Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "init_md.h"
#include "allocate.h"
#include "box.h"
#include "forces.h"
#include "grid.h"
#include "integrate.h"
#include "lin_alg.h"
#include "neighbors.h"
#include "list.h"
#include "lookup.h"
#include "print_utils.h"
#include "reset_utils.h"
#include "system_props.h"
#include "traj.h"
#include "vector.h"
void Generate_Initial_Velocities( reax_system *system, real T )
{
int i;
real scale, norm;
if ( T <= 0.1 )
{
for (i = 0; i < system->N; i++)
rvec_MakeZero( system->atoms[i].v );
else
{
for ( i = 0; i < system->N; i++ )
{
rvec_Random( system->atoms[i].v );
norm = rvec_Norm_Sqr( system->atoms[i].v );
scale = SQRT( system->reaxprm.sbp[ system->atoms[i].type ].mass *
norm / (3.0 * K_B * T) );
rvec_Scale( system->atoms[i].v, 1.0 / scale, system->atoms[i].v );
/*fprintf( stderr, "v = %f %f %f\n",
system->atoms[i].v[0],system->atoms[i].v[1],system->atoms[i].v[2]);
fprintf( stderr, "scale = %f\n", scale );
fprintf( stderr, "v = %f %f %f\n",
system->atoms[i].v[0],system->atoms[i].v[1],system->atoms[i].v[2]);*/
}
}
void Init_System( reax_system *system, control_params *control,
simulation_data *data )
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
int i;
rvec dx;
if ( !control->restart )
Reset_Atoms( system );
Compute_Total_Mass( system, data );
Compute_Center_of_Mass( system, data, stderr );
/* reposition atoms */
// just fit the atoms to the periodic box
if ( control->reposition_atoms == 0 )
{
rvec_MakeZero( dx );
}
// put the center of mass to the center of the box
else if ( control->reposition_atoms == 1 )
{
rvec_Scale( dx, 0.5, system->box.box_norms );
rvec_ScaledAdd( dx, -1., data->xcm );
}
// put the center of mass to the origin
else if ( control->reposition_atoms == 2 )
{
rvec_Scale( dx, -1., data->xcm );
}
else
{
fprintf( stderr, "UNKNOWN OPTION: reposition_atoms. Terminating...\n" );
exit( UNKNOWN_OPTION );
}
for ( i = 0; i < system->N; ++i )
{
Inc_on_T3( system->atoms[i].x, dx, &(system->box) );
/*fprintf( stderr, "%6d%2d%8.3f%8.3f%8.3f\n",
i, system->atoms[i].type,
system->atoms[i].x[0], system->atoms[i].x[1], system->atoms[i].x[2] );*/
}
/* Initialize velocities so that desired init T can be attained */
if ( !control->restart || (control->restart && control->random_vel) )
Generate_Initial_Velocities( system, control->T_init );
Setup_Grid( system );
void Init_Simulation_Data( reax_system *system, control_params *control,
simulation_data *data, output_controls *out_control,
evolve_function *Evolve )
Reset_Simulation_Data( data );
if ( !control->restart )
data->step = data->prev_steps = 0;
switch ( control->ensemble )
{
case NVE:
data->N_f = 3 * system->N;
*Evolve = Velocity_Verlet_NVE;
break;
case NVT:
data->N_f = 3 * system->N + 1;
//control->Tau_T = 100 * data->N_f * K_B * control->T_final;
if ( !control->restart || (control->restart && control->random_vel) )
{
data->therm.G_xi = control->Tau_T * (2.0 * data->E_Kin -
data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
fprintf( stderr, "init_md: G_xi=%f Tau_T=%f E_kin=%f N_f=%f v_xi=%f\n",
data->therm.G_xi, control->Tau_T, data->E_Kin,
data->N_f, data->therm.v_xi );
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
}
*Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
break;
case NPT: // Anisotropic NPT
fprintf( stderr, "THIS OPTION IS NOT YET IMPLEMENTED! TERMINATING...\n" );
exit( UNKNOWN_OPTION );
data->N_f = 3 * system->N + 9;
if ( !control->restart )
{
data->therm.G_xi = control->Tau_T * (2.0 * data->E_Kin -
data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->iso_bar.eps = 0.33333 * log(system->box.volume);
