Newer
Older
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
Kurt A. O'Hearn
committed
#include "reax_types.h"
Kurt A. O'Hearn
committed
#include "basic_comm.h"
#include "io_tools.h"
#include "tool_box.h"
#include "vector.h"
Kurt A. O'Hearn
committed
#if defined(HAVE_CUDA) && defined(DEBUG)
Kurt A. O'Hearn
committed
#include "cuda/cuda_validation.h"
Kurt A. O'Hearn
committed
#endif
#if defined(CG_PERFORMANCE)
real t_start, t_elapsed, matvec_time, dot_time;
#endif
void dual_Sparse_MatVec( sparse_matrix *A, rvec2 *x, rvec2 *b, int N )
{
int i, j, k, si;
real H;
for ( i = 0; i < N; ++i )
/* perform multiplication */
for ( i = 0; i < A->n; ++i )
{
si = A->start[i];
b[i][0] += A->entries[si].val * x[i][0];
b[i][1] += A->entries[si].val * x[i][1];
for ( k = si + 1; k < A->end[i]; ++k )
{
j = A->entries[k].j;
H = A->entries[k].val;
b[i][0] += H * x[j][0];
b[i][1] += H * x[j][1];
// comment out for tryQEq
//if( j < A->n ) {
b[j][0] += H * x[i][0];
b[j][1] += H * x[i][1];
//}
}
/* Diagonal (Jacobi) preconditioner computation */
real diag_pre_comp( const reax_system * const system, real * const Hdia_inv )
{
unsigned int i;
real start;
start = Get_Time( );
for ( i = 0; i < system->n; ++i )
{
// if ( H->entries[H->start[i + 1] - 1].val != 0.0 )
// {
// Hdia_inv[i] = 1.0 / H->entries[H->start[i + 1] - 1].val;
Hdia_inv[i] = 1.0 / system->reax_param.sbp[ system->my_atoms[i].type ].eta;
// }
// else
// {
// Hdia_inv[i] = 1.0;
// }
}
return Get_Timing_Info( start );
}
int dual_CG( reax_system *system, storage *workspace, sparse_matrix *H, rvec2
*b, real tol, rvec2 *x, mpi_datatypes* mpi_data, FILE *fout,
simulation_data *data )
Kurt A. O'Hearn
committed
int i, j, n, N, matvecs;
rvec2 tmp, alpha, beta;
rvec2 my_sum, norm_sqr, b_norm, my_dot;
rvec2 sig_old, sig_new;
MPI_Comm comm;
n = system->n;
N = system->N;
comm = mpi_data->world;
matvecs = 0;
if ( system->my_rank == MASTER_NODE )
{
matvecs = 0;
t_start = matvec_time = dot_time = 0;
t_start = Get_Time( );
}
Kurt A. O'Hearn
committed
#if defined(HAVE_CUDA) && defined(DEBUG)
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
Dist( system, mpi_data, x, RVEC2_PTR_TYPE, mpi_data->mpi_rvec2, rvec2_packer );
Kurt A. O'Hearn
committed
#if defined(HAVE_CUDA) && defined(DEBUG)
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
Coll( system, mpi_data, workspace->q2, RVEC2_PTR_TYPE,
mpi_data->mpi_rvec2, rvec2_unpacker );
if ( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &matvec_time );
{
/* residual */
workspace->r2[j][0] = b[j][0] - workspace->q2[j][0];
workspace->r2[j][1] = b[j][1] - workspace->q2[j][1];
/* apply diagonal pre-conditioner */
workspace->d2[j][0] = workspace->r2[j][0] * workspace->Hdia_inv[j];
workspace->d2[j][1] = workspace->r2[j][1] * workspace->Hdia_inv[j];
}
/* norm of b */
my_sum[0] = my_sum[1] = 0;
for ( j = 0; j < n; ++j )
{
my_sum[0] += SQR( b[j][0] );
my_sum[1] += SQR( b[j][1] );
//fprintf (stderr, "cg: my_sum[ %f, %f] \n", my_sum[0], my_sum[1]);
MPI_Allreduce( &my_sum, &norm_sqr, 2, MPI_DOUBLE, MPI_SUM, comm );
b_norm[0] = SQRT( norm_sqr[0] );
b_norm[1] = SQRT( norm_sqr[1] );
//fprintf( stderr, "bnorm = %f %f\n", b_norm[0], b_norm[1] );
for ( j = 0; j < n; ++j )
{
my_dot[0] += workspace->r2[j][0] * workspace->d2[j][0];
