Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "lookup.h"
#include "two_body_interactions.h"
void Make_Lookup_Table(real xmin, real xmax, int n,
int i;
t->xmin = xmin;
t->xmax = xmax;
t->n = n;
t->dx = (xmax - xmin) / (n - 1);
t->inv_dx = 1.0 / t->dx;
t->a = (n - 1) / (xmax - xmin);
t->y = (real*) malloc(n * sizeof(real));
for (i = 0; i < n; i++)
t->y[i] = f(i * t->dx + t->xmin);
// fprintf(stdout,"dx = %lf\n",t->dx);
// for(i=0; i < n; i++)
// fprintf( stdout,"%d %lf %lf %lf\n",
// i, i/t->a+t->xmin, t->y[i], exp(i/t->a+t->xmin) );
}
/* Fills solution into x. Warning: will modify c and d! */
void Tridiagonal_Solve( const real *a, const real *b,
real *c, real *d, real *x, unsigned int n)
{
int i;
real id;
/* Modify the coefficients. */
c[0] /= b[0]; /* Division by zero risk. */
d[0] /= b[0]; /* Division by zero would imply a singular matrix. */
for (i = 1; i < n; i++)
{
id = (b[i] - c[i - 1] * a[i]); /* Division by zero risk. */
c[i] /= id; /* Last value calculated is redundant. */
d[i] = (d[i] - d[i - 1] * a[i]) / id;
}
/* Now back substitute. */
x[n - 1] = d[n - 1];
for (i = n - 2; i >= 0; i--)
x[i] = d[i] - c[i] * x[i + 1];
void Natural_Cubic_Spline( const real *h, const real *f,
cubic_spline_coef *coef, unsigned int n )
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
int i;
real *a, *b, *c, *d, *v;
/* allocate space for the linear system */
a = (real*) malloc( n * sizeof(real) );
b = (real*) malloc( n * sizeof(real) );
c = (real*) malloc( n * sizeof(real) );
d = (real*) malloc( n * sizeof(real) );
v = (real*) malloc( n * sizeof(real) );
/* build the linear system */
a[0] = a[1] = a[n - 1] = 0;
for ( i = 2; i < n - 1; ++i )
a[i] = h[i - 1];
b[0] = b[n - 1] = 0;
for ( i = 1; i < n - 1; ++i )
b[i] = 2 * (h[i - 1] + h[i]);
c[0] = c[n - 2] = c[n - 1] = 0;
for ( i = 1; i < n - 2; ++i )
c[i] = h[i];
d[0] = d[n - 1] = 0;
for ( i = 1; i < n - 1; ++i )
d[i] = 6 * ((f[i + 1] - f[i]) / h[i] - (f[i] - f[i - 1]) / h[i - 1]);
/*fprintf( stderr, "i a b c d\n" );
for( i = 0; i < n; ++i )
fprintf( stderr, "%d %f %f %f %f\n", i, a[i], b[i], c[i], d[i] );*/
v[0] = 0;
v[n - 1] = 0;
Tridiagonal_Solve( &(a[1]), &(b[1]), &(c[1]), &(d[1]), &(v[1]), n - 2 );
for ( i = 1; i < n; ++i )
{
coef[i - 1].d = (v[i] - v[i - 1]) / (6 * h[i - 1]);
coef[i - 1].c = v[i] / 2;
coef[i - 1].b = (f[i] - f[i - 1]) / h[i - 1] + h[i - 1] * (2 * v[i] + v[i - 1]) / 6;
coef[i - 1].a = f[i];
}
/*fprintf( stderr, "i v coef\n" );
for( i = 0; i < n; ++i )
fprintf( stderr, "%d %f %f %f %f %f\n",
i, v[i], coef[i].a, coef[i].b, coef[i].c, coef[i].d ); */
}
void Complete_Cubic_Spline( const real *h, const real *f, real v0, real vlast,
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
int i;
real *a, *b, *c, *d, *v;
/* allocate space for the linear system */
a = (real*) malloc( n * sizeof(real) );
b = (real*) malloc( n * sizeof(real) );
c = (real*) malloc( n * sizeof(real) );
d = (real*) malloc( n * sizeof(real) );
v = (real*) malloc( n * sizeof(real) );
/* build the linear system */
a[0] = 0;
for ( i = 1; i < n; ++i )
a[i] = h[i - 1];
b[0] = 2 * h[0];
for ( i = 1; i < n; ++i )
b[i] = 2 * (h[i - 1] + h[i]);
c[n - 1] = 0;
for ( i = 0; i < n - 1; ++i )
c[i] = h[i];
d[0] = 6 * (f[1] - f[0]) / h[0] - 6 * v0;
d[n - 1] = 6 * vlast - 6 * (f[n - 1] - f[n - 2] / h[n - 2]);
