Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "lookup.h"
#include "two_body_interactions.h"
void Make_Lookup_Table(real xmin, real xmax, int n,
Kurt A. O'Hearn
committed
lookup_function f, lookup_table* t)
int i;
t->xmin = xmin;
t->xmax = xmax;
t->n = n;
t->dx = (xmax - xmin) / (n - 1);
t->inv_dx = 1.0 / t->dx;
t->a = (n - 1) / (xmax - xmin);
t->y = (real*) malloc(n * sizeof(real));
for (i = 0; i < n; i++)
t->y[i] = f(i * t->dx + t->xmin);
// fprintf(stdout,"dx = %lf\n",t->dx);
// for(i=0; i < n; i++)
// fprintf( stdout,"%d %lf %lf %lf\n",
// i, i/t->a+t->xmin, t->y[i], exp(i/t->a+t->xmin) );
}
/* Fills solution into x. Warning: will modify c and d! */
Kurt A. O'Hearn
committed
real *c, real *d, real *x, unsigned int n)
{
int i;
real id;
/* Modify the coefficients. */
c[0] /= b[0]; /* Division by zero risk. */
d[0] /= b[0]; /* Division by zero would imply a singular matrix. */
for (i = 1; i < n; i++)
{
id = (b[i] - c[i - 1] * a[i]); /* Division by zero risk. */
c[i] /= id; /* Last value calculated is redundant. */
d[i] = (d[i] - d[i - 1] * a[i]) / id;
}
/* Now back substitute. */
x[n - 1] = d[n - 1];
for (i = n - 2; i >= 0; i--)
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
cubic_spline_coef *coef, unsigned int n )
int i;
real *a, *b, *c, *d, *v;
/* allocate space for the linear system */
a = (real*) malloc( n * sizeof(real) );
b = (real*) malloc( n * sizeof(real) );
c = (real*) malloc( n * sizeof(real) );
d = (real*) malloc( n * sizeof(real) );
v = (real*) malloc( n * sizeof(real) );
/* build the linear system */
a[0] = a[1] = a[n - 1] = 0;
for ( i = 2; i < n - 1; ++i )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
c[0] = c[n - 2] = c[n - 1] = 0;
for ( i = 1; i < n - 2; ++i )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
d[0] = d[n - 1] = 0;
for ( i = 1; i < n - 1; ++i )
Kurt A. O'Hearn
committed
{
d[i] = 6 * ((f[i + 1] - f[i]) / h[i] - (f[i] - f[i - 1]) / h[i - 1]);
Kurt A. O'Hearn
committed
}
/*fprintf( stderr, "i a b c d\n" );
for( i = 0; i < n; ++i )
fprintf( stderr, "%d %f %f %f %f\n", i, a[i], b[i], c[i], d[i] );*/
v[0] = 0;
v[n - 1] = 0;
Tridiagonal_Solve( &(a[1]), &(b[1]), &(c[1]), &(d[1]), &(v[1]), n - 2 );
for ( i = 1; i < n; ++i )
{
coef[i - 1].d = (v[i] - v[i - 1]) / (6 * h[i - 1]);
coef[i - 1].c = v[i] / 2;
coef[i - 1].b = (f[i] - f[i - 1]) / h[i - 1] + h[i - 1] * (2 * v[i] + v[i - 1]) / 6;
coef[i - 1].a = f[i];
}
/*fprintf( stderr, "i v coef\n" );
for( i = 0; i < n; ++i )
fprintf( stderr, "%d %f %f %f %f %f\n",
i, v[i], coef[i].a, coef[i].b, coef[i].c, coef[i].d ); */
}
void Complete_Cubic_Spline( const real *h, const real *f, real v0, real vlast,
Kurt A. O'Hearn
committed
cubic_spline_coef *coef, unsigned int n )
int i;
real *a, *b, *c, *d, *v;
/* allocate space for the linear system */
a = (real*) malloc( n * sizeof(real) );
b = (real*) malloc( n * sizeof(real) );
c = (real*) malloc( n * sizeof(real) );
d = (real*) malloc( n * sizeof(real) );
v = (real*) malloc( n * sizeof(real) );
/* build the linear system */
a[0] = 0;
for ( i = 1; i < n; ++i )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
d[0] = 6 * (f[1] - f[0]) / h[0] - 6 * v0;
d[n - 1] = 6 * vlast - 6 * (f[n - 1] - f[n - 2] / h[n - 2]);
for ( i = 1; i < n - 1; ++i )
Kurt A. O'Hearn
committed
{
d[i] = 6 * ((f[i + 1] - f[i]) / h[i] - (f[i] - f[i - 1]) / h[i - 1]);
Kurt A. O'Hearn
committed
}
/*fprintf( stderr, "i a b c d\n" );
for( i = 0; i < n; ++i )
fprintf( stderr, "%d %f %f %f %f\n", i, a[i], b[i], c[i], d[i] );*/
Tridiagonal_Solve( &(a[0]), &(b[0]), &(c[0]), &(d[0]), &(v[0]), n );
// Tridiagonal_Solve( &(a[1]), &(b[1]), &(c[1]), &(d[1]), &(v[1]), n-2 );
for ( i = 1; i < n; ++i )
{
coef[i - 1].d = (v[i] - v[i - 1]) / (6 * h[i - 1]);
coef[i - 1].c = v[i] / 2;
coef[i - 1].b = (f[i] - f[i - 1]) / h[i - 1] + h[i - 1] * (2 * v[i] + v[i - 1]) / 6;
coef[i - 1].a = f[i];
}
/*fprintf( stderr, "i v coef\n" );
for( i = 0; i < n; ++i )
fprintf( stderr, "%d %f %f %f %f %f\n",
i, v[i], coef[i].a, coef[i].b, coef[i].c, coef[i].d ); */
}
void LR_Lookup( LR_lookup_table *t, real r, LR_data *y )
{
int i;
real base, dif;
i = (int)(r * t->inv_dx);
Kurt A. O'Hearn
committed
if ( i == 0 )
{
++i;
}
base = (real)(i + 1) * t->dx;
dif = r - base;
//fprintf( stderr, "r: %f, i: %d, base: %f, dif: %f\n", r, i, base, dif );
y->e_vdW = ((t->vdW[i].d * dif + t->vdW[i].c) * dif + t->vdW[i].b) * dif +
t->vdW[i].a;
y->CEvd = ((t->CEvd[i].d * dif + t->CEvd[i].c) * dif +
t->CEvd[i].b) * dif + t->CEvd[i].a;
//y->CEvd = (3*t->vdW[i].d*dif + 2*t->vdW[i].c)*dif + t->vdW[i].b;
y->e_ele = ((t->ele[i].d * dif + t->ele[i].c) * dif + t->ele[i].b) * dif +
t->ele[i].a;
y->CEclmb = ((t->CEclmb[i].d * dif + t->CEclmb[i].c) * dif + t->CEclmb[i].b) * dif +
t->CEclmb[i].a;
y->H = y->e_ele * EV_to_KCALpMOL / C_ele;
//y->H = ((t->H[i].d*dif + t->H[i].c)*dif + t->H[i].b)*dif + t->H[i].a;
}
void Make_LR_Lookup_Table( reax_system *system, control_params *control )
{
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
int i, j, r;
int num_atom_types;
int existing_types[MAX_ATOM_TYPES];
real dr;
real *h, *fh, *fvdw, *fele, *fCEvd, *fCEclmb;
real v0_vdw, v0_ele, vlast_vdw, vlast_ele;
/* real rand_dist;
real evdw_abserr, evdw_relerr, fvdw_abserr, fvdw_relerr;
real eele_abserr, eele_relerr, fele_abserr, fele_relerr;
real evdw_maxerr, eele_maxerr;
LR_data y, y_spline; */
/* initializations */
vlast_ele = 0;
vlast_vdw = 0;
v0_ele = 0;
v0_vdw = 0;
num_atom_types = system->reaxprm.num_atom_types;
dr = control->r_cut / control->tabulate;
h = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
fh = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
fvdw = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
fCEvd = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
fele = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
fCEclmb = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
/* allocate Long-Range LookUp Table space based on
number of atom types in the ffield file */
LR = (LR_lookup_table**) malloc( num_atom_types * sizeof(LR_lookup_table*) );
for ( i = 0; i < num_atom_types; ++i )
Kurt A. O'Hearn
committed
{
LR[i] = (LR_lookup_table*) malloc(num_atom_types * sizeof(LR_lookup_table));
Kurt A. O'Hearn
committed
}
/* most atom types in ffield file will not exist in the current
simulation. to avoid unnecessary lookup table space, determine
the atom types that exist in the current simulation */
for ( i = 0; i < MAX_ATOM_TYPES; ++i )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
/* fill in the lookup table entries for existing atom types.
only lower half should be enough. */
for ( i = 0; i < num_atom_types; ++i )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
{
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
if ( existing_types[j] )
{
LR[i][j].xmin = 0;
LR[i][j].xmax = control->r_cut;
LR[i][j].n = control->tabulate + 1;
LR[i][j].dx = dr;
LR[i][j].inv_dx = control->tabulate / control->r_cut;
LR[i][j].y = (LR_data*)
malloc(LR[i][j].n * sizeof(LR_data));
LR[i][j].H = (cubic_spline_coef*)
malloc(LR[i][j].n * sizeof(cubic_spline_coef));
LR[i][j].vdW = (cubic_spline_coef*)
malloc(LR[i][j].n * sizeof(cubic_spline_coef));
LR[i][j].CEvd = (cubic_spline_coef*)
malloc(LR[i][j].n * sizeof(cubic_spline_coef));
LR[i][j].ele = (cubic_spline_coef*)
malloc(LR[i][j].n * sizeof(cubic_spline_coef));
LR[i][j].CEclmb = (cubic_spline_coef*)
malloc(LR[i][j].n * sizeof(cubic_spline_coef));
for ( r = 1; r <= control->tabulate; ++r )
{
LR_vdW_Coulomb( system, control, i, j, r * dr, &(LR[i][j].y[r]) );
h[r] = LR[i][j].dx;
fh[r] = LR[i][j].y[r].H;
fvdw[r] = LR[i][j].y[r].e_vdW;
fCEvd[r] = LR[i][j].y[r].CEvd;
fele[r] = LR[i][j].y[r].e_ele;
fCEclmb[r] = LR[i][j].y[r].CEclmb;
if ( r == 1 )
{
v0_vdw = LR[i][j].y[r].CEvd;
v0_ele = LR[i][j].y[r].CEclmb;
}
else if ( r == control->tabulate )
{
vlast_vdw = LR[i][j].y[r].CEvd;
vlast_ele = LR[i][j].y[r].CEclmb;
}
}
/*fprintf( stderr, "%-6s %-6s %-6s\n", "r", "h", "fh" );
for( r = 1; r <= control->tabulate; ++r )
fprintf( stderr, "%f %f %f\n", r * dr, h[r], fh[r] ); */
Natural_Cubic_Spline( &h[1], &fh[1],
&(LR[i][j].H[1]), control->tabulate + 1 );
/*fprintf( stderr, "%-6s %-6s %-6s\n", "r", "h", "fvdw" );
for( r = 1; r <= control->tabulate; ++r )
fprintf( stderr, "%f %f %f\n", r * dr, h[r], fvdw[r] );
fprintf( stderr, "v0_vdw: %f, vlast_vdw: %f\n", v0_vdw, vlast_vdw );
*/
Complete_Cubic_Spline( &h[1], &fvdw[1], v0_vdw, vlast_vdw,
&(LR[i][j].vdW[1]), control->tabulate + 1 );
Natural_Cubic_Spline( &h[1], &fCEvd[1],
&(LR[i][j].CEvd[1]), control->tabulate + 1 );
/*fprintf( stderr, "%-6s %-6s %-6s\n", "r", "h", "fele" );
for( r = 1; r <= control->tabulate; ++r )
fprintf( stderr, "%f %f %f\n", r * dr, h[r], fele[r] );
fprintf( stderr, "v0_ele: %f, vlast_ele: %f\n", v0_ele, vlast_ele );
*/
Complete_Cubic_Spline( &h[1], &fele[1], v0_ele, vlast_ele,
&(LR[i][j].ele[1]), control->tabulate + 1 );
Natural_Cubic_Spline( &h[1], &fCEclmb[1],
&(LR[i][j].CEclmb[1]), control->tabulate + 1 );
}
Kurt A. O'Hearn
committed
}
}
}