//data->inv_W = 1. / (data->N_f*K_B*control->T*SQR(control->Tau_P));
//Compute_Pressure( system, data, workspace );
}
*Evolve = Velocity_Verlet_Berendsen_Isotropic_NPT;
break;
case sNPT: // Semi-Isotropic NPT
data->N_f = 3 * system->N + 4;
*Evolve = Velocity_Verlet_Berendsen_SemiIsotropic_NPT;
break;
case iNPT: // Isotropic NPT
data->N_f = 3 * system->N + 2;
*Evolve = Velocity_Verlet_Berendsen_Isotropic_NPT;
break;
case bNVT:
data->N_f = 3 * system->N + 1;
*Evolve = Velocity_Verlet_Berendsen_NVT;
fprintf (stderr, " Initializing Velocity_Verlet_Berendsen_NVT .... \n");
break;
default:
break;
Compute_Kinetic_Energy( system, data );
/* init timing info */
data->timing.start = Get_Time( );
data->timing.total = data->timing.start;
data->timing.nbrs = 0;
data->timing.init_forces = 0;
data->timing.bonded = 0;
data->timing.nonb = 0;
Kurt A. O'Hearn
committed
data->timing.QEq = ZERO;
data->timing.QEq_sort_mat_rows = ZERO;
data->timing.pre_comp = ZERO;
data->timing.pre_app = ZERO;
Kurt A. O'Hearn
committed
data->timing.solver_iters = 0;
data->timing.solver_spmv = ZERO;
data->timing.solver_vector_ops = ZERO;
data->timing.solver_orthog = ZERO;
data->timing.solver_tri_solve = ZERO;
Kurt A. O'Hearn
committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/* Initialize Taper params */
void Init_Taper( control_params *control )
{
real d1, d7;
real swa, swa2, swa3;
real swb, swb2, swb3;
swa = control->r_low;
swb = control->r_cut;
if ( fabs( swa ) > 0.01 )
fprintf( stderr, "Warning: non-zero value for lower Taper-radius cutoff\n" );
if ( swb < 0 )
{
fprintf( stderr, "Negative value for upper Taper-radius cutoff\n" );
exit( INVALID_INPUT );
}
else if ( swb < 5 )
fprintf( stderr, "Warning: low value for upper Taper-radius cutoff:%f\n",
swb );
d1 = swb - swa;
d7 = POW( d1, 7.0 );
swa2 = SQR( swa );
swa3 = CUBE( swa );
swb2 = SQR( swb );
swb3 = CUBE( swb );
control->Tap7 = 20.0 / d7;
control->Tap6 = -70.0 * (swa + swb) / d7;
control->Tap5 = 84.0 * (swa2 + 3.0 * swa * swb + swb2) / d7;
control->Tap4 = -35.0 * (swa3 + 9.0 * swa2 * swb + 9.0 * swa * swb2 + swb3 ) / d7;
control->Tap3 = 140.0 * (swa3 * swb + 3.0 * swa2 * swb2 + swa * swb3 ) / d7;
control->Tap2 = -210.0 * (swa3 * swb2 + swa2 * swb3) / d7;
control->Tap1 = 140.0 * swa3 * swb3 / d7;
control->Tap0 = (-35.0 * swa3 * swb2 * swb2 + 21.0 * swa2 * swb3 * swb2 +
7.0 * swa * swb3 * swb3 + swb3 * swb3 * swb ) / d7;
}
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
void Init_Workspace( reax_system *system, control_params *control,
static_storage *workspace )
{
int i;
/* Allocate space for hydrogen bond list */
workspace->hbond_index = (int *) malloc( system->N * sizeof( int ) );
/* bond order related storage */
workspace->total_bond_order = (real *) malloc( system->N * sizeof( real ) );
workspace->Deltap = (real *) malloc( system->N * sizeof( real ) );
workspace->Deltap_boc = (real *) malloc( system->N * sizeof( real ) );
workspace->dDeltap_self = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->Delta = (real *) malloc( system->N * sizeof( real ) );
workspace->Delta_lp = (real *) malloc( system->N * sizeof( real ) );
workspace->Delta_lp_temp = (real *) malloc( system->N * sizeof( real ) );
workspace->dDelta_lp = (real *) malloc( system->N * sizeof( real ) );
workspace->dDelta_lp_temp = (real *) malloc( system->N * sizeof( real ) );
workspace->Delta_e = (real *) malloc( system->N * sizeof( real ) );
workspace->Delta_boc = (real *) malloc( system->N * sizeof( real ) );
workspace->nlp = (real *) malloc( system->N * sizeof( real ) );
workspace->nlp_temp = (real *) malloc( system->N * sizeof( real ) );
workspace->Clp = (real *) malloc( system->N * sizeof( real ) );
workspace->CdDelta = (real *) malloc( system->N * sizeof( real ) );
workspace->vlpex = (real *) malloc( system->N * sizeof( real ) );
/* QEq storage */
workspace->H = NULL;
workspace->H_sp = NULL;
workspace->Hdia_inv = NULL;
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
workspace->droptol = (real *) calloc( system->N, sizeof( real ) );
workspace->w = (real *) calloc( system->N, sizeof( real ) );
workspace->b = (real *) calloc( system->N * 2, sizeof( real ) );
workspace->b_s = (real *) calloc( system->N, sizeof( real ) );
workspace->b_t = (real *) calloc( system->N, sizeof( real ) );
workspace->b_prc = (real *) calloc( system->N * 2, sizeof( real ) );
workspace->b_prm = (real *) calloc( system->N * 2, sizeof( real ) );
workspace->s_t = (real *) calloc( system->N * 2, sizeof( real ) );
workspace->s = (real**) calloc( 5, sizeof( real* ) );
workspace->t = (real**) calloc( 5, sizeof( real* ) );
for ( i = 0; i < 5; ++i )
{
workspace->s[i] = (real *) calloc( system->N, sizeof( real ) );
workspace->t[i] = (real *) calloc( system->N, sizeof( real ) );
}
// workspace->s_old = (real *) calloc( system->N, sizeof( real ) );
// workspace->t_old = (real *) calloc( system->N, sizeof( real ) );
// workspace->s_oldest = (real *) calloc( system->N, sizeof( real ) );
// workspace->t_oldest = (real *) calloc( system->N, sizeof( real ) );
for ( i = 0; i < system->N; ++i )
{
workspace->b_s[i] = -system->reaxprm.sbp[ system->atoms[i].type ].chi;
workspace->b_t[i] = -1.0;
workspace->b[i] = -system->reaxprm.sbp[ system->atoms[i].type ].chi;
workspace->b[i + system->N] = -1.0;
}
/* GMRES storage */
workspace->y = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->z = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->g = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->h = (real **) calloc( RESTART + 1, sizeof( real*) );
workspace->hs = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->hc = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->rn = (real **) calloc( RESTART + 1, sizeof( real*) );
workspace->v = (real **) calloc( RESTART + 1, sizeof( real*) );
for ( i = 0; i < RESTART + 1; ++i )
workspace->h[i] = (real *) calloc( RESTART + 1, sizeof( real ) );
workspace->rn[i] = (real *) calloc( system->N * 2, sizeof( real ) );
workspace->v[i] = (real *) calloc( system->N, sizeof( real ) );
/* CG storage */
workspace->r = (real *) calloc( system->N, sizeof( real ) );
workspace->d = (real *) calloc( system->N, sizeof( real ) );
workspace->q = (real *) calloc( system->N, sizeof( real ) );
workspace->p = (real *) calloc( system->N, sizeof( real ) );
/* integrator storage */
workspace->a = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_old = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->v_const = (rvec *) malloc( system->N * sizeof( rvec ) );
/* storage for analysis */
if ( control->molec_anal || control->diffusion_coef )
workspace->mark = (int *) calloc( system->N, sizeof(int) );
workspace->old_mark = (int *) calloc( system->N, sizeof(int) );
else
workspace->mark = workspace->old_mark = NULL;
if ( control->diffusion_coef )
workspace->x_old = (rvec *) calloc( system->N, sizeof( rvec ) );
else workspace->x_old = NULL;
workspace->dDelta = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_ele = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_vdw = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_bo = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_be = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_lp = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_ov = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_un = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_ang = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_coa = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_pen = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_hb = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_tor = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->f_con = (rvec *) malloc( system->N * sizeof( rvec ) );
workspace->realloc.num_far = -1;
workspace->realloc.Htop = -1;
workspace->realloc.hbonds = -1;
workspace->realloc.bonds = -1;
workspace->realloc.num_3body = -1;
workspace->realloc.gcell_atoms = -1;
Kurt A. O'Hearn
committed
/* Initialize Taper function */
Init_Taper( control );
void Init_Lists( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
int i, num_nbrs, num_hbonds, num_bonds, num_3body, Htop;
int *hb_top, *bond_top;
num_nbrs = Estimate_NumNeighbors( system, control, workspace, lists );
if ( !Make_List(system->N, num_nbrs, TYP_FAR_NEIGHBOR, (*lists) + FAR_NBRS) )
{
fprintf(stderr, "Problem in initializing far nbrs list. Terminating!\n");
Kurt A. O'Hearn
committed
exit( CANNOT_INITIALIZE );
fprintf( stderr, "memory allocated: far_nbrs = %ldMB\n",
num_nbrs * sizeof(far_neighbor_data) / (1024 * 1024) );
Generate_Neighbor_Lists(system, control, data, workspace, lists, out_control);
Htop = 0;
hb_top = (int*) calloc( system->N, sizeof(int) );
bond_top = (int*) calloc( system->N, sizeof(int) );
num_3body = 0;
Estimate_Storage_Sizes( system, control, lists,
&Htop, hb_top, bond_top, &num_3body );
if ( Allocate_Matrix( &(workspace->H), system->N, Htop ) == FAILURE )
{
fprintf( stderr, "Not enough space for init matrices. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
/* TODO: better estimate for H_sp?
* If so, need to refactor Estimate_Storage_Sizes
* to use various cut-off distances as parameters
* (non-bonded, hydrogen, 3body, etc.) */
if ( Allocate_Matrix( &(workspace->H_sp), system->N, Htop ) == FAILURE )
{
fprintf( stderr, "Not enough space for init matrices. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
fprintf( stderr, "estimated storage - Htop: %d\n", Htop );
fprintf( stderr, "memory allocated: H = %ldMB\n",
Htop * sizeof(sparse_matrix_entry) / (1024 * 1024) );
workspace->num_H = 0;
if ( control->hb_cut > 0 )
{
/* init H indexes */
for ( i = 0; i < system->N; ++i )
if ( system->reaxprm.sbp[ system->atoms[i].type ].p_hbond == 1 ) // H atom
workspace->hbond_index[i] = workspace->num_H++;
else workspace->hbond_index[i] = -1;
Allocate_HBond_List( system->N, workspace->num_H, workspace->hbond_index,
hb_top, (*lists) + HBONDS );
num_hbonds = hb_top[system->N - 1];
fprintf( stderr, "estimated storage - num_hbonds: %d\n", num_hbonds );
fprintf( stderr, "memory allocated: hbonds = %ldMB\n",
num_hbonds * sizeof(hbond_data) / (1024 * 1024) );
}
/* bonds list */
Allocate_Bond_List( system->N, bond_top, (*lists) + BONDS );
num_bonds = bond_top[system->N - 1];
fprintf( stderr, "estimated storage - num_bonds: %d\n", num_bonds );
fprintf( stderr, "memory allocated: bonds = %ldMB\n",
num_bonds * sizeof(bond_data) / (1024 * 1024) );
#endif
//fprintf (stderr, " **** sizeof 3 body : %d \n", sizeof (three_body_interaction_data));
//fprintf (stderr, " **** num_3body : %d \n", num_3body);
//fprintf (stderr, " **** num_bonds : %d \n", num_bonds);
/* 3bodies list */
if (!Make_List(num_bonds, num_3body, TYP_THREE_BODY, (*lists) + THREE_BODIES))
{
fprintf( stderr, "Problem in initializing angles list. Terminating!\n" );
Kurt A. O'Hearn
committed
exit( CANNOT_INITIALIZE );
