Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "init_md.h"
#include "allocate.h"
#include "box.h"
#include "forces.h"
#include "grid.h"
#include "integrate.h"
#include "neighbors.h"
#include "list.h"
#include "lookup.h"
#include "reset_utils.h"
#include "system_props.h"
#include "tool_box.h"
#include "vector.h"
void Generate_Initial_Velocities( reax_system *system, real T )
{
Kurt A. O'Hearn
committed
for ( i = 0; i < system->N; i++ )
{
Kurt A. O'Hearn
committed
}
else
{
for ( i = 0; i < system->N; i++ )
{
rvec_Random( system->atoms[i].v );
norm = rvec_Norm_Sqr( system->atoms[i].v );
scale = SQRT( system->reaxprm.sbp[ system->atoms[i].type ].mass *
norm / (3.0 * K_B * T) );
rvec_Scale( system->atoms[i].v, 1.0 / scale, system->atoms[i].v );
/*fprintf( stderr, "v = %f %f %f\n",
system->atoms[i].v[0],system->atoms[i].v[1],system->atoms[i].v[2]);
fprintf( stderr, "scale = %f\n", scale );
fprintf( stderr, "v = %f %f %f\n",
system->atoms[i].v[0],system->atoms[i].v[1],system->atoms[i].v[2]);*/
}
}
void Init_System( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
Compute_Total_Mass( system, data );
Compute_Center_of_Mass( system, data, stderr );
/* reposition atoms */
// just fit the atoms to the periodic box
if ( control->reposition_atoms == 0 )
{
rvec_MakeZero( dx );
}
// put the center of mass to the center of the box
else if ( control->reposition_atoms == 1 )
{
rvec_Scale( dx, 0.5, system->box.box_norms );
rvec_ScaledAdd( dx, -1., data->xcm );
}
// put the center of mass to the origin
else if ( control->reposition_atoms == 2 )
{
rvec_Scale( dx, -1., data->xcm );
}
else
{
fprintf( stderr, "UNKNOWN OPTION: reposition_atoms. Terminating...\n" );
exit( UNKNOWN_OPTION );
}
for ( i = 0; i < system->N; ++i )
{
Inc_on_T3( system->atoms[i].x, dx, &(system->box) );
/*fprintf( stderr, "%6d%2d%8.3f%8.3f%8.3f\n",
i, system->atoms[i].type,
system->atoms[i].x[0], system->atoms[i].x[1], system->atoms[i].x[2] );*/
}
/* Initialize velocities so that desired init T can be attained */
if ( !control->restart || (control->restart && control->random_vel) )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
void Init_Simulation_Data( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, output_controls *out_control,
evolve_function *Evolve )
Reset_Simulation_Data( data );
if ( !control->restart )
Kurt A. O'Hearn
committed
{
data->step = 0;
data->prev_steps = 0;
}
switch ( control->ensemble )
{
case NVE:
data->N_f = 3 * system->N;
*Evolve = Velocity_Verlet_NVE;
break;
case NVT:
data->N_f = 3 * system->N + 1;
//control->Tau_T = 100 * data->N_f * K_B * control->T_final;
if ( !control->restart || (control->restart && control->random_vel) )
{
data->therm.G_xi = control->Tau_T * (2.0 * data->E_Kin -
data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
fprintf( stderr, "init_md: G_xi=%f Tau_T=%f E_kin=%f N_f=%f v_xi=%f\n",
data->therm.G_xi, control->Tau_T, data->E_Kin,
data->N_f, data->therm.v_xi );
}
*Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
break;
case NPT: // Anisotropic NPT
fprintf( stderr, "THIS OPTION IS NOT YET IMPLEMENTED! TERMINATING...\n" );
exit( UNKNOWN_OPTION );
data->N_f = 3 * system->N + 9;
if ( !control->restart )
{
data->therm.G_xi = control->Tau_T * (2.0 * data->E_Kin -
Kurt A. O'Hearn
committed
data->N_f * K_B * control->T);
Kurt A. O'Hearn
committed
data->iso_bar.eps = 1.0 / 3.0 * LOG( system->box.volume );
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//data->inv_W = 1. / (data->N_f*K_B*control->T*SQR(control->Tau_P));
//Compute_Pressure( system, data, workspace );
}
*Evolve = Velocity_Verlet_Berendsen_Isotropic_NPT;
break;
case sNPT: // Semi-Isotropic NPT
data->N_f = 3 * system->N + 4;
*Evolve = Velocity_Verlet_Berendsen_SemiIsotropic_NPT;
break;
case iNPT: // Isotropic NPT
data->N_f = 3 * system->N + 2;
*Evolve = Velocity_Verlet_Berendsen_Isotropic_NPT;
break;
case bNVT:
data->N_f = 3 * system->N + 1;