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/***** //test LR-Lookup table
evdw_maxerr = 0;
eele_maxerr = 0;
for( i = 0; i < num_atom_types; ++i )
if( existing_types[i] )
for( j = i; j < num_atom_types; ++j )
if( existing_types[j] ) {
for( r = 1; r <= 100; ++r ) {
rand_dist = (real)rand()/RAND_MAX * control->r_cut;
LR_vdW_Coulomb( system, control, i, j, rand_dist, &y );
LR_Lookup( &(LR[i][j]), rand_dist, &y_spline );
evdw_abserr = fabs(y.e_vdW - y_spline.e_vdW);
evdw_relerr = fabs(evdw_abserr / y.e_vdW);
fvdw_abserr = fabs(y.CEvd - y_spline.CEvd);
fvdw_relerr = fabs(fvdw_abserr / y.CEvd);
eele_abserr = fabs(y.e_ele - y_spline.e_ele);
eele_relerr = fabs(eele_abserr / y.e_ele);
fele_abserr = fabs(y.CEclmb - y_spline.CEclmb);
fele_relerr = fabs(fele_abserr / y.CEclmb);
if( evdw_relerr > 1e-10 || eele_relerr > 1e-10 ){
fprintf( stderr, "rand_dist = %24.15e\n", rand_dist );
fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n",
y.H, y_spline.H,
fabs(y.H-y_spline.H), fabs((y.H-y_spline.H)/y.H) );
fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n",
y.e_vdW, y_spline.e_vdW, evdw_abserr, evdw_relerr );
fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n",
y.CEvd, y_spline.CEvd, fvdw_abserr, fvdw_relerr );
fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n",
y.e_ele, y_spline.e_ele, eele_abserr, eele_relerr );
fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n",
y.CEclmb, y_spline.CEclmb, fele_abserr, fele_relerr );
}
if( evdw_relerr > evdw_maxerr )
evdw_maxerr = evdw_relerr;
if( eele_relerr > eele_maxerr )
eele_maxerr = eele_relerr;
}
}
fprintf( stderr, "evdw_maxerr: %24.15e\n", evdw_maxerr );
fprintf( stderr, "eele_maxerr: %24.15e\n", eele_maxerr );
*******/
free(h);
free(fh);
free(fvdw);
free(fCEvd);
free(fele);
free(fCEclmb);
}
int Lookup_Index_Of( real x, lookup_table* t )
{
}
real Lookup( real x, lookup_table* t )
{
Kurt A. O'Hearn
committed
/*
if ( x < t->xmin)
{
fprintf(stderr,"Domain check %lf > %lf\n",t->xmin,x);
exit(0);
Kurt A. O'Hearn
committed
}
if ( x > t->xmax)
{
fprintf(stderr,"Domain check %lf < %lf\n",t->xmax,x);
exit(0);
Kurt A. O'Hearn
committed
}
*/
i = Lookup_Index_Of( x, t );
x1 = i * t->dx + t->xmin;
x2 = (i + 1) * t->dx + t->xmin;
b = ( x2 * t->y[i] - x1 * t->y[i + 1] ) * t->inv_dx;
// fprintf( stdout,"SLookup_Entry: %d, %lf, %lf, %lf, %lf: %lf, %lf\n",
// i,x1,x2,x,b,t->one_over_dx*(t->y[i+1]-t->y[i])*x+b,exp(x));
return t->inv_dx * ( t->y[i + 1] - t->y[i] ) * x + b;