my_dot[1] += workspace->r2[j][1] * workspace->d2[j][1];
//fprintf( stderr, "my_dot: %f %f\n", my_dot[0], my_dot[1] );
MPI_Allreduce( &my_dot, &sig_new, 2, MPI_DOUBLE, MPI_SUM, comm );
//fprintf( stderr, "HOST:sig_new: %f %f\n", sig_new[0], sig_new[1] );
Kurt A. O'Hearn
committed
Dist( system, mpi_data, workspace->d2, RVEC2_PTR_TYPE,
mpi_data->mpi_rvec2, rvec2_packer );
//print_host_rvec2( workspace->d2, N );
dual_Sparse_MatVec( H, workspace->d2, workspace->q2, N );
// tryQEq
Kurt A. O'Hearn
committed
Coll( system, mpi_data, workspace->q2, RVEC2_PTR_TYPE,
mpi_data->mpi_rvec2, rvec2_unpacker );
#if defined(CG_PERFORMANCE)
if ( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &matvec_time );
#endif
/* dot product: d.q */
my_dot[0] = my_dot[1] = 0;
for ( j = 0; j < n; ++j )
{
my_dot[0] += workspace->d2[j][0] * workspace->q2[j][0];
my_dot[1] += workspace->d2[j][1] * workspace->q2[j][1];
}
MPI_Allreduce( &my_dot, &tmp, 2, MPI_DOUBLE, MPI_SUM, comm );
//fprintf( stderr, "tmp: %f %f\n", tmp[0], tmp[1] );
alpha[0] = sig_new[0] / tmp[0];
alpha[1] = sig_new[1] / tmp[1];
my_dot[0] = my_dot[1] = 0;
{
/* update x */
x[j][0] += alpha[0] * workspace->d2[j][0];
x[j][1] += alpha[1] * workspace->d2[j][1];
/* update residual */
workspace->r2[j][0] -= alpha[0] * workspace->q2[j][0];
workspace->r2[j][1] -= alpha[1] * workspace->q2[j][1];
/* apply diagonal pre-conditioner */
workspace->p2[j][0] = workspace->r2[j][0] * workspace->Hdia_inv[j];
workspace->p2[j][1] = workspace->r2[j][1] * workspace->Hdia_inv[j];
/* dot product: r.p */
my_dot[0] += workspace->r2[j][0] * workspace->p2[j][0];
my_dot[1] += workspace->r2[j][1] * workspace->p2[j][1];
}
sig_old[0] = sig_new[0];
sig_old[1] = sig_new[1];
MPI_Allreduce( &my_dot, &sig_new, 2, MPI_DOUBLE, MPI_SUM, comm );
//fprintf( stderr, "HOST:sig_new: %f %f\n", sig_new[0], sig_new[1] );
#if defined(CG_PERFORMANCE)
if ( system->my_rank == MASTER_NODE )
Update_Timing_Info( &t_start, &dot_time );
if ( SQRT(sig_new[0]) / b_norm[0] <= tol || SQRT(sig_new[1]) / b_norm[1] <= tol )
beta[0] = sig_new[0] / sig_old[0];
beta[1] = sig_new[1] / sig_old[1];
{
/* d = p + beta * d */
workspace->d2[j][0] = workspace->p2[j][0] + beta[0] * workspace->d2[j][0];
workspace->d2[j][1] = workspace->p2[j][1] + beta[1] * workspace->d2[j][1];
}
}
if ( SQRT(sig_new[0]) / b_norm[0] <= tol )
{
for ( j = 0; j < n; ++j )
matvecs = CG( system, workspace, H, workspace->b_t, tol, workspace->t,
Kurt A. O'Hearn
committed
#if defined(DEBUG)
fprintf (stderr, " CG1: iterations --> %d \n", matvecs );
Kurt A. O'Hearn
committed
#endif
}
else if ( SQRT(sig_new[1]) / b_norm[1] <= tol )
{
for ( j = 0; j < n; ++j )
matvecs = CG( system, workspace, H, workspace->b_s, tol, workspace->s,
Kurt A. O'Hearn
committed
#if defined(DEBUG)
fprintf (stderr, " CG2: iterations --> %d \n", matvecs );
Kurt A. O'Hearn
committed
#endif
if ( system->my_rank == MASTER_NODE )
fprintf( fout, "QEq %d + %d iters. matvecs: %f dot: %f\n",
i + 1, matvecs, matvec_time, dot_time );
}
void Sparse_MatVec( sparse_matrix *A, real *x, real *b, int N )
{
int i, j, k, si;
real H;
for ( i = 0; i < N; ++i )
/* perform multiplication */
for ( i = 0; i < A->n; ++i )
{
si = A->start[i];
b[i] += A->entries[si].val * x[i];
for ( k = si + 1; k < A->end[i]; ++k )