*Evolve = Velocity_Verlet_Berendsen_NVT;
fprintf (stderr, " Initializing Velocity_Verlet_Berendsen_NVT .... \n");
break;
default:
break;
Compute_Kinetic_Energy( system, data );
/* init timing info */
data->timing.start = Get_Time( );
data->timing.total = data->timing.start;
data->timing.nbrs = 0;
data->timing.init_forces = 0;
data->timing.bonded = 0;
data->timing.nonb = 0;
Kurt A. O'Hearn
committed
data->timing.cm = ZERO;
data->timing.cm_sort_mat_rows = ZERO;
data->timing.cm_solver_pre_comp = ZERO;
data->timing.cm_solver_pre_app = ZERO;
data->timing.cm_solver_iters = 0;
data->timing.cm_solver_spmv = ZERO;
data->timing.cm_solver_vector_ops = ZERO;
data->timing.cm_solver_orthog = ZERO;
data->timing.cm_solver_tri_solve = ZERO;
Kurt A. O'Hearn
committed
/* Initialize Taper params */
void Init_Taper( control_params *control )
{
real d1, d7;
real swa, swa2, swa3;
real swb, swb2, swb3;
swa = control->r_low;
swb = control->r_cut;
Kurt A. O'Hearn
committed
if ( FABS( swa ) > 0.01 )
{
Kurt A. O'Hearn
committed
fprintf( stderr, "Warning: non-zero value for lower Taper-radius cutoff\n" );
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
if ( swb < 0.0 )
Kurt A. O'Hearn
committed
{
fprintf( stderr, "Negative value for upper Taper-radius cutoff\n" );
exit( INVALID_INPUT );
}
Kurt A. O'Hearn
committed
else if ( swb < 5.0 )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
fprintf( stderr, "Warning: low value for upper Taper-radius cutoff:%f\n", swb );
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
d1 = swb - swa;
d7 = POW( d1, 7.0 );
swa2 = SQR( swa );
swa3 = CUBE( swa );
swb2 = SQR( swb );
swb3 = CUBE( swb );
control->Tap7 = 20.0 / d7;
control->Tap6 = -70.0 * (swa + swb) / d7;
control->Tap5 = 84.0 * (swa2 + 3.0 * swa * swb + swb2) / d7;
control->Tap4 = -35.0 * (swa3 + 9.0 * swa2 * swb + 9.0 * swa * swb2 + swb3 ) / d7;
control->Tap3 = 140.0 * (swa3 * swb + 3.0 * swa2 * swb2 + swa * swb3 ) / d7;
control->Tap2 = -210.0 * (swa3 * swb2 + swa2 * swb3) / d7;
control->Tap1 = 140.0 * swa3 * swb3 / d7;
control->Tap0 = (-35.0 * swa3 * swb2 * swb2 + 21.0 * swa2 * swb3 * swb2 +
Kurt A. O'Hearn
committed
7.0 * swa * swb3 * swb3 + swb3 * swb3 * swb ) / d7;
Kurt A. O'Hearn
committed
}
void Init_Workspace( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
static_storage *workspace )
{
int i;
/* Allocate space for hydrogen bond list */
workspace->hbond_index = (int *) smalloc( system->N * sizeof( int ),
"Init_Workspace::workspace->hbond_index" );
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
workspace->total_bond_order = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->bond_order" );
workspace->Deltap = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->Deltap" );
workspace->Deltap_boc = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->Deltap_boc" );
workspace->dDeltap_self = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->dDeltap_self" );
workspace->Delta = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->Delta" );
workspace->Delta_lp = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->Delta_lp" );
workspace->Delta_lp_temp = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->Delta_lp_temp" );
workspace->dDelta_lp = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->dDelta_lp" );
workspace->dDelta_lp_temp = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->dDelta_lp_temp" );
workspace->Delta_e = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->Delta_e" );
workspace->Delta_boc = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->Delta_boc" );
workspace->nlp = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->nlp" );
workspace->nlp_temp = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->nlp_temp" );
workspace->Clp = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->Clp" );
workspace->CdDelta = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->CdDelta" );
workspace->vlpex = (real *) smalloc( system->N * sizeof( real ),
"Init_Workspace::workspace->vlpex" );
Kurt A. O'Hearn
committed
/* charge method storage */
switch ( control->charge_method )
{
case QEQ_CM:
system->N_cm = system->N;
break;
Kurt A. O'Hearn
committed
system->N_cm = system->N + 1;
break;
case ACKS2_CM:
system->N_cm = 2 * system->N + 2;
break;
default:
fprintf( stderr, "Unknown charge method type. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
workspace->H = NULL;
workspace->H_sp = NULL;
workspace->L = NULL;
workspace->H_spar_patt = NULL;
workspace->H_app_inv = NULL;
Kurt A. O'Hearn
committed
workspace->U = NULL;
workspace->Hdia_inv = NULL;
Kurt A. O'Hearn
committed
if ( control->cm_solver_pre_comp_type == ICHOLT_PC ||
control->cm_solver_pre_comp_type == ILUT_PAR_PC )
{
workspace->droptol = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->droptol" );
Kurt A. O'Hearn
committed
}
//TODO: check if unused
//workspace->w = (real *) scalloc( cm_lin_sys_size, sizeof( real ),
//"Init_Workspace::workspace->droptol" );
Kurt A. O'Hearn
committed
//TODO: check if unused
workspace->b = (real *) scalloc( system->N_cm * 2, sizeof( real ),
"Init_Workspace::workspace->b" );
workspace->b_s = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->b_s" );
workspace->b_t = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->b_t" );
workspace->b_prc = (real *) scalloc( system->N_cm * 2, sizeof( real ),
"Init_Workspace::workspace->b_prc" );
workspace->b_prm = (real *) scalloc( system->N_cm * 2, sizeof( real ),
"Init_Workspace::workspace->b_prm" );
workspace->s = (real**) scalloc( 5, sizeof( real* ),
"Init_Workspace::workspace->s" );
workspace->t = (real**) scalloc( 5, sizeof( real* ),
"Init_Workspace::workspace->t" );
workspace->s[i] = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->s[i]" );
workspace->t[i] = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->t[i]" );
Kurt A. O'Hearn
committed
switch ( control->charge_method )
Kurt A. O'Hearn
committed
case QEQ_CM:
for ( i = 0; i < system->N; ++i )
{
workspace->b_s[i] = -system->reaxprm.sbp[ system->atoms[i].type ].chi;
workspace->b_t[i] = -1.0;
//TODO: check if unused (redundant)
workspace->b[i] = -system->reaxprm.sbp[ system->atoms[i].type ].chi;
workspace->b[i + system->N] = -1.0;
}
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
for ( i = 0; i < system->N; ++i )
{
workspace->b_s[i] = -system->reaxprm.sbp[ system->atoms[i].type ].chi;
//TODO: check if unused (redundant)
workspace->b[i] = -system->reaxprm.sbp[ system->atoms[i].type ].chi;
}
workspace->b_s[system->N] = control->cm_q_net;
workspace->b[system->N] = control->cm_q_net;
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
case ACKS2_CM:
Kurt A. O'Hearn
committed
for ( i = 0; i < system->N; ++i )
{
workspace->b_s[i] = -system->reaxprm.sbp[ system->atoms[i].type ].chi;
//TODO: check if unused (redundant)
workspace->b[i] = -system->reaxprm.sbp[ system->atoms[i].type ].chi;
}
workspace->b_s[system->N] = control->cm_q_net;
workspace->b[system->N] = control->cm_q_net;
for ( i = system->N + 1; i < system->N_cm; ++i )
{
workspace->b_s[i] = 0.0;
//TODO: check if unused (redundant)
workspace->b[i] = 0.0;
}
Kurt A. O'Hearn
committed
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
default:
fprintf( stderr, "Unknown charge method type. Terminating...\n" );
exit( INVALID_INPUT );
break;
Kurt A. O'Hearn
committed
switch ( control->cm_solver_type )
Kurt A. O'Hearn
committed
/* GMRES storage */
case GMRES_S:
case GMRES_H_S:
workspace->y = (real *) scalloc( control->cm_solver_restart + 1, sizeof( real ),
"Init_Workspace::workspace->y" );
workspace->z = (real *) scalloc( control->cm_solver_restart + 1, sizeof( real ),
"Init_Workspace::workspace->z" );
workspace->g = (real *) scalloc( control->cm_solver_restart + 1, sizeof( real ),
"Init_Workspace::workspace->g" );
workspace->h = (real **) scalloc( control->cm_solver_restart + 1, sizeof( real*),
"Init_Workspace::workspace->h" );
workspace->hs = (real *) scalloc( control->cm_solver_restart + 1, sizeof( real ),
"Init_Workspace::workspace->hs" );
workspace->hc = (real *) scalloc( control->cm_solver_restart + 1, sizeof( real ),
"Init_Workspace::workspace->hc" );
workspace->rn = (real **) scalloc( control->cm_solver_restart + 1, sizeof( real*),
"Init_Workspace::workspace->rn" );
workspace->v = (real **) scalloc( control->cm_solver_restart + 1, sizeof( real*),
"Init_Workspace::workspace->v" );
Kurt A. O'Hearn
committed
for ( i = 0; i < control->cm_solver_restart + 1; ++i )
Kurt A. O'Hearn
committed
{
workspace->h[i] = (real *) scalloc( control->cm_solver_restart + 1, sizeof( real ),
"Init_Workspace::workspace->h[i]" );
workspace->rn[i] = (real *) scalloc( system->N_cm * 2, sizeof( real ),
"Init_Workspace::workspace->rn[i]" );
workspace->v[i] = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->v[i]" );
Kurt A. O'Hearn
committed
}
workspace->r = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->r" );
workspace->d = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->d" );
workspace->q = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->q" );
workspace->p = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->p" );
Kurt A. O'Hearn
committed
break;
/* CG storage */
case CG_S:
workspace->r = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->r" );
workspace->d = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->d" );
workspace->q = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->q" );
workspace->p = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->p" );
Kurt A. O'Hearn
committed
break;
case SDM_S:
workspace->r = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->r" );
workspace->d = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->d" );
workspace->q = (real *) scalloc( system->N_cm, sizeof( real ),
"Init_Workspace::workspace->q" );
Kurt A. O'Hearn
committed
break;
default:
fprintf( stderr, "Unknown charge method linear solver type. Terminating...\n" );
exit( INVALID_INPUT );
break;
workspace->a = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->a" );
workspace->f_old = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_old" );
workspace->v_const = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->v_const" );
Kurt A. O'Hearn
committed
#ifdef _OPENMP
workspace->f_local = (rvec *) smalloc( control->num_threads * system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_local" );
Kurt A. O'Hearn
committed
#endif
/* storage for analysis */
if ( control->molec_anal || control->diffusion_coef )
workspace->mark = (int *) scalloc( system->N, sizeof(int),
"Init_Workspace::workspace->mark" );
workspace->old_mark = (int *) scalloc( system->N, sizeof(int),
"Init_Workspace::workspace->old_mark" );
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
{
workspace->x_old = (rvec *) scalloc( system->N, sizeof( rvec ),
"Init_Workspace::workspace->x_old" );
Kurt A. O'Hearn
committed
}
else
{
workspace->x_old = NULL;
}
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
workspace->dDelta = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->dDelta" );
workspace->f_ele = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_ele" );
workspace->f_vdw = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_vdw" );
workspace->f_bo = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_bo" );
workspace->f_be = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_be" );
workspace->f_lp = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_lp" );
workspace->f_ov = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_ov" );
workspace->f_un = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_un" );
workspace->f_ang = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_ang" );
workspace->f_coa = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_coa" );
workspace->f_pen = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_pen" );