for ( i = 1; i < n - 1; ++i )
d[i] = 6 * ((f[i + 1] - f[i]) / h[i] - (f[i] - f[i - 1]) / h[i - 1]);
/*fprintf( stderr, "i a b c d\n" );
for( i = 0; i < n; ++i )
fprintf( stderr, "%d %f %f %f %f\n", i, a[i], b[i], c[i], d[i] );*/
Tridiagonal_Solve( &(a[0]), &(b[0]), &(c[0]), &(d[0]), &(v[0]), n );
// Tridiagonal_Solve( &(a[1]), &(b[1]), &(c[1]), &(d[1]), &(v[1]), n-2 );
for ( i = 1; i < n; ++i )
{
coef[i - 1].d = (v[i] - v[i - 1]) / (6 * h[i - 1]);
coef[i - 1].c = v[i] / 2;
coef[i - 1].b = (f[i] - f[i - 1]) / h[i - 1] + h[i - 1] * (2 * v[i] + v[i - 1]) / 6;
coef[i - 1].a = f[i];
}
/*fprintf( stderr, "i v coef\n" );
for( i = 0; i < n; ++i )
fprintf( stderr, "%d %f %f %f %f %f\n",
i, v[i], coef[i].a, coef[i].b, coef[i].c, coef[i].d ); */
}
void LR_Lookup( LR_lookup_table *t, real r, LR_data *y )
{
int i;
real base, dif;
i = (int)(r * t->inv_dx);
if ( i == 0 ) ++i;
base = (real)(i + 1) * t->dx;
dif = r - base;
//fprintf( stderr, "r: %f, i: %d, base: %f, dif: %f\n", r, i, base, dif );
y->e_vdW = ((t->vdW[i].d * dif + t->vdW[i].c) * dif + t->vdW[i].b) * dif +
t->vdW[i].a;
y->CEvd = ((t->CEvd[i].d * dif + t->CEvd[i].c) * dif +
t->CEvd[i].b) * dif + t->CEvd[i].a;
//y->CEvd = (3*t->vdW[i].d*dif + 2*t->vdW[i].c)*dif + t->vdW[i].b;
y->e_ele = ((t->ele[i].d * dif + t->ele[i].c) * dif + t->ele[i].b) * dif +
t->ele[i].a;
y->CEclmb = ((t->CEclmb[i].d * dif + t->CEclmb[i].c) * dif + t->CEclmb[i].b) * dif +
t->CEclmb[i].a;
y->H = y->e_ele * EV_to_KCALpMOL / C_ele;
//y->H = ((t->H[i].d*dif + t->H[i].c)*dif + t->H[i].b)*dif + t->H[i].a;
}
void Make_LR_Lookup_Table( reax_system *system, control_params *control )
{
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
int i, j, r;
int num_atom_types;
int existing_types[MAX_ATOM_TYPES];
real dr;
real *h, *fh, *fvdw, *fele, *fCEvd, *fCEclmb;
real v0_vdw, v0_ele, vlast_vdw, vlast_ele;
/* real rand_dist;
real evdw_abserr, evdw_relerr, fvdw_abserr, fvdw_relerr;
real eele_abserr, eele_relerr, fele_abserr, fele_relerr;
real evdw_maxerr, eele_maxerr;
LR_data y, y_spline; */
/* initializations */
vlast_ele = 0;
vlast_vdw = 0;
v0_ele = 0;
v0_vdw = 0;
num_atom_types = system->reaxprm.num_atom_types;
dr = control->r_cut / control->tabulate;
h = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
fh = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
fvdw = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
fCEvd = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
fele = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
fCEclmb = (real*) malloc( (control->tabulate + 1) * sizeof(real) );
/* allocate Long-Range LookUp Table space based on
number of atom types in the ffield file */
LR = (LR_lookup_table**) malloc( num_atom_types * sizeof(LR_lookup_table*) );
for ( i = 0; i < num_atom_types; ++i )
LR[i] = (LR_lookup_table*) malloc(num_atom_types * sizeof(LR_lookup_table));
/* most atom types in ffield file will not exist in the current
simulation. to avoid unnecessary lookup table space, determine
the atom types that exist in the current simulation */
for ( i = 0; i < MAX_ATOM_TYPES; ++i )
existing_types[i] = 0;
for ( i = 0; i < system->N; ++i )
existing_types[ system->atoms[i].type ] = 1;
/* fill in the lookup table entries for existing atom types.
only lower half should be enough. */
for ( i = 0; i < num_atom_types; ++i )
if ( existing_types[i] )
for ( j = i; j < num_atom_types; ++j )
if ( existing_types[j] )
{
LR[i][j].xmin = 0;
LR[i][j].xmax = control->r_cut;
LR[i][j].n = control->tabulate + 1;
LR[i][j].dx = dr;
LR[i][j].inv_dx = control->tabulate / control->r_cut;
LR[i][j].y = (LR_data*)
malloc(LR[i][j].n * sizeof(LR_data));
LR[i][j].H = (cubic_spline_coef*)
malloc(LR[i][j].n * sizeof(cubic_spline_coef));
LR[i][j].vdW = (cubic_spline_coef*)
malloc(LR[i][j].n * sizeof(cubic_spline_coef));
LR[i][j].CEvd = (cubic_spline_coef*)
malloc(LR[i][j].n * sizeof(cubic_spline_coef));
LR[i][j].ele = (cubic_spline_coef*)
malloc(LR[i][j].n * sizeof(cubic_spline_coef));
LR[i][j].CEclmb = (cubic_spline_coef*)
malloc(LR[i][j].n * sizeof(cubic_spline_coef));
for ( r = 1; r <= control->tabulate; ++r )
{
LR_vdW_Coulomb( system, control, i, j, r * dr, &(LR[i][j].y[r]) );
h[r] = LR[i][j].dx;
fh[r] = LR[i][j].y[r].H;
fvdw[r] = LR[i][j].y[r].e_vdW;
fCEvd[r] = LR[i][j].y[r].CEvd;
fele[r] = LR[i][j].y[r].e_ele;
fCEclmb[r] = LR[i][j].y[r].CEclmb;
if ( r == 1 )
{
v0_vdw = LR[i][j].y[r].CEvd;
v0_ele = LR[i][j].y[r].CEclmb;
}
else if ( r == control->tabulate )
{
vlast_vdw = LR[i][j].y[r].CEvd;
vlast_ele = LR[i][j].y[r].CEclmb;
}
}
/*fprintf( stderr, "%-6s %-6s %-6s\n", "r", "h", "fh" );
for( r = 1; r <= control->tabulate; ++r )
fprintf( stderr, "%f %f %f\n", r * dr, h[r], fh[r] ); */
Natural_Cubic_Spline( &h[1], &fh[1],
&(LR[i][j].H[1]), control->tabulate + 1 );
/*fprintf( stderr, "%-6s %-6s %-6s\n", "r", "h", "fvdw" );
for( r = 1; r <= control->tabulate; ++r )
fprintf( stderr, "%f %f %f\n", r * dr, h[r], fvdw[r] );
fprintf( stderr, "v0_vdw: %f, vlast_vdw: %f\n", v0_vdw, vlast_vdw );
*/
Complete_Cubic_Spline( &h[1], &fvdw[1], v0_vdw, vlast_vdw,
&(LR[i][j].vdW[1]), control->tabulate + 1 );
Natural_Cubic_Spline( &h[1], &fCEvd[1],
&(LR[i][j].CEvd[1]), control->tabulate + 1 );
/*fprintf( stderr, "%-6s %-6s %-6s\n", "r", "h", "fele" );
for( r = 1; r <= control->tabulate; ++r )
fprintf( stderr, "%f %f %f\n", r * dr, h[r], fele[r] );
fprintf( stderr, "v0_ele: %f, vlast_ele: %f\n", v0_ele, vlast_ele );
*/
Complete_Cubic_Spline( &h[1], &fele[1], v0_ele, vlast_ele,
&(LR[i][j].ele[1]), control->tabulate + 1 );
Natural_Cubic_Spline( &h[1], &fCEclmb[1],
&(LR[i][j].CEclmb[1]), control->tabulate + 1 );