{
j = A->entries[k].j;
H = A->entries[k].val;
b[i] += H * x[j];
//if( j < A->n ) // comment out for tryQEq
b[j] += H * x[i];
}
int CG( reax_system *system, storage *workspace, sparse_matrix *H, real *b,
real tol, real *x, mpi_datatypes* mpi_data )
Kurt A. O'Hearn
committed
int i, j;
real tmp, alpha, beta, b_norm;
real sig_old, sig_new, sig0;
Kurt A. O'Hearn
committed
Dist( system, mpi_data, x, REAL_PTR_TYPE, MPI_DOUBLE, real_packer );
Kurt A. O'Hearn
committed
Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
Vector_Sum( workspace->r , 1., b, -1., workspace->q, system->n );
for ( j = 0; j < system->n; ++j )
workspace->d[j] = workspace->r[j] * workspace->Hdia_inv[j]; //pre-condition
b_norm = Parallel_Norm( b, system->n, mpi_data->world );
sig_new = Parallel_Dot(workspace->r, workspace->d, system->n, mpi_data->world);
sig0 = sig_new;
for ( i = 1; i < 300 && SQRT(sig_new) / b_norm > tol; ++i )
{
Kurt A. O'Hearn
committed
Dist( system, mpi_data, workspace->d, REAL_PTR_TYPE, MPI_DOUBLE, real_packer );
Sparse_MatVec( H, workspace->d, workspace->q, system->N );
Kurt A. O'Hearn
committed
Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
tmp = Parallel_Dot(workspace->d, workspace->q, system->n, mpi_data->world);
alpha = sig_new / tmp;
Vector_Add( x, alpha, workspace->d, system->n );
Vector_Add( workspace->r, -alpha, workspace->q, system->n );
/* pre-conditioning */
for ( j = 0; j < system->n; ++j )
workspace->p[j] = workspace->r[j] * workspace->Hdia_inv[j];
sig_old = sig_new;
sig_new = Parallel_Dot(workspace->r, workspace->p, system->n, mpi_data->world);
//fprintf (stderr, "Host : sig_new: %f \n", sig_new );
beta = sig_new / sig_old;
Vector_Sum( workspace->d, 1., workspace->p, beta, workspace->d, system->n );
}
if ( i >= 300 )
{
fprintf( stderr, "CG convergence failed!\n" );
return i;
}
int CG_test( reax_system *system, storage *workspace, sparse_matrix *H, real
*b, real tol, real *x, mpi_datatypes* mpi_data, FILE *fout )
Kurt A. O'Hearn
committed
int i, j;
real tmp, alpha, beta, b_norm;
real sig_old, sig_new, sig0;
b_norm = Parallel_Norm( b, system->n, mpi_data->world );
Kurt A. O'Hearn
committed
if ( system->my_rank == MASTER_NODE )
{
fprintf( stderr, "n=%d, N=%d\n", system->n, system->N );
fprintf( stderr, "p%d CGinit: b_norm=%24.15e\n", system->my_rank, b_norm );
//Vector_Print( stderr, "d", workspace->d, system->N );
//Vector_Print( stderr, "q", workspace->q, system->N );
}
MPI_Barrier( mpi_data->world );
Kurt A. O'Hearn
committed
//Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
Vector_Sum( workspace->r , 1., b, -1., workspace->q, system->n );
for ( j = 0; j < system->n; ++j )
workspace->d[j] = workspace->r[j] * workspace->Hdia_inv[j]; //pre-condition
sig_new = Parallel_Dot( workspace->r, workspace->d, system->n,
mpi_data->world );
sig0 = sig_new;
//if( system->my_rank == MASTER_NODE ) {
fprintf( stderr, "p%d CG:sig_new=%24.15e,d_norm=%24.15e,q_norm=%24.15e\n",
Kurt A. O'Hearn
committed
system->my_rank, SQRT(sig_new),
Parallel_Norm(workspace->d, system->n, mpi_data->world),
Parallel_Norm(workspace->q, system->n, mpi_data->world) );
//Vector_Print( stderr, "d", workspace->d, system->N );
//Vector_Print( stderr, "q", workspace->q, system->N );
//}
for ( i = 1; i < 300 && SQRT(sig_new) / b_norm > tol; ++i )
{
if ( system->my_rank == MASTER_NODE )
t_start = Get_Time( );
Kurt A. O'Hearn
committed
Dist( system, mpi_data, workspace->d, REAL_PTR_TYPE, MPI_DOUBLE, real_packer );
Sparse_MatVec( H, workspace->d, workspace->q, system->N );
//tryQEq
Kurt A. O'Hearn
committed
//Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
if ( system->my_rank == MASTER_NODE )
{
t_elapsed = Get_Timing_Info( t_start );
matvec_time += t_elapsed;
}
if ( system->my_rank == MASTER_NODE )
t_start = Get_Time( );
#endif
tmp = Parallel_Dot(workspace->d, workspace->q, system->n, mpi_data->world);
alpha = sig_new / tmp;
//if( system->my_rank == MASTER_NODE ){
fprintf(stderr,
"p%d CG iter%d:d_norm=%24.15e,q_norm=%24.15e,tmp = %24.15e\n",
system->my_rank, i,
//Parallel_Norm(workspace->d, system->n, mpi_data->world),
//Parallel_Norm(workspace->q, system->n, mpi_data->world),
Norm(workspace->d, system->n), Norm(workspace->q, system->n), tmp);
//Vector_Print( stderr, "d", workspace->d, system->N );
//for( j = 0; j < system->N; ++j )
// fprintf( stdout, "%d %24.15e\n",
// system->my_atoms[j].orig_id, workspace->q[j] );
//fprintf( stdout, "\n" );
//}
MPI_Barrier( mpi_data->world );
Vector_Add( x, alpha, workspace->d, system->n );
Vector_Add( workspace->r, -alpha, workspace->q, system->n );
/* pre-conditioning */
for ( j = 0; j < system->n; ++j )
workspace->p[j] = workspace->r[j] * workspace->Hdia_inv[j];
sig_old = sig_new;
sig_new = Parallel_Dot(workspace->r, workspace->p, system->n, mpi_data->world);
beta = sig_new / sig_old;
Vector_Sum( workspace->d, 1., workspace->p, beta, workspace->d, system->n );
if ( system->my_rank == MASTER_NODE )
fprintf(stderr, "p%d CG iter%d: sig_new = %24.15e\n",
Kurt A. O'Hearn
committed
system->my_rank, i, SQRT(sig_new) );
if ( system->my_rank == MASTER_NODE )
{
t_elapsed = Get_Timing_Info( t_start );
dot_time += t_elapsed;
}
if ( system->my_rank == MASTER_NODE )
fprintf( stderr, "CG took %d iterations\n", i );
if ( system->my_rank == MASTER_NODE )
fprintf( stderr, "%f %f\n", matvec_time, dot_time );
if ( i >= 300 )
{
fprintf( stderr, "CG convergence failed!\n" );
return i;
}
return i;
}
void Forward_Subs( sparse_matrix *L, real *b, real *y )
{
int i, pj, j, si, ei;
real val;
for ( i = 0; i < L->n; ++i )
{
y[i] = b[i];
si = L->start[i];
ei = L->end[i];
for ( pj = si; pj < ei - 1; ++pj )
{
j = L->entries[pj].j;
val = L->entries[pj].val;
y[i] -= val * y[j];
}
y[i] /= L->entries[pj].val;
}
}
void Backward_Subs( sparse_matrix *U, real *y, real *x )
{
int i, pj, j, si, ei;
real val;
for ( i = U->n - 1; i >= 0; --i )
{
x[i] = y[i];
si = U->start[i];
ei = U->end[i];
for ( pj = si + 1; pj < ei; ++pj )
{
j = U->entries[pj].j;
val = U->entries[pj].val;
x[i] -= val * x[j];
}
x[i] /= U->entries[si].val;
int PCG( reax_system *system, storage *workspace, sparse_matrix *H, real *b,
real tol, sparse_matrix *L, sparse_matrix *U, real *x, mpi_datatypes*
mpi_data, FILE *fout )
Kurt A. O'Hearn
committed
int i, me, n, N;
real tmp, alpha, beta, b_norm, r_norm, sig_old, sig_new;
MPI_Comm world;
me = system->my_rank;
n = system->n;
N = system->N;
world = mpi_data->world;
Kurt A. O'Hearn
committed
if ( me == MASTER_NODE )
{
fprintf( stderr, "init_PCG: n=%d, N=%d\n", n, N );
