
"04/29/2021 12:44 AM <DIR> Music\n",
"08/01/2021 10:31 AM <DIR> OneDrive\n",
"06/02/2022 08:50 PM 76,621 PRACTICE Chapter 2 Vectors-Copy1.ipynb\n",
"06/02/2022 08:51 PM 76,621 PRACTICE Chapter 2 Vectors.ipynb\n",
"06/13/2022 09:11 AM 9,464 Practice_6_10.ipynb\n",
"06/28/2022 07:56 AM 2,103 PTest.ipynb\n",
"12/21/2021 06:50 PM <DIR> PycharmProjects\n",
"06/03/2022 09:21 AM 25,465 Python_practice_6_1 (1).ipynb\n",
"06/07/2022 09:34 PM 4,627 Python_practice_6_6.ipynb\n",
"04/29/2021 12:44 AM <DIR> Saved Games\n",
"04/29/2021 12:44 AM <DIR> Searches\n",
"06/27/2022 10:33 AM 46,172 sparty.png\n",
"06/02/2022 10:58 PM 2,752 Untitled.ipynb\n",
"04/29/2021 12:44 AM <DIR> Videos\n",
"06/28/2022 07:48 AM 42,345 _Template.ipynb\n",
"06/08/2022 10:08 AM <DIR> __pycache__\n",
" 32 File(s) 1,516,876 bytes\n",
" 23 Dir(s) 401,290,428,416 bytes free\n"
]
}
],
"source": [
"!dir\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "8e746444",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('answercheck.py', <http.client.HTTPMessage at 0x20990c87880>)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"##ANSWER##\n",
"#Install answercheck in current director\n",
"from urllib.request import urlretrieve\n",
"urlretrieve('https://raw.githubusercontent.com/colbrydi/jupytercheck/master/answercheck.py', filename='answercheck.py')\n",
"##ANSWER##"
]
},
{
"cell_type": "markdown",
"id": "b7598d9e",
"metadata": {},
"source": [
"# Central Limit Theroem \n",
"Understanding and computing using the Central Limit Theorem (CLT)"
]
},
{
"cell_type": "markdown",
"id": "74fcd9bf",
"metadata": {},
"source": [
"# Description \n",
"The Central Limit Theorem states that the distribution of sample means approximates a normal distribution as the sample size gets larger, regardless of the population's distribution. "
]
},
{
"cell_type": "markdown",
"id": "2238469c",
"metadata": {},
"source": [
"# Training Materials \n",
"https://www.khanacademy.org/math/ap-statistics/sampling-distribution-ap/what-is-sampling-distribution/v/central-limit-theorem\n",
"\n",
"https://www.youtube.com/watch?v=4YLtvNeRIrg"
]
},
{
"cell_type": "markdown",
"id": "bcc501fa",
"metadata": {},
"source": [
"# Self Assessment "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aff596ae",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading