Newer
Older
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "reax_types.h"
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
Kurt A. O'Hearn
committed
#include "dev_alloc.h"
#include "dev_list.h"
#include "cuda_copy.h"
#include "cuda_forces.h"
#include "cuda_init_md.h"
#include "cuda_neighbors.h"
#include "cuda_reset_tools.h"
#include "validation.h"
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
#include "init_md.h"
#include "allocate.h"
#include "box.h"
#include "comm_tools.h"
#include "forces.h"
#include "grid.h"
#include "integrate.h"
#include "io_tools.h"
#include "list.h"
#include "lookup.h"
#include "neighbors.h"
#include "random.h"
#include "reset_tools.h"
#include "system_props.h"
#include "tool_box.h"
#include "vector.h"
Kurt A. O'Hearn
committed
#include "reax_init_md.h"
#include "reax_allocate.h"
#include "reax_forces.h"
#include "reax_io_tools.h"
#include "reax_list.h"
#include "reax_lookup.h"
#include "reax_reset_tools.h"
#include "reax_system_props.h"
#include "reax_tool_box.h"
#include "reax_vector.h"
#endif
#if defined(PURE_REAX)
/************************ initialize system ************************/
int Reposition_Atoms( reax_system *system, control_params *control,
simulation_data *data, mpi_datatypes *mpi_data,
char *msg )
int i;
rvec dx;
/* reposition atoms */
if ( control->reposition_atoms == 0 ) //fit atoms to periodic box
{
rvec_MakeZero( dx );
}
else if ( control->reposition_atoms == 1 ) //put center of mass to center
{
rvec_Scale( dx, 0.5, system->big_box.box_norms );
rvec_ScaledAdd( dx, -1., data->xcm );
}
else if ( control->reposition_atoms == 2 ) //put center of mass to origin
{
rvec_Scale( dx, -1., data->xcm );
}
else
{
strcpy( msg, "reposition_atoms: invalid option" );
return FAILURE;
}
for ( i = 0; i < system->n; ++i )
// Inc_on_T3_Gen( system->my_atoms[i].x, dx, &(system->big_box) );
rvec_Add( system->my_atoms[i].x, dx );
return SUCCESS;
}
void Generate_Initial_Velocities( reax_system *system, real T )
{
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
int i;
real m, scale, norm;
if ( T <= 0.1 )
{
for ( i = 0; i < system->n; i++ )
rvec_MakeZero( system->my_atoms[i].v );
}
else
{
Randomize();
for ( i = 0; i < system->n; i++ )
{
rvec_Random( system->my_atoms[i].v );
norm = rvec_Norm_Sqr( system->my_atoms[i].v );
m = system->reax_param.sbp[ system->my_atoms[i].type ].mass;
scale = SQRT( m * norm / (3.0 * K_B * T) );
rvec_Scale( system->my_atoms[i].v, 1. / scale, system->my_atoms[i].v );
// fprintf( stderr, "v = %f %f %f\n",
// system->my_atoms[i].v[0],
// system->my_atoms[i].v[1],
// system->my_atoms[i].v[2] );
// fprintf( stderr, "scale = %f\n", scale );
// fprintf( stderr, "v = %f %f %f\n",
// system->my_atoms[i].v[0],
// system->my_atoms[i].v[1],
// system->my_atoms[i].v[2] );
}
int Init_System( reax_system *system, control_params *control,
simulation_data *data, storage *workspace,
mpi_datatypes *mpi_data, char *msg )
int i;
reax_atom *atom;
int nrecv[MAX_NBRS];
Setup_New_Grid( system, control, MPI_COMM_WORLD );
fprintf( stderr, "p%d GRID:\n", system->my_rank );
Print_Grid( &(system->my_grid), stderr );
Bin_My_Atoms( system, &(workspace->realloc) );
Reorder_My_Atoms( system, workspace );
/* estimate N and total capacity */
Kurt A. O'Hearn
committed
for ( i = 0; i < MAX_NBRS; ++i )
{
nrecv[i] = 0;
}
MPI_Barrier( MPI_COMM_WORLD );
system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
Kurt A. O'Hearn
committed
Estimate_Boundary_Atoms, Unpack_Estimate_Message, 1 );
system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP );
Bin_Boundary_Atoms( system );
/* estimate numH and Hcap */
system->numH = 0;
Kurt A. O'Hearn
committed
if ( control->hbond_cut > 0.0 )
{
for ( i = 0; i < system->n; ++i )
{
atom = &(system->my_atoms[i]);
Kurt A. O'Hearn
committed
if ( system->reax_param.sbp[ atom->type ].p_hbond == 1 )
Kurt A. O'Hearn
committed
{
atom->Hindex = system->numH++;
Kurt A. O'Hearn
committed
}
else
{
atom->Hindex = -1;
}
Kurt A. O'Hearn
committed
}
//Tried fix
//system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
system->Hcap = MAX( system->n * SAFER_ZONE, MIN_CAP );
// Sudhir-style below
/*
Kurt A. O'Hearn
committed
if ( control->hbond_cut > 0.0 )
for ( i = 0; i < system->n; ++i )
{
atom = &(system->my_atoms[i]);
if ( system->reax_param.sbp[ atom->type ].p_hbond == 1 )
atom->Hindex = system->numH++;
else atom->Hindex = -1;
}
system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
*/
//Sync_System (system);
//Allocate_System( system, system->local_cap, system->total_cap, msg );
fprintf( stderr, "p%d: n=%d local_cap=%d\n",
system->my_rank, system->n, system->local_cap );
fprintf( stderr, "p%d: N=%d total_cap=%d\n",
system->my_rank, system->N, system->total_cap );
fprintf( stderr, "p%d: numH=%d H_cap=%d\n",
system->my_rank, system->numH, system->Hcap );
Compute_Total_Mass( system, data, mpi_data->comm_mesh3D );
Compute_Center_of_Mass( system, data, mpi_data, mpi_data->comm_mesh3D );
// if( Reposition_Atoms( system, control, data, mpi_data, msg ) == FAILURE )
// return FAILURE;
/* initialize velocities so that desired init T can be attained */
if ( !control->restart || (control->restart && control->random_vel) )
Generate_Initial_Velocities( system, control->T_init );
Compute_Kinetic_Energy( system, data, mpi_data->comm_mesh3D );
return SUCCESS;
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
int Cuda_Init_System( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, storage *workspace,
mpi_datatypes *mpi_data, char *msg )
Kurt A. O'Hearn
committed
int i, ret;
reax_atom *atom;
int nrecv[MAX_NBRS];
Setup_New_Grid( system, control, MPI_COMM_WORLD );
Kurt A. O'Hearn
committed
fprintf( stderr, " [SETUP NEW GRID]\n" );
fprintf( stderr, "p%d GRID:\n", system->my_rank );
Print_Grid( &(system->my_grid), stderr );
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
fprintf( stderr, " [BIN MY ATOMS]\n" );
Kurt A. O'Hearn
committed
fprintf( stderr, " [REORDER MY ATOMS]\n" );
Kurt A. O'Hearn
committed
for ( i = 0; i < MAX_NBRS; ++i )
{
nrecv[i] = 0;
}
MPI_Barrier( MPI_COMM_WORLD );
system->max_recved = 0;
system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
Kurt A. O'Hearn
committed
Estimate_Boundary_Atoms, Unpack_Estimate_Message, 1 );
system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP );
Bin_Boundary_Atoms( system );
Kurt A. O'Hearn
committed
fprintf( stderr, " [BIN BOUNDARY ATOMS]\n" );
Kurt A. O'Hearn
committed
if ( control->hbond_cut > 0.0 )
Kurt A. O'Hearn
committed
{
//TODO
//for( i = 0; i < system->n; ++i ) {
for ( i = 0; i < system->N; ++i )
{
atom = &(system->my_atoms[i]);
atom->Hindex = i;
//FIX - 4 - Added fix for HBond Issue
if ( system->reax_param.sbp[ atom->type ].p_hbond == 1 )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
}
system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
Kurt A. O'Hearn
committed
//Allocate_System( system, system->local_cap, system->total_cap, msg );
/* Sync atoms here to continue the computation */
ret = dev_alloc_system( system );
fprintf( stderr, " [DEV ALLOC SYSTEM]\n" );
if ( ret != SUCCESS )
{
return ret;
}
Sync_System( system );
fprintf( stderr, " [SYNC SYSTEM]\n" );
fprintf( stderr, "p%d: n=%d local_cap=%d\n",
system->my_rank, system->n, system->local_cap );
fprintf( stderr, "p%d: N=%d total_cap=%d\n",
system->my_rank, system->N, system->total_cap );
fprintf( stderr, "p%d: numH=%d H_cap=%d\n",
system->my_rank, system->numH, system->Hcap );
Cuda_Compute_Total_Mass( system, data, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
fprintf( stderr, " [CUDA COMPUTE TOTAL MASS]\n" );
Cuda_Compute_Center_of_Mass( system, data, mpi_data, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
fprintf( stderr, " [CUDA COMPUTE CENTER OF MASS]\n" );
// if( Reposition_Atoms( system, control, data, mpi_data, msg ) == FAILURE )
// return FAILURE;
/* initialize velocities so that desired init T can be attained */
if ( !control->restart || (control->restart && control->random_vel) )
Kurt A. O'Hearn
committed
{
Generate_Initial_Velocities( system, control->T_init );
Kurt A. O'Hearn
committed
fprintf( stderr, " [GENERATE INITIAL VELOCITIES]\n" );
}
Cuda_Compute_Kinetic_Energy( system, data, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
fprintf( stderr, " [CUDA COMPUTE K.E.]\n" );
Kurt A. O'Hearn
committed
#endif
/************************ initialize simulation data ************************/
int Init_Simulation_Data( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, char *msg )
Reset_Simulation_Data( data );
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
switch ( control->ensemble )
{
case NVE:
data->N_f = 3 * system->bigN;
Evolve = Velocity_Verlet_NVE;
control->virial = 0;
break;
case bNVT:
data->N_f = 3 * system->bigN + 1;
Evolve = Velocity_Verlet_Berendsen_NVT;
control->virial = 0;
break;
case nhNVT:
fprintf( stderr, "WARNING: Nose-Hoover NVT is still under testing.\n" );
//return FAILURE;
data->N_f = 3 * system->bigN + 1;
Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
control->virial = 0;
if ( !control->restart || (control->restart && control->random_vel) )
{
data->therm.G_xi = control->Tau_T *
(2.0 * data->sys_en.e_kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
}
break;
case sNPT: /* Semi-Isotropic NPT */
data->N_f = 3 * system->bigN + 4;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Reset_Pressures( data );
break;
case iNPT: /* Isotropic NPT */
data->N_f = 3 * system->bigN + 2;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Reset_Pressures( data );
break;
case NPT: /* Anisotropic NPT */
strcpy( msg, "init_simulation_data: option not yet implemented" );
return FAILURE;
data->N_f = 3 * system->bigN + 9;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
/*if( !control->restart ) {
data->therm.G_xi = control->Tau_T *
(2.0 * data->my_en.e_Kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->iso_bar.eps = 0.33333 * log(system->box.volume);
data->inv_W = 1.0 /
( data->N_f * K_B * control->T * SQR(control->Tau_P) );
Compute_Pressure( system, control, data, out_control );
}*/
break;
default:
strcpy( msg, "init_simulation_data: ensemble not recognized" );
return FAILURE;
/* initialize the timer(s) */
MPI_Barrier( MPI_COMM_WORLD ); // wait for everyone to come here
if ( system->my_rank == MASTER_NODE )
{
data->timing.start = Get_Time( );
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
int Cuda_Init_Simulation_Data( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, char *msg )
Kurt A. O'Hearn
committed
int ret;
ret = dev_alloc_simulation_data( data );
if ( ret != SUCCESS )
{
return ret;
}
Reset_Simulation_Data( data );
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
switch ( control->ensemble )
{
case NVE:
data->N_f = 3 * system->bigN;
Cuda_Evolve = Velocity_Verlet_NVE;
control->virial = 0;
break;
case bNVT:
data->N_f = 3 * system->bigN + 1;
Cuda_Evolve = Cuda_Velocity_Verlet_Berendsen_NVT;
control->virial = 0;
break;
case nhNVT:
fprintf( stderr, "WARNING: Nose-Hoover NVT is still under testing.\n" );
//return FAILURE;
data->N_f = 3 * system->bigN + 1;
Cuda_Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
control->virial = 0;
if ( !control->restart || (control->restart && control->random_vel) )
{
data->therm.G_xi = control->Tau_T *
(2.0 * data->sys_en.e_kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
}
break;
case sNPT: /* Semi-Isotropic NPT */
data->N_f = 3 * system->bigN + 4;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
break;
case iNPT: /* Isotropic NPT */
data->N_f = 3 * system->bigN + 2;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
break;
case NPT: /* Anisotropic NPT */
strcpy( msg, "init_simulation_data: option not yet implemented" );
return FAILURE;
data->N_f = 3 * system->bigN + 9;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
break;
default:
strcpy( msg, "init_simulation_data: ensemble not recognized" );
return FAILURE;
/* initialize the timer(s) */
MPI_Barrier( MPI_COMM_WORLD ); // wait for everyone to come here
if ( system->my_rank == MASTER_NODE )
{
data->timing.start = Get_Time( );
Kurt A. O'Hearn
committed
#endif
#elif defined(LAMMPS_REAX)
int Init_System( reax_system *system, char *msg )
{
system->big_box.V = 0;
system->big_box.box_norms[0] = 0;
system->big_box.box_norms[1] = 0;
system->big_box.box_norms[2] = 0;
system->local_cap = (int)(system->n * SAFE_ZONE);
system->total_cap = (int)(system->N * SAFE_ZONE);
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: local_cap=%d total_cap=%d\n",
system->my_rank, system->local_cap, system->total_cap );
Allocate_System( system, system->local_cap, system->total_cap, msg );
return SUCCESS;
int Init_Simulation_Data( reax_system *system, control_params *control,
simulation_data *data, char *msg )
Kurt A. O'Hearn
committed
//if( !control->restart )
data->step = data->prev_steps = 0;
}
#endif
/************************ initialize workspace ************************/
/* Initialize Taper params */
void Init_Taper( control_params *control, storage *workspace )
{
real d1, d7;
real swa, swa2, swa3;
real swb, swb2, swb3;