workspace->f_hb = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_hb" );
workspace->f_tor = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_tor" );
workspace->f_con = (rvec *) smalloc( system->N * sizeof( rvec ),
"Init_Workspace::workspace->f_con" );
workspace->realloc.num_far = -1;
workspace->realloc.Htop = -1;
workspace->realloc.hbonds = -1;
workspace->realloc.bonds = -1;
workspace->realloc.num_3body = -1;
workspace->realloc.gcell_atoms = -1;
Kurt A. O'Hearn
committed
/* Initialize Taper function */
Init_Taper( control );
void Init_Lists( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace,
Kurt A. O'Hearn
committed
reax_list **lists, output_controls *out_control )
Kurt A. O'Hearn
committed
int i, num_nbrs, num_bonds, num_3body, Htop, max_nnz;
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
int num_hbonds;
#endif
num_nbrs = Estimate_NumNeighbors( system, control, workspace, lists );
Kurt A. O'Hearn
committed
Make_List( system->N, num_nbrs, TYP_FAR_NEIGHBOR, (*lists) + FAR_NBRS );
Kurt A. O'Hearn
committed
fprintf( stderr, "memory allocated: far_nbrs = %ldMB\n",
num_nbrs * sizeof(far_neighbor_data) / (1024 * 1024) );
Generate_Neighbor_Lists(system, control, data, workspace, lists, out_control);
Htop = 0;
hb_top = (int*) scalloc( system->N, sizeof(int),
"Init_Lists::hb_top" );
bond_top = (int*) scalloc( system->N, sizeof(int),
"Init_Lists::bond_top" );
Kurt A. O'Hearn
committed
Estimate_Storage_Sizes( system, control, lists, &Htop,
hb_top, bond_top, &num_3body );
Kurt A. O'Hearn
committed
num_3body = MAX( num_3body, MIN_BONDS );
Kurt A. O'Hearn
committed
switch ( control->charge_method )
{
case QEQ_CM:
max_nnz = Htop;
break;
Kurt A. O'Hearn
committed
max_nnz = Htop + system->N_cm;
break;
case ACKS2_CM:
max_nnz = 2 * Htop + 3 * system->N + 2;
break;
default:
max_nnz = Htop;
break;
}
if ( Allocate_Matrix( &(workspace->H), system->N_cm, max_nnz ) == FAILURE )
{
fprintf( stderr, "Not enough space for init matrices. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
/* TODO: better estimate for H_sp?
* If so, need to refactor Estimate_Storage_Sizes
* to use various cut-off distances as parameters
* (non-bonded, hydrogen, 3body, etc.) */
Kurt A. O'Hearn
committed
if ( Allocate_Matrix( &(workspace->H_sp), system->N_cm, max_nnz ) == FAILURE )
{
fprintf( stderr, "Not enough space for init matrices. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
Kurt A. O'Hearn
committed
fprintf( stderr, "estimated storage - Htop: %d\n", Htop );
fprintf( stderr, "memory allocated: H = %ldMB\n",
Kurt A. O'Hearn
committed
Htop * sizeof(sparse_matrix_entry) / (1024 * 1024) );
Kurt A. O'Hearn
committed
if ( control->hb_cut > 0.0 )
{
/* init H indexes */
for ( i = 0; i < system->N; ++i )
Kurt A. O'Hearn
committed
{
// H atom
if ( system->reaxprm.sbp[ system->atoms[i].type ].p_hbond == 1 )
{
Kurt A. O'Hearn
committed
}
else
{
workspace->hbond_index[i] = -1;
}
}
Kurt A. O'Hearn
committed
if ( workspace->num_H == 0 )
{
control->hb_cut = 0.0;
}
else
{
Allocate_HBond_List( system->N, workspace->num_H, workspace->hbond_index,
hb_top, (*lists) + HBONDS );
}
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
num_hbonds = hb_top[system->N - 1];
fprintf( stderr, "estimated storage - num_hbonds: %d\n", num_hbonds );
fprintf( stderr, "memory allocated: hbonds = %ldMB\n",
num_hbonds * sizeof(hbond_data) / (1024 * 1024) );
}
/* bonds list */
Allocate_Bond_List( system->N, bond_top, (*lists) + BONDS );
num_bonds = bond_top[system->N - 1];
Kurt A. O'Hearn
committed
fprintf( stderr, "estimated storage - num_bonds: %d\n", num_bonds );
fprintf( stderr, "memory allocated: bonds = %ldMB\n",
num_bonds * sizeof(bond_data) / (1024 * 1024) );
Make_List( num_bonds, num_3body, TYP_THREE_BODY, (*lists) + THREE_BODIES );
Kurt A. O'Hearn
committed
fprintf( stderr, "estimated storage - num_3body: %d\n", num_3body );
fprintf( stderr, "memory allocated: 3-body = %ldMB\n",