fprintf( stderr, "init_PCG: |b|=%24.15e\n", b_norm );
}
MPI_Barrier( world );
Kurt A. O'Hearn
committed
//Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
Vector_Sum( workspace->r , 1., b, -1., workspace->q, n );
r_norm = Parallel_Norm( workspace->r, n, world );
Forward_Subs( L, workspace->r, workspace->d );
Backward_Subs( U, workspace->d, workspace->p );
sig_new = Parallel_Dot( workspace->r, workspace->p, n, world );
if ( me == MASTER_NODE )
{
fprintf( stderr, "init_PCG: sig_new=%.15e\n", r_norm );
fprintf( stderr, "init_PCG: |d|=%.15e |q|=%.15e\n",
Parallel_Norm(workspace->d, n, world),
Parallel_Norm(workspace->q, n, world) );
}
MPI_Barrier( world );
for ( i = 1; i < 100 && r_norm / b_norm > tol; ++i )
{
Kurt A. O'Hearn
committed
Dist( system, mpi_data, workspace->p, REAL_PTR_TYPE, MPI_DOUBLE, real_packer );
Sparse_MatVec( H, workspace->p, workspace->q, N );
// tryQEq
Kurt A. O'Hearn
committed
//Coll( system, mpi_data, workspace->q, REAL_PTR_TYPE, MPI_DOUBLE, real_unpacker );
tmp = Parallel_Dot( workspace->q, workspace->p, n, world );
alpha = sig_new / tmp;
Vector_Add( x, alpha, workspace->p, n );
{
fprintf(stderr, "iter%d: |p|=%.15e |q|=%.15e tmp=%.15e\n", i,
Parallel_Norm(workspace->p, n, world),
Vector_Add( workspace->r, -alpha, workspace->q, n );
r_norm = Parallel_Norm( workspace->r, n, world );
Forward_Subs( L, workspace->r, workspace->d );
Backward_Subs( U, workspace->d, workspace->d );
sig_old = sig_new;
sig_new = Parallel_Dot( workspace->r, workspace->d, n, world );
beta = sig_new / sig_old;
Vector_Sum( workspace->p, 1., workspace->d, beta, workspace->p, n );
}
int sCG( reax_system *system, storage *workspace, sparse_matrix *H,
real *b, real tol, real *x, mpi_datatypes* mpi_data, FILE *fout )
int i, j;
real tmp, alpha, beta, b_norm;
real sig_old, sig_new, sig0;
if ( system->my_rank == MASTER_NODE )
{
fprintf( stderr, "n=%d, N=%d\n", system->n, system->N );
fprintf( stderr, "p%d CGinit: b_norm=%24.15e\n", system->my_rank, b_norm );
//Vector_Print( stderr, "d", workspace->d, system->N );
//Vector_Print( stderr, "q", workspace->q, system->N );
}
MPI_Barrier( mpi_data->world );
Sparse_MatVec( H, x, workspace->q, system->N );
//Coll_Vector( system, workspace, mpi_data, workspace->q );
Vector_Sum( workspace->r , 1., b, -1., workspace->q, system->n );
for ( j = 0; j < system->n; ++j )
workspace->d[j] = workspace->r[j] * workspace->Hdia_inv[j]; //pre-condition
sig_new = Dot( workspace->r, workspace->d, system->n );
sig0 = sig_new;
if ( system->my_rank == MASTER_NODE )
{
fprintf( stderr, "p%d CGinit:sig_new=%24.15e\n", system->my_rank, sig_new );
//Vector_Print( stderr, "d", workspace->d, system->N );
//Vector_Print( stderr, "q", workspace->q, system->N );
for ( i = 1; i < 100 && SQRT(sig_new) / b_norm > tol; ++i )
{
//Dist_Vector( system, mpi_data, workspace->d );
Sparse_MatVec( H, workspace->d, workspace->q, system->N );
//Coll_Vector( system, workspace, mpi_data, workspace->q );
tmp = Dot( workspace->d, workspace->q, system->n );
alpha = sig_new / tmp;
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
if ( system->my_rank == MASTER_NODE )
{
fprintf(stderr,
"p%d CG iter%d:d_norm=%24.15e,q_norm=%24.15e,tmp = %24.15e\n",
system->my_rank, i,
Parallel_Norm(workspace->d, system->n, mpi_data->world),