swa = control->nonb_low;
swb = control->nonb_cut;
Kurt A. O'Hearn
committed
if ( FABS( swa ) > 0.01 )
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
fprintf( stderr, "Warning: non-zero lower Taper-radius cutoff\n" );
if ( swb < 0 )
{
fprintf( stderr, "Negative upper Taper-radius cutoff\n" );
MPI_Abort( MPI_COMM_WORLD, INVALID_INPUT );
}
else if ( swb < 5 )
fprintf( stderr, "Warning: very low Taper-radius cutoff: %f\n", swb );
d1 = swb - swa;
d7 = POW( d1, 7.0 );
swa2 = SQR( swa );
swa3 = CUBE( swa );
swb2 = SQR( swb );
swb3 = CUBE( swb );
workspace->Tap[7] = 20.0 / d7;
workspace->Tap[6] = -70.0 * (swa + swb) / d7;
workspace->Tap[5] = 84.0 * (swa2 + 3.0 * swa * swb + swb2) / d7;
workspace->Tap[4] = -35.0 * (swa3 + 9.0 * swa2 * swb + 9.0 * swa * swb2 + swb3 ) / d7;
workspace->Tap[3] = 140.0 * (swa3 * swb + 3.0 * swa2 * swb2 + swa * swb3 ) / d7;
workspace->Tap[2] = -210.0 * (swa3 * swb2 + swa2 * swb3) / d7;
workspace->Tap[1] = 140.0 * swa3 * swb3 / d7;
workspace->Tap[0] = (-35.0 * swa3 * swb2 * swb2 + 21.0 * swa2 * swb3 * swb2 +
7.0 * swa * swb3 * swb3 + swb3 * swb3 * swb ) / d7;
int Init_Workspace( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
storage *workspace, char *msg )
ret = Allocate_Workspace( system, control, workspace,
Kurt A. O'Hearn
committed
system->local_cap, system->total_cap, msg );
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
memset( &(workspace->realloc), 0, sizeof(reallocate_data) );
Reset_Workspace( system, workspace );
/* Initialize the Taper function */
Init_Taper( control, workspace );
return SUCCESS;
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
int Cuda_Init_Workspace( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
storage *workspace, char *msg )
Kurt A. O'Hearn
committed
ret = dev_alloc_workspace( system, control, dev_workspace,
system->local_cap, system->total_cap, msg );
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
memset( &(workspace->realloc), 0, sizeof(reallocate_data) );
Cuda_Reset_Workspace( system, workspace );
/* Initialize the Taper function */
Init_Taper( control, dev_workspace );
return SUCCESS;
Kurt A. O'Hearn
committed
#endif
/************** setup communication data structures **************/
int Init_MPI_Datatypes( reax_system *system, storage *workspace,
mpi_datatypes *mpi_data, char *msg )
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
int i, block[11];
MPI_Aint base, disp[11];
MPI_Datatype type[11];
mpi_atom sample;
boundary_atom b_sample;
restart_atom r_sample;
rvec rvec_sample;
rvec2 rvec2_sample;
/* setup the world */
mpi_data->world = MPI_COMM_WORLD;
/* allocate mpi buffers */
//ret = Allocate_MPI_Buffers( mpi_data, system->est_recv,
// system->gcell_cap, system->my_nbrs, msg );
//tmp = 0;
//#if defined(DEBUG_FOCUS)
//for( i = 0; i < MAX_NBRS; ++i )
//if( i != MYSELF )
// tmp += system->my_nbrs[i].est_send;
//fprintf( stderr, "p%d: allocated mpi_buffers: recv=%d send=%d total=%dMB\n",
// system->my_rank, system->est_recv, tmp,
// (int)((system->est_recv+tmp)*sizeof(boundary_atom)/(1024*1024)) );
//#endif
//if( ret != SUCCESS )
// return ret;
/* mpi_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, name,
x, v, f_old, s, t] */
block[0] = block[1] = block[2] = block[3] = block[4] = 1;