fprintf( stderr, "estimated storage - num_3body: %d\n", num_3body );
fprintf( stderr, "memory allocated: 3-body = %ldMB\n",
num_3body * sizeof(three_body_interaction_data) / (1024 * 1024) );
if (!Make_List( system->N, num_bonds * 8, TYP_DDELTA, (*lists) + DDELTA ))
{
fprintf( stderr, "Problem in initializing dDelta list. Terminating!\n" );
Kurt A. O'Hearn
committed
exit( CANNOT_INITIALIZE );
}
if ( !Make_List( num_bonds, num_bonds * MAX_BONDS * 3, TYP_DBO, (*lists) + DBO ) )
{
fprintf( stderr, "Problem in initializing dBO list. Terminating!\n" );
Kurt A. O'Hearn
committed
exit( CANNOT_INITIALIZE );
void Init_Out_Controls(reax_system *system, control_params *control,
static_storage *workspace, output_controls *out_control)
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/* Init trajectory file */
if ( out_control->write_steps > 0 )
{
strcpy( temp, control->sim_name );
strcat( temp, ".trj" );
out_control->trj = fopen( temp, "w" );
out_control->write_header( system, control, workspace, out_control );
}
if ( out_control->energy_update_freq > 0 )
{
/* Init out file */
strcpy( temp, control->sim_name );
strcat( temp, ".out" );
out_control->out = fopen( temp, "w" );
fprintf( out_control->out, "%-6s%16s%16s%16s%11s%11s%13s%13s%13s\n",
"step", "total energy", "poten. energy", "kin. energy",
"temp.", "target", "volume", "press.", "target" );
fflush( out_control->out );
/* Init potentials file */
strcpy( temp, control->sim_name );
strcat( temp, ".pot" );
out_control->pot = fopen( temp, "w" );
fprintf( out_control->pot,
"%-6s%13s%13s%13s%13s%13s%13s%13s%13s%13s%13s%13s\n",
"step", "ebond", "eatom", "elp", "eang", "ecoa", "ehb",
"etor", "econj", "evdw", "ecoul", "epol" );
fflush( out_control->pot );
/* Init log file */
strcpy( temp, control->sim_name );
strcat( temp, ".log" );
out_control->log = fopen( temp, "w" );
Kurt A. O'Hearn
committed
fprintf( out_control->log, "%-6s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s\n",
Kurt A. O'Hearn
committed
"nonbonded", "QEq", "QEq Sort", "S iters", "Pre Comp", "Pre App",
"S spmv", "S vec ops", "S orthog", "S tsolve" );
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
}
/* Init pressure file */
if ( control->ensemble == NPT ||
control->ensemble == iNPT ||
control->ensemble == sNPT )
{
strcpy( temp, control->sim_name );
strcat( temp, ".prs" );
out_control->prs = fopen( temp, "w" );
fprintf( out_control->prs, "%-6s%13s%13s%13s%13s%13s%13s%13s%13s\n",
"step", "norm_x", "norm_y", "norm_z",
"press_x", "press_y", "press_z", "target_p", "volume" );
fflush( out_control->prs );
}
/* Init molecular analysis file */
if ( control->molec_anal )
{
sprintf( temp, "%s.mol", control->sim_name );
out_control->mol = fopen( temp, "w" );
if ( control->num_ignored )
{
sprintf( temp, "%s.ign", control->sim_name );
out_control->ign = fopen( temp, "w" );
}
}
/* Init electric dipole moment analysis file */
if ( control->dipole_anal )
{
strcpy( temp, control->sim_name );
strcat( temp, ".dpl" );
out_control->dpl = fopen( temp, "w" );
fprintf( out_control->dpl,
"Step Molecule Count Avg. Dipole Moment Norm\n" );
fflush( out_control->dpl );
}
/* Init diffusion coef analysis file */
if ( control->diffusion_coef )
{
strcpy( temp, control->sim_name );
strcat( temp, ".drft" );
out_control->drft = fopen( temp, "w" );
fprintf( out_control->drft, "Step Type Count Avg Squared Disp\n" );
fflush( out_control->drft );
}
#ifdef TEST_ENERGY
/* open bond energy file */
strcat( temp, ".ebond" );
out_control->ebond = fopen( temp, "w" );
strcat( temp, ".elp" );
out_control->elp = fopen( temp, "w" );
/* open overcoordination energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".eov" );
out_control->eov = fopen( temp, "w" );
/* open undercoordination energy file */
strcat( temp, ".eun" );
out_control->eun = fopen( temp, "w" );
/* open angle energy file */
strcat( temp, ".eval" );
out_control->eval = fopen( temp, "w" );
/* open penalty energy file */
strcat( temp, ".epen" );
out_control->epen = fopen( temp, "w" );
/* open coalition energy file */
strcat( temp, ".ecoa" );
out_control->ecoa = fopen( temp, "w" );
/* open hydrogen bond energy file */
strcat( temp, ".ehb" );
out_control->ehb = fopen( temp, "w" );
/* open torsion energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".etor" );
out_control->etor = fopen( temp, "w" );
/* open conjugation energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".econ" );
out_control->econ = fopen( temp, "w" );
/* open vdWaals energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".evdw" );
out_control->evdw = fopen( temp, "w" );
/* open coulomb energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".ecou" );
out_control->ecou = fopen( temp, "w" );
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/* open bond orders file */
strcpy( temp, control->sim_name );
strcat( temp, ".fbo" );
out_control->fbo = fopen( temp, "w" );
/* open bond orders derivatives file */
strcpy( temp, control->sim_name );
strcat( temp, ".fdbo" );
out_control->fdbo = fopen( temp, "w" );
/* open bond forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fbond" );
out_control->fbond = fopen( temp, "w" );
/* open lone-pair forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".flp" );
out_control->flp = fopen( temp, "w" );
/* open overcoordination forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fatom" );
out_control->fatom = fopen( temp, "w" );
/* open angle forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".f3body" );
out_control->f3body = fopen( temp, "w" );
/* open hydrogen bond forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fhb" );
out_control->fhb = fopen( temp, "w" );
/* open torsion forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".f4body" );
out_control->f4body = fopen( temp, "w" );
/* open nonbonded forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fnonb" );
out_control->fnonb = fopen( temp, "w" );
/* open total force file */
strcpy( temp, control->sim_name );
strcat( temp, ".ftot" );
out_control->ftot = fopen( temp, "w" );
/* open coulomb forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".ftot2" );
out_control->ftot2 = fopen( temp, "w" );
/* Error handling */
/* if ( out_control->out == NULL || out_control->pot == NULL ||
out_control->log == NULL || out_control->mol == NULL ||
out_control->dpl == NULL || out_control->drft == NULL ||
out_control->pdb == NULL )
{
fprintf( stderr, "FILE OPEN ERROR. TERMINATING..." );
Kurt A. O'Hearn
committed
exit( CANNOT_OPEN_FILE );
void Initialize(reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace, list **lists,
output_controls *out_control, evolve_function *Evolve)
Init_Simulation_Data( system, control, data, out_control, Evolve );
Init_Lists( system, control, data, workspace, lists, out_control );
Init_Out_Controls( system, control, workspace, out_control );
/* These are done in forces.c, only forces.c can see all those functions */
Init_Bonded_Force_Functions( control );
if ( control->tabulate )
{
start = Get_Time ();
Make_LR_Lookup_Table( system, control );
end = Get_Timing_Info (start);
//fprintf (stderr, "Time for LR Lookup Table calculation is %f \n", end );
}
fprintf( stderr, "data structures have been initialized...\n" );