Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "GMRES.h"
#include "allocate.h"
Kurt A. O'Hearn
committed
#include "tool_box.h"
Kurt A. O'Hearn
committed
typedef enum
{
LOWER = 0,
UPPER = 1,
} TRIANGULARITY;
/* global to make OpenMP shared (Sparse_MatVec) */
#ifdef _OPENMP
real *b_local = NULL;
#endif
/* global to make OpenMP shared (apply_preconditioner) */
real *Dinv_L = NULL, *Dinv_U = NULL;
/* global to make OpenMP shared (tri_solve_level_sched) */
int levels = 1;
int levels_L = 1, levels_U = 1;
unsigned int *row_levels_L = NULL, *level_rows_L = NULL, *level_rows_cnt_L = NULL;
unsigned int *row_levels_U = NULL, *level_rows_U = NULL, *level_rows_cnt_U = NULL;
unsigned int *row_levels, *level_rows, *level_rows_cnt;
unsigned int *top = NULL;
/* global to make OpenMP shared (jacobi_iter) */
real *Dinv_b = NULL, *rp = NULL, *rp2 = NULL, *rp3 = NULL;
/* sparse matrix-vector product Ax=b
* where:
* A: lower triangular matrix
* x: vector
* b: vector (result) */
static void Sparse_MatVec( const sparse_matrix * const A,
const real * const x, real * const b )
#ifdef _OPENMP
unsigned int tid;
#endif
Kurt A. O'Hearn
committed
#ifdef _OPENMP
tid = omp_get_thread_num();
Kurt A. O'Hearn
committed
#pragma omp master
{
/* keep b_local for program duration to avoid allocate/free
* overhead per Sparse_MatVec call*/
if ( b_local == NULL )
{
if ( (b_local = (real*) malloc( omp_get_num_threads() * n * sizeof(real))) == NULL )
exit( INSUFFICIENT_MEMORY );
}
}
#pragma omp barrier
Vector_MakeZero( (real * const)b_local, omp_get_num_threads() * n );
#endif
#pragma omp for schedule(static)
for ( i = 0; i < n; ++i )
{
si = A->start[i];
ei = A->start[i + 1] - 1;
for ( k = si; k < ei; ++k )
{
j = A->j[k];
H = A->val[k];
#ifdef _OPENMP
b_local[tid * n + j] += H * x[i];
b_local[tid * n + i] += H * x[j];
#else
b[j] += H * x[i];
b[i] += H * x[j];
#endif
// the diagonal entry is the last one in
#ifdef _OPENMP
b_local[tid * n + i] += A->val[k] * x[i];
#else
b[i] += A->val[k] * x[i];
#endif
#ifdef _OPENMP
#pragma omp for schedule(static)
for ( i = 0; i < n; ++i )
{
for ( j = 0; j < omp_get_num_threads(); ++j )
b[i] += b_local[j * n + i];
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
static void diag_pre_app( const real * const Hdia_inv, const real * const y,
real * const x, const int N )
Kurt A. O'Hearn
committed
unsigned int i;
#pragma omp for schedule(static)
Kurt A. O'Hearn
committed
for ( i = 0; i < N; ++i )
Kurt A. O'Hearn
committed
x[i] = y[i] * Hdia_inv[i];
Kurt A. O'Hearn
committed
/* Solve triangular system LU*x = y using level scheduling
*
* LU: lower/upper triangular, stored in CSR
* y: constants in linear system (RHS)
* x: solution
* tri: triangularity of LU (lower/upper)
Kurt A. O'Hearn
committed
* Assumptions:
* LU has non-zero diagonals
* Each row of LU has at least one non-zero (i.e., no rows with all zeros) */
static void tri_solve( const sparse_matrix * const LU, const real * const y,
real * const x, const TRIANGULARITY tri )
#pragma omp master
if ( tri == LOWER )
for ( i = 0; i < LU->n; ++i )
Kurt A. O'Hearn
committed
{
x[i] = y[i];
si = LU->start[i];
ei = LU->start[i + 1];
for ( pj = si; pj < ei - 1; ++pj )
{
j = LU->j[pj];
val = LU->val[pj];
x[i] -= val * x[j];
}
x[i] /= LU->val[pj];
Kurt A. O'Hearn
committed
}
}
Kurt A. O'Hearn
committed
{
for ( i = LU->n - 1; i >= 0; --i )
Kurt A. O'Hearn
committed
{
x[i] = y[i];
si = LU->start[i];
ei = LU->start[i + 1];
for ( pj = si + 1; pj < ei; ++pj )
{
j = LU->j[pj];
val = LU->val[pj];
x[i] -= val * x[j];
}
x[i] /= LU->val[si];
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
/* Solve triangular system LU*x = y using level scheduling
*
* LU: lower/upper triangular, stored in CSR
* y: constants in linear system (RHS)
* x: solution
Kurt A. O'Hearn
committed
* tri: triangularity of LU (lower/upper)
* find_levels: perform level search if positive, otherwise reuse existing levels
* Assumptions:
* LU has non-zero diagonals
* Each row of LU has at least one non-zero (i.e., no rows with all zeros) */
Kurt A. O'Hearn
committed
static void tri_solve_level_sched( const sparse_matrix * const LU, const real * const y,
real * const x, const TRIANGULARITY tri, int find_levels )
int i, j, pj, local_row, local_level;
Kurt A. O'Hearn
committed
#pragma omp master
Kurt A. O'Hearn
committed
{
if ( tri == LOWER )
Kurt A. O'Hearn
committed
{
row_levels = row_levels_L;
level_rows = level_rows_L;
level_rows_cnt = level_rows_cnt_L;
levels = levels_L;
}
else
{
row_levels = row_levels_U;
level_rows = level_rows_U;
level_rows_cnt = level_rows_cnt_U;
levels = levels_U;
Kurt A. O'Hearn
committed
}
if ( row_levels == NULL || level_rows == NULL || level_rows_cnt == NULL )
Kurt A. O'Hearn
committed
{
if ( (row_levels = (unsigned int*) malloc((size_t)LU->n * sizeof(unsigned int))) == NULL
|| (level_rows = (unsigned int*) malloc((size_t)LU->n * sizeof(unsigned int))) == NULL
|| (level_rows_cnt = (unsigned int*) malloc((size_t)(LU->n + 1) * sizeof(unsigned int))) == NULL )
{
fprintf( stderr, "Not enough space for triangular solve via level scheduling. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
Kurt A. O'Hearn
committed
}
if ( top == NULL )
{
if ( (top = (unsigned int*) malloc((size_t)(LU->n + 1) * sizeof(unsigned int))) == NULL )
{
fprintf( stderr, "Not enough space for triangular solve via level scheduling. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
}
Kurt A. O'Hearn
committed
/* find levels (row dependencies in substitutions) */
if ( find_levels )
memset( row_levels, 0, LU->n * sizeof(unsigned int) );
memset( level_rows_cnt, 0, LU->n * sizeof(unsigned int) );
memset( top, 0, LU->n * sizeof(unsigned int) );
levels = 1;
if ( tri == LOWER )
for ( i = 0; i < LU->n; ++i )
Kurt A. O'Hearn
committed
{
local_level = 1;
for ( pj = LU->start[i]; pj < LU->start[i + 1] - 1; ++pj )
{
local_level = MAX( local_level, row_levels[LU->j[pj]] + 1 );
}
levels = MAX( levels, local_level );
row_levels[i] = local_level;
++level_rows_cnt[local_level];
Kurt A. O'Hearn
committed
}
fprintf(stderr, "levels(L): %d\n", levels);
fprintf(stderr, "NNZ(L): %d\n", LU->start[LU->n]);
for ( i = LU->n - 1; i >= 0; --i )
Kurt A. O'Hearn
committed
{
local_level = 1;
for ( pj = LU->start[i] + 1; pj < LU->start[i + 1]; ++pj )
{
local_level = MAX( local_level, row_levels[LU->j[pj]] + 1 );
}
levels = MAX( levels, local_level );
row_levels[i] = local_level;
++level_rows_cnt[local_level];
Kurt A. O'Hearn
committed
}
fprintf(stderr, "levels(U): %d\n", levels);
fprintf(stderr, "NNZ(U): %d\n", LU->start[LU->n]);
Kurt A. O'Hearn
committed
for ( i = 1; i < levels + 1; ++i )
{
level_rows_cnt[i] += level_rows_cnt[i - 1];
top[i] = level_rows_cnt[i];
}
Kurt A. O'Hearn
committed
for ( i = 0; i < LU->n; ++i )
{
level_rows[top[row_levels[i] - 1]] = i;
++top[row_levels[i] - 1];
}
#pragma omp barrier
/* perform substitutions by level */
if ( tri == LOWER )
for ( i = 0; i < levels; ++i )
#pragma omp for schedule(static)
for ( j = level_rows_cnt[i]; j < level_rows_cnt[i + 1]; ++j )
local_row = level_rows[j];
x[local_row] = y[local_row];
for ( pj = LU->start[local_row]; pj < LU->start[local_row + 1] - 1; ++pj )
x[local_row] -= LU->val[pj] * x[LU->j[pj]];
x[local_row] /= LU->val[pj];
}
else
{
for ( i = 0; i < levels; ++i )
#pragma omp for schedule(static)
for ( j = level_rows_cnt[i]; j < level_rows_cnt[i + 1]; ++j )
local_row = level_rows[j];
x[local_row] = y[local_row];
for ( pj = LU->start[local_row] + 1; pj < LU->start[local_row + 1]; ++pj )
x[local_row] -= LU->val[pj] * x[LU->j[pj]];
x[local_row] /= LU->val[LU->start[local_row]];
}
}
}
#pragma omp master
Kurt A. O'Hearn
committed
{
/* save level info for re-use if performing repeated triangular solves via preconditioning */
if ( tri == LOWER )
{
row_levels_L = row_levels;
level_rows_L = level_rows;
level_rows_cnt_L = level_rows_cnt;
levels_L = levels;
}
else
{
row_levels_U = row_levels;
level_rows_U = level_rows;
level_rows_cnt_U = level_rows_cnt;
levels_U = levels;
}
Kurt A. O'Hearn
committed
}
/* Jacobi iteration using truncated Neumann series: x_{k+1} = Gx_k + D^{-1}b
* where:
* G = I - D^{-1}R
* R = triangular matrix
* D = diagonal matrix, diagonals from R
*
* Note: used during the backsolves when applying preconditioners with
* triangular factors in iterative linear solvers
*
* Note: Newmann series arises from series expansion of the inverse of
* the coefficient matrix in the triangular system */
Kurt A. O'Hearn
committed
static void jacobi_iter( const sparse_matrix * const R, const real * const Dinv,
const real * const b, real * const x, const TRIANGULARITY tri,
const unsigned int maxiter )
Kurt A. O'Hearn
committed
unsigned int i, k, si = 0, ei = 0, iter;
iter = 0;
#pragma omp master
{
if ( Dinv_b == NULL )
{
if ( (Dinv_b = (real*) malloc(sizeof(real) * R->n)) == NULL )
Kurt A. O'Hearn
committed
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
Kurt A. O'Hearn
committed
}
}
if ( rp == NULL )
{
if ( (rp = (real*) malloc(sizeof(real) * R->n)) == NULL )
Kurt A. O'Hearn
committed
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
Kurt A. O'Hearn
committed
}
}
if ( rp2 == NULL )
{
if ( (rp2 = (real*) malloc(sizeof(real) * R->n)) == NULL )
Kurt A. O'Hearn
committed
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
Kurt A. O'Hearn
committed
}
#pragma omp barrier
Vector_MakeZero( rp, R->n );
Kurt A. O'Hearn
committed
/* precompute and cache, as invariant in loop below */
#pragma omp for schedule(static)
for ( i = 0; i < R->n; ++i )
{
Dinv_b[i] = Dinv[i] * b[i];
}
do
{
// x_{k+1} = G*x_{k} + Dinv*b;
#pragma omp for schedule(guided)
for ( i = 0; i < R->n; ++i )
{
if (tri == LOWER)
{
si = R->start[i];
ei = R->start[i + 1] - 1;
}
else
Kurt A. O'Hearn
committed
{
si = R->start[i] + 1;
ei = R->start[i + 1];
Kurt A. O'Hearn
committed
}
rp2[i] = 0.;
for ( k = si; k < ei; ++k )
Kurt A. O'Hearn
committed
{
rp2[i] += R->val[k] * rp[R->j[k]];
Kurt A. O'Hearn
committed
}
rp2[i] *= -Dinv[i];
rp2[i] += Dinv_b[i];
}
#pragma omp master
{
rp3 = rp;
rp = rp2;
rp2 = rp3;
}
#pragma omp barrier
++iter;
while ( iter < maxiter );
Kurt A. O'Hearn
committed
Vector_Copy( x, rp, R->n );
Kurt A. O'Hearn
committed
/* Solve triangular system LU*x = y using level scheduling
*
* workspace: data struct containing matrices, lower/upper triangular, stored in CSR
* control: data struct containing parameters
Kurt A. O'Hearn
committed
* y: constants in linear system (RHS)
* x: solution
* fresh_pre: parameter indicating if this is a newly computed (fresh) preconditioner
Kurt A. O'Hearn
committed
* Assumptions:
* Matrices have non-zero diagonals
* Each row of a matrix has at least one non-zero (i.e., no rows with all zeros) */
static void apply_preconditioner( const static_storage * const workspace, const control_params * const control,
const real * const y, real * const x, const int fresh_pre )
Kurt A. O'Hearn
committed
int i, si;
switch ( control->pre_app_type )
Kurt A. O'Hearn
committed
{
case NONE_PA:
break;
case TRI_SOLVE_PA:
switch ( control->pre_comp_type )
{
case DIAG_PC:
diag_pre_app( workspace->Hdia_inv, y, x, workspace->H->n );
Kurt A. O'Hearn
committed
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
tri_solve( workspace->L, y, x, LOWER );
tri_solve( workspace->U, y, x, UPPER );
Kurt A. O'Hearn
committed
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
Kurt A. O'Hearn
committed
break;
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
}
break;
case TRI_SOLVE_LEVEL_SCHED_PA:
switch ( control->pre_comp_type )
{
case DIAG_PC:
diag_pre_app( workspace->Hdia_inv, y, x, workspace->H->n );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
tri_solve_level_sched( workspace->L, y, x, LOWER, fresh_pre );
tri_solve_level_sched( workspace->U, y, x, UPPER, fresh_pre );
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case JACOBI_ITER_PA:
switch ( control->pre_comp_type )
{
case DIAG_PC:
fprintf( stderr, "Unsupported preconditioner computation/application method combination. Terminating...\n" );
exit( INVALID_INPUT );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
#pragma omp master
Kurt A. O'Hearn
committed
{
if ( Dinv_L == NULL )
if ( (Dinv_L = (real*) malloc(sizeof(real) * workspace->L->n)) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
Kurt A. O'Hearn
committed
#pragma omp barrier
/* construct D^{-1}_L */
if ( fresh_pre )
{
#pragma omp for schedule(static)
for ( i = 0; i < workspace->L->n; ++i )
{
si = workspace->L->start[i + 1] - 1;
Dinv_L[i] = 1. / workspace->L->val[si];
}
}
jacobi_iter( workspace->L, Dinv_L, y, x, LOWER, control->pre_app_jacobi_iters );
Kurt A. O'Hearn
committed
#pragma omp master
if ( Dinv_U == NULL )
if ( (Dinv_U = (real*) malloc(sizeof(real) * workspace->U->n)) == NULL )
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
#pragma omp barrier
/* construct D^{-1}_U */
if ( fresh_pre )
{
#pragma omp for schedule(static)
for ( i = 0; i < workspace->U->n; ++i )
{
si = workspace->U->start[i];
Dinv_U[i] = 1. / workspace->U->val[si];
}
Kurt A. O'Hearn
committed
}
jacobi_iter( workspace->U, Dinv_U, y, x, UPPER, control->pre_app_jacobi_iters );
Kurt A. O'Hearn
committed
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
Kurt A. O'Hearn
committed
}
return;
}
/* generalized minimual residual iterative solver for sparse linear systems */
int GMRES( const static_storage * const workspace, const control_params * const control,
simulation_data * const data, const sparse_matrix * const H,
const real * const b, const real tol, real * const x,
const FILE * const fout, const int fresh_pre )
Kurt A. O'Hearn
committed
{
int i, j, k, itr, N, g_j, g_itr;
real cc, tmp1, tmp2, temp, ret_temp, bnorm, time_start;
Kurt A. O'Hearn
committed
#pragma omp parallel default(none) private(i, j, k, itr, bnorm, ret_temp) \
shared(N, cc, tmp1, tmp2, temp, time_start, g_itr, g_j, stderr)
Kurt A. O'Hearn
committed
{
#pragma omp master
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
time_start = Get_Time( );
Kurt A. O'Hearn
committed
}
bnorm = Norm( b, N );
#pragma omp master
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
data->timing.solver_vector_ops += Get_Timing_Info( time_start );
Kurt A. O'Hearn
committed
}
if ( control->pre_comp_type == DIAG_PC )
Kurt A. O'Hearn
committed
{
/* apply preconditioner to RHS */
#pragma omp master
{
time_start = Get_Time( );
}
apply_preconditioner( workspace, control, b, workspace->b_prc, fresh_pre );
#pragma omp master
{
data->timing.pre_app += Get_Timing_Info( time_start );
}
Kurt A. O'Hearn
committed
}
/* GMRES outer-loop */
for ( itr = 0; itr < MAX_ITR; ++itr )
/* calculate r0 */
#pragma omp master
{
time_start = Get_Time( );
}
Sparse_MatVec( H, x, workspace->b_prm );
#pragma omp master
{
data->timing.solver_spmv += Get_Timing_Info( time_start );
}
Kurt A. O'Hearn
committed
if ( control->pre_comp_type == DIAG_PC )
{
#pragma omp master
{
time_start = Get_Time( );
}
apply_preconditioner( workspace, control, workspace->b_prm, workspace->b_prm, fresh_pre );
#pragma omp master
{
data->timing.pre_app += Get_Timing_Info( time_start );
}
}
if ( control->pre_comp_type == DIAG_PC )
Kurt A. O'Hearn
committed
{
#pragma omp master
{
time_start = Get_Time( );
}
Vector_Sum( workspace->v[0], 1., workspace->b_prc, -1., workspace->b_prm, N );
#pragma omp master
{
data->timing.solver_vector_ops += Get_Timing_Info( time_start );
}
Kurt A. O'Hearn
committed
}
#pragma omp master
{
time_start = Get_Time( );
}
Vector_Sum( workspace->v[0], 1., b, -1., workspace->b_prm, N );
#pragma omp master
data->timing.solver_vector_ops += Get_Timing_Info( time_start );
if ( control->pre_comp_type != DIAG_PC )
{
#pragma omp master
{
time_start = Get_Time( );
}
apply_preconditioner( workspace, control, workspace->v[0], workspace->v[0],
itr == 0 ? fresh_pre : 0 );
#pragma omp master
{
data->timing.pre_app += Get_Timing_Info( time_start );
}
}
#pragma omp master
{
time_start = Get_Time( );
}
ret_temp = Norm( workspace->v[0], N );
#pragma omp single
{
workspace->g[0] = ret_temp;
}
Vector_Scale( workspace->v[0], 1. / workspace->g[0], workspace->v[0], N );
#pragma omp master
{
Kurt A. O'Hearn
committed
data->timing.solver_vector_ops += Get_Timing_Info( time_start );
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
/* GMRES inner-loop */
for ( j = 0; j < RESTART && FABS(workspace->g[j]) / bnorm > tol; j++ )
{
/* matvec */
#pragma omp master
{
time_start = Get_Time( );
}
Sparse_MatVec( H, workspace->v[j], workspace->v[j + 1] );
#pragma omp master
{
data->timing.solver_spmv += Get_Timing_Info( time_start );
}
#pragma omp master
{
time_start = Get_Time( );
}
apply_preconditioner( workspace, control, workspace->v[j + 1], workspace->v[j + 1], 0 );
#pragma omp master
{
data->timing.pre_app += Get_Timing_Info( time_start );
}
if ( control->pre_comp_type == DIAG_PC )
{
/* apply modified Gram-Schmidt to orthogonalize the new residual */
#pragma omp master
{
time_start = Get_Time( );
}
for ( i = 0; i <= j; i++ )
{
workspace->h[i][j] = Dot( workspace->v[i], workspace->v[j + 1], N );
Vector_Add( workspace->v[j + 1], -workspace->h[i][j], workspace->v[i], N );
}
#pragma omp master
{
data->timing.solver_vector_ops += Get_Timing_Info( time_start );
}
}
else
{
//TODO: investigate correctness of not explicitly orthogonalizing first few vectors
/* apply modified Gram-Schmidt to orthogonalize the new residual */
#pragma omp master
{
time_start = Get_Time( );
for ( i = 0; i < j - 1; i++ )
{
workspace->h[i][j] = 0;
}
}
for ( i = MAX(j - 1, 0); i <= j; i++ )
{
ret_temp = Dot( workspace->v[i], workspace->v[j + 1], N );
#pragma omp single
{
workspace->h[i][j] = ret_temp;
}
Vector_Add( workspace->v[j + 1], -workspace->h[i][j], workspace->v[i], N );
}
#pragma omp master
{
data->timing.solver_vector_ops += Get_Timing_Info( time_start );
}
}
#pragma omp master
{
time_start = Get_Time( );
}
ret_temp = Norm( workspace->v[j + 1], N );
#pragma omp single
{
workspace->h[j + 1][j] = ret_temp;
}
Vector_Scale( workspace->v[j + 1],
1. / workspace->h[j + 1][j], workspace->v[j + 1], N );
#pragma omp master
{
data->timing.solver_vector_ops += Get_Timing_Info( time_start );
}
fprintf( stderr, "%d-%d: orthogonalization completed.\n", itr, j );
#pragma omp master
time_start = Get_Time( );
if ( control->pre_comp_type == DIAG_PC )
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
/* Givens rotations on the upper-Hessenberg matrix to make it U */
for ( i = 0; i <= j; i++ )
{
if ( i == j )
{
cc = SQRT( SQR(workspace->h[j][j]) + SQR(workspace->h[j + 1][j]) );
workspace->hc[j] = workspace->h[j][j] / cc;
workspace->hs[j] = workspace->h[j + 1][j] / cc;
}
tmp1 = workspace->hc[i] * workspace->h[i][j] +
workspace->hs[i] * workspace->h[i + 1][j];
tmp2 = -workspace->hs[i] * workspace->h[i][j] +
workspace->hc[i] * workspace->h[i + 1][j];
workspace->h[i][j] = tmp1;
workspace->h[i + 1][j] = tmp2;
}
}
else
{
//TODO: investigate correctness of not explicitly orthogonalizing first few vectors
/* Givens rotations on the upper-Hessenberg matrix to make it U */
for ( i = MAX(j - 1, 0); i <= j; i++ )
{
if ( i == j )
{
cc = SQRT( SQR(workspace->h[j][j]) + SQR(workspace->h[j + 1][j]) );
workspace->hc[j] = workspace->h[j][j] / cc;
workspace->hs[j] = workspace->h[j + 1][j] / cc;
}
tmp1 = workspace->hc[i] * workspace->h[i][j] +
workspace->hs[i] * workspace->h[i + 1][j];
tmp2 = -workspace->hs[i] * workspace->h[i][j] +
workspace->hc[i] * workspace->h[i + 1][j];
workspace->h[i][j] = tmp1;
workspace->h[i + 1][j] = tmp2;
}
/* apply Givens rotations to the rhs as well */
tmp1 = workspace->hc[j] * workspace->g[j];
tmp2 = -workspace->hs[j] * workspace->g[j];
workspace->g[j] = tmp1;
workspace->g[j + 1] = tmp2;
data->timing.solver_orthog += Get_Timing_Info( time_start );
#pragma omp barrier
//fprintf( stderr, "h: " );