block[5] = 8;
block[6] = block[7] = block[8] = 3;
block[9] = block[10] = 4;
MPI_Address( &(sample.orig_id), disp + 0 );
MPI_Address( &(sample.imprt_id), disp + 1 );
MPI_Address( &(sample.type), disp + 2 );
MPI_Address( &(sample.num_bonds), disp + 3 );
MPI_Address( &(sample.num_hbonds), disp + 4 );
MPI_Address( &(sample.name), disp + 5 );
MPI_Address( &(sample.x[0]), disp + 6 );
MPI_Address( &(sample.v[0]), disp + 7 );
MPI_Address( &(sample.f_old[0]), disp + 8 );
MPI_Address( &(sample.s[0]), disp + 9 );
MPI_Address( &(sample.t[0]), disp + 10 );
base = (MPI_Aint)(&(sample));
for ( i = 0; i < 11; ++i ) disp[i] -= base;
type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT;
type[5] = MPI_CHAR;
type[6] = type[7] = type[8] = type[9] = type[10] = MPI_DOUBLE;
MPI_Type_struct( 11, block, disp, type, &(mpi_data->mpi_atom_type) );
MPI_Type_commit( &(mpi_data->mpi_atom_type) );
/* boundary_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, x] */
block[0] = block[1] = block[2] = block[3] = block[4] = 1;
block[5] = 3;
MPI_Address( &(b_sample.orig_id), disp + 0 );
MPI_Address( &(b_sample.imprt_id), disp + 1 );
MPI_Address( &(b_sample.type), disp + 2 );
MPI_Address( &(b_sample.num_bonds), disp + 3 );
MPI_Address( &(b_sample.num_hbonds), disp + 4 );
MPI_Address( &(b_sample.x[0]), disp + 5 );
base = (MPI_Aint)(&(b_sample));
for ( i = 0; i < 6; ++i ) disp[i] -= base;
type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT;
type[5] = MPI_DOUBLE;
MPI_Type_struct( 6, block, disp, type, &(mpi_data->boundary_atom_type) );
MPI_Type_commit( &(mpi_data->boundary_atom_type) );
/* mpi_rvec */
block[0] = 3;
MPI_Address( &(rvec_sample[0]), disp + 0 );
base = disp[0];
for ( i = 0; i < 1; ++i ) disp[i] -= base;
type[0] = MPI_DOUBLE;
MPI_Type_struct( 1, block, disp, type, &(mpi_data->mpi_rvec) );
MPI_Type_commit( &(mpi_data->mpi_rvec) );
/* mpi_rvec2 */
block[0] = 2;
MPI_Address( &(rvec2_sample[0]), disp + 0 );
base = disp[0];
for ( i = 0; i < 1; ++i ) disp[i] -= base;
type[0] = MPI_DOUBLE;
MPI_Type_struct( 1, block, disp, type, &(mpi_data->mpi_rvec2) );
MPI_Type_commit( &(mpi_data->mpi_rvec2) );
/* restart_atom - [orig_id, type, name[8], x, v] */
block[0] = block[1] = 1 ;
block[2] = 8;
block[3] = block[4] = 3;
MPI_Address( &(r_sample.orig_id), disp + 0 );
MPI_Address( &(r_sample.type), disp + 1 );
MPI_Address( &(r_sample.name), disp + 2 );
MPI_Address( &(r_sample.x[0]), disp + 3 );
MPI_Address( &(r_sample.v[0]), disp + 4 );
base = (MPI_Aint)(&(r_sample));
for ( i = 0; i < 5; ++i ) disp[i] -= base;
type[0] = type[1] = MPI_INT;
type[2] = MPI_CHAR;
type[3] = type[4] = MPI_DOUBLE;
MPI_Type_struct( 5, block, disp, type, &(mpi_data->restart_atom_type) );
MPI_Type_commit( &(mpi_data->restart_atom_type) );
return SUCCESS;
}
/********************** allocate lists *************************/
Kurt A. O'Hearn
committed
int Init_Lists( reax_system *system, control_params *control,
simulation_data *data, storage *workspace, reax_list **lists,
mpi_datatypes *mpi_data, char *msg )
int i, num_nbrs;
int total_hbonds, total_bonds, bond_cap, num_3body, cap_3body, Htop;
int *hb_top, *bond_top;
int nrecv[MAX_NBRS];
//for( i = 0; i < MAX_NBRS; ++i ) nrecv[i] = system->my_nbrs[i].est_recv;
//system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