}
/***** //test LR-Lookup table
evdw_maxerr = 0;
eele_maxerr = 0;
for( i = 0; i < num_atom_types; ++i )
if( existing_types[i] )
for( j = i; j < num_atom_types; ++j )
if( existing_types[j] ) {
for( r = 1; r <= 100; ++r ) {
rand_dist = (real)rand()/RAND_MAX * control->r_cut;
LR_vdW_Coulomb( system, control, i, j, rand_dist, &y );
LR_Lookup( &(LR[i][j]), rand_dist, &y_spline );
evdw_abserr = fabs(y.e_vdW - y_spline.e_vdW);
evdw_relerr = fabs(evdw_abserr / y.e_vdW);
fvdw_abserr = fabs(y.CEvd - y_spline.CEvd);
fvdw_relerr = fabs(fvdw_abserr / y.CEvd);
eele_abserr = fabs(y.e_ele - y_spline.e_ele);
eele_relerr = fabs(eele_abserr / y.e_ele);
fele_abserr = fabs(y.CEclmb - y_spline.CEclmb);
fele_relerr = fabs(fele_abserr / y.CEclmb);
if( evdw_relerr > 1e-10 || eele_relerr > 1e-10 ){
fprintf( stderr, "rand_dist = %24.15e\n", rand_dist );
fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n",
y.H, y_spline.H,
fabs(y.H-y_spline.H), fabs((y.H-y_spline.H)/y.H) );
fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n",
y.e_vdW, y_spline.e_vdW, evdw_abserr, evdw_relerr );
fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n",
y.CEvd, y_spline.CEvd, fvdw_abserr, fvdw_relerr );
fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n",
y.e_ele, y_spline.e_ele, eele_abserr, eele_relerr );
fprintf( stderr, "%24.15e %24.15e %24.15e %24.15e\n",
y.CEclmb, y_spline.CEclmb, fele_abserr, fele_relerr );
}
if( evdw_relerr > evdw_maxerr )
evdw_maxerr = evdw_relerr;
if( eele_relerr > eele_maxerr )
eele_maxerr = eele_relerr;
}
}
fprintf( stderr, "evdw_maxerr: %24.15e\n", evdw_maxerr );
fprintf( stderr, "eele_maxerr: %24.15e\n", eele_maxerr );
*******/
free(h);
free(fh);
free(fvdw);
free(fCEvd);
free(fele);
free(fCEclmb);
}
int Lookup_Index_Of( real x, lookup_table* t )
{
}
real Lookup( real x, lookup_table* t )
{
real x1, x2;
real b;
int i;
/* if ( x < t->xmin)
{
fprintf(stderr,"Domain check %lf > %lf\n",t->xmin,x);
exit(0);
}
if ( x > t->xmax)
{
fprintf(stderr,"Domain check %lf < %lf\n",t->xmax,x);
exit(0);
} */
i = Lookup_Index_Of( x, t );
x1 = i * t->dx + t->xmin;
x2 = (i + 1) * t->dx + t->xmin;
b = ( x2 * t->y[i] - x1 * t->y[i + 1] ) * t->inv_dx;
// fprintf( stdout,"SLookup_Entry: %d, %lf, %lf, %lf, %lf: %lf, %lf\n",
// i,x1,x2,x,b,t->one_over_dx*(t->y[i+1]-t->y[i])*x+b,exp(x));
return t->inv_dx * ( t->y[i + 1] - t->y[i] ) * x + b;