//for( i = 0; i <= j+1; ++i )
//fprintf( stderr, "%.6f ", workspace->h[i][j] );
//fprintf( stderr, "\n" );
//fprintf( stderr, "res: %.15e\n", workspace->g[j+1] );
/* solve Hy = g: H is now upper-triangular, do back-substitution */
#pragma omp master
time_start = Get_Time( );
for ( i = j - 1; i >= 0; i-- )
{
temp = workspace->g[i];
for ( k = j - 1; k > i; k-- )
{
temp -= workspace->h[i][k] * workspace->y[k];
}
workspace->y[i] = temp / workspace->h[i][i];
}
data->timing.solver_tri_solve += Get_Timing_Info( time_start );
/* update x = x_0 + Vy */
time_start = Get_Time( );
}
Vector_MakeZero( workspace->p, N );
for ( i = 0; i < j; i++ )
Kurt A. O'Hearn
committed
{
Vector_Add( workspace->p, workspace->y[i], workspace->v[i], N );
Kurt A. O'Hearn
committed
}
Vector_Add( x, 1., workspace->p, N );
#pragma omp master
{
data->timing.solver_vector_ops += Get_Timing_Info( time_start );
}
/* stopping condition */
if ( FABS(workspace->g[j]) / bnorm <= tol )
{
break;
}
Kurt A. O'Hearn
committed
}
#pragma omp master
Kurt A. O'Hearn
committed
{
g_itr = itr;
g_j = j;
Kurt A. O'Hearn
committed
}
// Sparse_MatVec( H, x, workspace->b_prm );
// for( i = 0; i < N; ++i )
// workspace->b_prm[i] *= workspace->Hdia_inv[i];
// fprintf( fout, "\n%10s%15s%15s\n", "b_prc", "b_prm", "x" );
// for( i = 0; i < N; ++i )
// fprintf( fout, "%10.5f%15.12f%15.12f\n",
// workspace->b_prc[i], workspace->b_prm[i], x[i] );*/
// fprintf(fout,"GMRES outer:%d, inner:%d iters - residual norm: %25.20f\n",
// itr, j, fabs( workspace->g[j] ) / bnorm );
Kurt A. O'Hearn
committed
// data->timing.solver_iters += itr * RESTART + j;
if ( g_itr >= MAX_ITR )
{
fprintf( stderr, "GMRES convergence failed\n" );
// return -1;
return g_itr * (RESTART + 1) + g_j + 1;
return g_itr * (RESTART + 1) + g_j + 1;
Kurt A. O'Hearn
committed
int GMRES_HouseHolder( const static_storage * const workspace, const control_params * const control,
simulation_data * const data, const sparse_matrix * const H,
const real * const b, real tol, real * const x,
const FILE * const fout, const int fresh_pre )
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
int i, j, k, itr, N;
real cc, tmp1, tmp2, temp, bnorm;
real v[10000], z[RESTART + 2][10000], w[RESTART + 2];
real u[RESTART + 2][10000];
N = H->n;
bnorm = Norm( b, N );
/* apply the diagonal pre-conditioner to rhs */
for ( i = 0; i < N; ++i )
workspace->b_prc[i] = b[i] * workspace->Hdia_inv[i];
// memset( x, 0, sizeof(real) * N );
/* GMRES outer-loop */
for ( itr = 0; itr < MAX_ITR; ++itr )
{
/* compute z = r0 */
Sparse_MatVec( H, x, workspace->b_prm );
for ( i = 0; i < N; ++i )
workspace->b_prm[i] *= workspace->Hdia_inv[i]; /* pre-conditioner */
Vector_Sum( z[0], 1., workspace->b_prc, -1., workspace->b_prm, N );
Vector_MakeZero( w, RESTART + 1 );
w[0] = Norm( z[0], N );
Vector_Copy( u[0], z[0], N );
u[0][0] += ( u[0][0] < 0.0 ? -1 : 1 ) * w[0];
Vector_Scale( u[0], 1 / Norm( u[0], N ), u[0], N );
w[0] *= ( u[0][0] < 0.0 ? 1 : -1 );
// fprintf( stderr, "\n\n%12.6f\n", w[0] );
/* GMRES inner-loop */
for ( j = 0; j < RESTART && fabs( w[j] ) / bnorm > tol; j++ )
{
/* compute v_j */
Vector_Scale( z[j], -2 * u[j][j], u[j], N );
z[j][j] += 1.; /* due to e_j */
for ( i = j - 1; i >= 0; --i )
Vector_Add( z[j] + i, -2 * Dot( u[i] + i, z[j] + i, N - i ), u[i] + i, N - i );