// Sort_Boundary_Atoms, Unpack_Exchange_Message, 1 );
num_nbrs = Estimate_NumNeighbors( system, lists );
if (!Make_List(system->total_cap, num_nbrs, TYP_FAR_NEIGHBOR, *lists + FAR_NBRS))
{
fprintf(stderr, "Problem in initializing far nbrs list. Terminating!\n");
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated far_nbrs: num_far=%d, space=%dMB\n",
system->my_rank, num_nbrs,
(int)(num_nbrs * sizeof(far_neighbor_data) / (1024 * 1024)) );
Generate_Neighbor_Lists( system, data, workspace, lists );
bond_top = (int*) calloc( system->total_cap, sizeof(int) );
hb_top = (int*) calloc( system->local_cap, sizeof(int) );
//hb_top = (int*) calloc( system->Hcap, sizeof(int) );
Estimate_Storages( system, control, lists,
&Htop, hb_top, bond_top, &num_3body );
//Host_Estimate_Sparse_Matrix( system, control, lists, system->local_cap, system->total_cap,
// &Htop, hb_top, bond_top, &num_3body );
Allocate_Matrix( &(workspace->H), system->local_cap, Htop );
//MATRIX CHANGES
//workspace->L = NULL;
//workspace->U = NULL;
fprintf( stderr, "p%d: allocated H matrix: Htop=%d, space=%dMB\n",
system->my_rank, Htop,
(int)(Htop * sizeof(sparse_matrix_entry) / (1024 * 1024)) );
Kurt A. O'Hearn
committed
if ( control->hbond_cut > 0.0 )
// init H indexes
total_hbonds = 0;
for ( i = 0; i < system->n; ++i )
{
system->my_atoms[i].num_hbonds = hb_top[i];
total_hbonds += hb_top[i];
}
total_hbonds = MAX( total_hbonds * SAFER_ZONE, MIN_CAP * MIN_HBONDS );
// DANIEL, to make Mpi_Not_Gpu_Validate_Lists() not complain that system->max_bonds is 0
system->max_hbonds = total_hbonds * SAFER_ZONE;
if ( !Make_List( system->Hcap, total_hbonds, TYP_HBOND, *lists + HBONDS) )
{
fprintf( stderr, "not enough space for hbonds list. terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated hbonds: total_hbonds=%d, space=%dMB\n",
system->my_rank, total_hbonds,
(int)(total_hbonds * sizeof(hbond_data) / (1024 * 1024)) );
}
/* bonds list */
//Allocate_Bond_List( system->N, bond_top, (*lists)+BONDS );
//num_bonds = bond_top[system->N-1];
total_bonds = 0;
for ( i = 0; i < system->N; ++i )
{
system->my_atoms[i].num_bonds = bond_top[i];
total_bonds += bond_top[i];
}
bond_cap = MAX( total_bonds * SAFE_ZONE, MIN_CAP * MIN_BONDS );
// DANIEL, to make Mpi_Not_Gpu_Validate_Lists() not complain that system->max_bonds is 0
system->max_bonds = total_bonds * SAFER_ZONE;
if ( !Make_List( system->total_cap, bond_cap, TYP_BOND, *lists + BONDS) )
{
fprintf( stderr, "not enough space for bonds list. terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated bonds: total_bonds=%d, space=%dMB\n",
system->my_rank, bond_cap,
(int)(bond_cap * sizeof(bond_data) / (1024 * 1024)) );
/* 3bodies list */
cap_3body = MAX( num_3body * SAFE_ZONE, MIN_3BODIES );
if ( !Make_List(bond_cap, cap_3body, TYP_THREE_BODY, *lists + THREE_BODIES) )
{
fprintf( stderr, "Problem in initializing angles list. Terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated 3-body list: num_3body=%d, space=%dMB\n",
system->my_rank, cap_3body,
(int)(cap_3body * sizeof(three_body_interaction_data) / (1024 * 1024)) );
if (!Make_List(system->total_cap, bond_cap * 8, TYP_DDELTA, (*lists) + DDELTAS))
{
fprintf( stderr, "Problem in initializing dDelta list. Terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated dDelta list: num_ddelta=%d space=%ldMB\n",