num_3body * sizeof(three_body_interaction_data) / (1024 * 1024) );
Kurt A. O'Hearn
committed
Make_List( system->N, num_bonds * 8, TYP_DDELTA, (*lists) + DDELTA );
Make_List( num_bonds, num_bonds * MAX_BONDS * 3, TYP_DBO, (*lists) + DBO );
sfree( hb_top, "Init_Lists::hb_top" );
sfree( bond_top, "Init_Lists::bond_top" );
Kurt A. O'Hearn
committed
void Init_Out_Controls( reax_system *system, control_params *control,
static_storage *workspace, output_controls *out_control )
#define TEMP_SIZE (1000)
char temp[TEMP_SIZE];
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/* Init trajectory file */
if ( out_control->write_steps > 0 )
{
strcpy( temp, control->sim_name );
strcat( temp, ".trj" );
out_control->trj = fopen( temp, "w" );
out_control->write_header( system, control, workspace, out_control );
}
if ( out_control->energy_update_freq > 0 )
{
/* Init out file */
strcpy( temp, control->sim_name );
strcat( temp, ".out" );
out_control->out = fopen( temp, "w" );
fprintf( out_control->out, "%-6s%16s%16s%16s%11s%11s%13s%13s%13s\n",
"step", "total energy", "poten. energy", "kin. energy",
"temp.", "target", "volume", "press.", "target" );
fflush( out_control->out );
/* Init potentials file */
strcpy( temp, control->sim_name );
strcat( temp, ".pot" );
out_control->pot = fopen( temp, "w" );
fprintf( out_control->pot,
"%-6s%13s%13s%13s%13s%13s%13s%13s%13s%13s%13s%13s\n",
"step", "ebond", "eatom", "elp", "eang", "ecoa", "ehb",
"etor", "econj", "evdw", "ecoul", "epol" );
fflush( out_control->pot );
/* Init log file */
strcpy( temp, control->sim_name );
strcat( temp, ".log" );
out_control->log = fopen( temp, "w" );
Kurt A. O'Hearn
committed
fprintf( out_control->log, "%-6s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s\n",
Kurt A. O'Hearn
committed
"nonbonded", "CM", "CM Sort", "S iters", "Pre Comp", "Pre App",
Kurt A. O'Hearn
committed
"S spmv", "S vec ops", "S orthog", "S tsolve" );
}
/* Init pressure file */
if ( control->ensemble == NPT ||
control->ensemble == iNPT ||
control->ensemble == sNPT )
{
strcpy( temp, control->sim_name );
strcat( temp, ".prs" );
out_control->prs = fopen( temp, "w" );
fprintf( out_control->prs, "%-6s%13s%13s%13s%13s%13s%13s%13s%13s\n",
"step", "norm_x", "norm_y", "norm_z",
"press_x", "press_y", "press_z", "target_p", "volume" );
fflush( out_control->prs );
}
/* Init molecular analysis file */
if ( control->molec_anal )
{
Kurt A. O'Hearn
committed
snprintf( temp, TEMP_SIZE, "%.*s.mol", TEMP_SIZE - 5, control->sim_name );
out_control->mol = fopen( temp, "w" );
if ( control->num_ignored )
{
Kurt A. O'Hearn
committed
snprintf( temp, TEMP_SIZE, "%.*s.ign", TEMP_SIZE - 5, control->sim_name );
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
out_control->ign = fopen( temp, "w" );
}
}
/* Init electric dipole moment analysis file */
if ( control->dipole_anal )
{
strcpy( temp, control->sim_name );
strcat( temp, ".dpl" );
out_control->dpl = fopen( temp, "w" );
fprintf( out_control->dpl,
"Step Molecule Count Avg. Dipole Moment Norm\n" );
fflush( out_control->dpl );
}
/* Init diffusion coef analysis file */
if ( control->diffusion_coef )
{
strcpy( temp, control->sim_name );
strcat( temp, ".drft" );
out_control->drft = fopen( temp, "w" );
fprintf( out_control->drft, "Step Type Count Avg Squared Disp\n" );
fflush( out_control->drft );
}
#ifdef TEST_ENERGY
/* open bond energy file */
strcat( temp, ".ebond" );
out_control->ebond = fopen( temp, "w" );
strcat( temp, ".elp" );
out_control->elp = fopen( temp, "w" );
/* open overcoordination energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".eov" );
out_control->eov = fopen( temp, "w" );
/* open undercoordination energy file */
strcat( temp, ".eun" );
out_control->eun = fopen( temp, "w" );
/* open angle energy file */
strcat( temp, ".eval" );
out_control->eval = fopen( temp, "w" );
/* open penalty energy file */
strcat( temp, ".epen" );
out_control->epen = fopen( temp, "w" );
/* open coalition energy file */