system->my_rank, bond_cap * 30,
bond_cap * 8 * sizeof(dDelta_data) / (1024 * 1024) );
if ( !Make_List( bond_cap, bond_cap * 50, TYP_DBO, (*lists) + DBOS) )
{
fprintf( stderr, "Problem in initializing dBO list. Terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
fprintf( stderr, "p%d: allocated dbond list: num_dbonds=%d space=%ldMB\n",
system->my_rank, bond_cap * MAX_BONDS * 3,
bond_cap * MAX_BONDS * 3 * sizeof(dbond_data) / (1024 * 1024) );
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
Kurt A. O'Hearn
committed
int Cuda_Init_Lists( reax_system *system, control_params *control,
simulation_data *data, storage *workspace, reax_list **lists,
mpi_datatypes *mpi_data, char *msg )
int i, num_nbrs;
int total_hbonds, total_bonds, bond_cap, num_3body, cap_3body, Htop;
int *hb_top, *bond_top;
int nrecv[MAX_NBRS];
int *nbr_indices = (int *) host_scratch;
Cuda_Estimate_Neighbors( system, nbr_indices );
num_nbrs = 0;
for (i = 0; i < system->N; i++)
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
fprintf( stderr, "DEVICE Total Neighbors: %d (%d)\n", num_nbrs, (int)(num_nbrs*SAFE_ZONE) );
#endif
Kurt A. O'Hearn
committed
{
nbr_indices[i] = MAX( nbr_indices[i] * SAFER_ZONE, MIN_NBRS );
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
num_nbrs += nbr_indices[0];
Kurt A. O'Hearn
committed
num_nbrs += nbr_indices[i];
nbr_indices[i] += nbr_indices[i - 1];
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
fprintf( stderr, "DEVICE total neighbors entries: %d \n", nbr_indices [system->N - 1] );
#endif
if (!Dev_Make_List(system->total_cap, num_nbrs, TYP_FAR_NEIGHBOR, *dev_lists + FAR_NBRS))
{
Kurt A. O'Hearn
committed
fprintf( stderr, "Problem in initializing far nbrs list. Terminating!\n" );
MPI_Abort( MPI_COMM_WORLD, INSUFFICIENT_MEMORY );
}
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated far_nbrs: num_far=%d, space=%dMB\n",
system->my_rank, num_nbrs,
(int)(num_nbrs * sizeof(far_neighbor_data) / (1024 * 1024)) );
Kurt A. O'Hearn
committed
fprintf( stderr, "N: %d and total_cap: %d \n", system->N, system->total_cap );
Kurt A. O'Hearn
committed
Cuda_Init_Neighbors_Indices( nbr_indices, system->N );
Cuda_Generate_Neighbor_Lists( system, data, workspace, lists );
bond_top = (int*) calloc( system->total_cap, sizeof(int) );
//hb_top = (int*) calloc( system->local_cap, sizeof(int) );
hb_top = (int*) calloc( system->total_cap, sizeof(int) );
Cuda_Estimate_Storages( system, control, lists, system->local_cap, system->total_cap,
Kurt A. O'Hearn
committed
&Htop, hb_top, bond_top, &num_3body );
Kurt A. O'Hearn
committed
Cuda_Estimate_Sparse_Matrix( system, control, data, lists );
//dev_alloc_matrix( &(dev_workspace->H), system->local_cap, system->n * system->max_sparse_entries );
//dev_alloc_matrix( &(dev_workspace->H), system->total_cap, system->N * system->max_sparse_entries );
dev_alloc_matrix( &(dev_workspace->H), system->total_cap,
system->total_cap * system->max_sparse_entries );
dev_workspace->H.n = system->n;
//THIS IS INITIALIZED in the init_forces function to system->n
//but this is never used in the code.
//GPU maintains the H matrix to be (NXN) symmetric matrix.
//TODO - CARVER FIX
//MATRIX CHANGES
//workspace->L = NULL;