strcat( temp, ".ecoa" );
out_control->ecoa = fopen( temp, "w" );
/* open hydrogen bond energy file */
strcat( temp, ".ehb" );
out_control->ehb = fopen( temp, "w" );
/* open torsion energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".etor" );
out_control->etor = fopen( temp, "w" );
/* open conjugation energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".econ" );
out_control->econ = fopen( temp, "w" );
/* open vdWaals energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".evdw" );
out_control->evdw = fopen( temp, "w" );
/* open coulomb energy file */
strcpy( temp, control->sim_name );
strcat( temp, ".ecou" );
out_control->ecou = fopen( temp, "w" );
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
/* open bond orders file */
strcpy( temp, control->sim_name );
strcat( temp, ".fbo" );
out_control->fbo = fopen( temp, "w" );
/* open bond orders derivatives file */
strcpy( temp, control->sim_name );
strcat( temp, ".fdbo" );
out_control->fdbo = fopen( temp, "w" );
/* open bond forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fbond" );
out_control->fbond = fopen( temp, "w" );
/* open lone-pair forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".flp" );
out_control->flp = fopen( temp, "w" );
/* open overcoordination forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fatom" );
out_control->fatom = fopen( temp, "w" );
/* open angle forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".f3body" );
out_control->f3body = fopen( temp, "w" );
/* open hydrogen bond forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fhb" );
out_control->fhb = fopen( temp, "w" );
/* open torsion forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".f4body" );
out_control->f4body = fopen( temp, "w" );
/* open nonbonded forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".fnonb" );
out_control->fnonb = fopen( temp, "w" );
/* open total force file */
strcpy( temp, control->sim_name );
strcat( temp, ".ftot" );
out_control->ftot = fopen( temp, "w" );
/* open coulomb forces file */
strcpy( temp, control->sim_name );
strcat( temp, ".ftot2" );
out_control->ftot2 = fopen( temp, "w" );
/* Error handling */
/* if ( out_control->out == NULL || out_control->pot == NULL ||
out_control->log == NULL || out_control->mol == NULL ||
out_control->dpl == NULL || out_control->drft == NULL ||
out_control->pdb == NULL )
{
fprintf( stderr, "FILE OPEN ERROR. TERMINATING..." );
Kurt A. O'Hearn
committed
exit( CANNOT_OPEN_FILE );
#undef TEMP_SIZE
Kurt A. O'Hearn
committed
void Initialize( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace, reax_list **lists,
output_controls *out_control, evolve_function *Evolve,
Kurt A. O'Hearn
committed
interaction_function *interaction_functions, const int output_enabled )
Kurt A. O'Hearn
committed
#if defined(DEBUG)
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
#ifdef _OPENMP
#pragma omp parallel default(shared)
{
#pragma omp single
control->num_threads = omp_get_num_threads( );
}
#endif
Randomize( );
Init_Simulation_Data( system, control, data, out_control, Evolve );
Init_Lists( system, control, data, workspace, lists, out_control );
Kurt A. O'Hearn
committed
if ( output_enabled == TRUE )
{
Init_Out_Controls( system, control, workspace, out_control );
}
/* These are done in forces.c, only forces.c can see all those functions */
Kurt A. O'Hearn
committed
Init_Bonded_Force_Functions( control, interaction_functions );
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
#if defined(DEBUG)
Kurt A. O'Hearn
committed
start = Get_Time( );
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
Make_LR_Lookup_Table( system, control, workspace );
Kurt A. O'Hearn
committed
#if defined(DEBUG)
Kurt A. O'Hearn
committed
end = Get_Timing_Info( start );
Kurt A. O'Hearn
committed
fprintf( stderr, "Time for LR Lookup Table calculation is %f \n", end );
#endif
fprintf( stderr, "data structures have been initialized...\n" );