Parallel_Norm(workspace->q, system->n, mpi_data->world), tmp );
//Vector_Print( stderr, "d", workspace->d, system->N );
//Vector_Print( stderr, "q", workspace->q, system->N );
}
MPI_Barrier( mpi_data->world );
#endif
Vector_Add( x, alpha, workspace->d, system->n );
Vector_Add( workspace->r, -alpha, workspace->q, system->n );
/* pre-conditioning */
for ( j = 0; j < system->n; ++j )
workspace->p[j] = workspace->r[j] * workspace->Hdia_inv[j];
sig_old = sig_new;
sig_new = Dot( workspace->r, workspace->p, system->n );
beta = sig_new / sig_old;
Vector_Sum( workspace->d, 1., workspace->p, beta, workspace->d, system->n );
#if defined(DEBUG)
if ( system->my_rank == MASTER_NODE )
fprintf(stderr, "p%d CG iter%d: sig_new = %24.15e\n",
system->my_rank, i, sig_new );
MPI_Barrier( mpi_data->world );
if ( system->my_rank == MASTER_NODE )
fprintf( stderr, "CG took %d iterations\n", i );
if ( i >= 100 )
{
fprintf( stderr, "CG convergence failed!\n" );
return i;
}
int GMRES( reax_system *system, storage *workspace, sparse_matrix *H,
real *b, real tol, real *x, mpi_datatypes* mpi_data, FILE *fout )
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
int i, j, k, itr, N;
real cc, tmp1, tmp2, temp, bnorm;
N = system->N;
bnorm = Norm( b, N );
/* apply the diagonal pre-conditioner to rhs */
for ( i = 0; i < N; ++i )
workspace->b_prc[i] = b[i] * workspace->Hdia_inv[i];
/* GMRES outer-loop */
for ( itr = 0; itr < MAX_ITR; ++itr )
{
/* calculate r0 */
Sparse_MatVec( H, x, workspace->b_prm, N );
for ( i = 0; i < N; ++i )
workspace->b_prm[i] *= workspace->Hdia_inv[i]; // pre-conditioner
Vector_Sum( workspace->v[0],
1., workspace->b_prc, -1., workspace->b_prm, N );
workspace->g[0] = Norm( workspace->v[0], N );
Vector_Scale( workspace->v[0],
1. / workspace->g[0], workspace->v[0], N );
// fprintf( stderr, "%10.6f\n", workspace->g[0] );
/* GMRES inner-loop */
Kurt A. O'Hearn
committed
for ( j = 0; j < RESTART && FABS(workspace->g[j]) / bnorm > tol; j++ )
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
{
/* matvec */
Sparse_MatVec( H, workspace->v[j], workspace->v[j + 1], N );
for ( k = 0; k < N; ++k )
workspace->v[j + 1][k] *= workspace->Hdia_inv[k]; // pre-conditioner
// fprintf( stderr, "%d-%d: matvec done.\n", itr, j );
/* apply modified Gram-Schmidt to orthogonalize the new residual */
for ( i = 0; i <= j; i++ )
{
workspace->h[i][j] = Dot(workspace->v[i], workspace->v[j + 1], N);
Vector_Add( workspace->v[j + 1],
-workspace->h[i][j], workspace->v[i], N );
}
workspace->h[j + 1][j] = Norm( workspace->v[j + 1], N );
Vector_Scale( workspace->v[j + 1],
1. / workspace->h[j + 1][j], workspace->v[j + 1], N );
// fprintf(stderr, "%d-%d: orthogonalization completed.\n", itr, j);
/* Givens rotations on the H matrix to make it U */
for ( i = 0; i <= j; i++ )
{
if ( i == j )
{
cc = SQRT(SQR(workspace->h[j][j]) + SQR(workspace->h[j + 1][j]));
workspace->hc[j] = workspace->h[j][j] / cc;
workspace->hs[j] = workspace->h[j + 1][j] / cc;
}
tmp1 = workspace->hc[i] * workspace->h[i][j] +
workspace->hs[i] * workspace->h[i + 1][j];
tmp2 = -workspace->hs[i] * workspace->h[i][j] +
workspace->hc[i] * workspace->h[i + 1][j];
workspace->h[i][j] = tmp1;
workspace->h[i + 1][j] = tmp2;
}
/* apply Givens rotations to the rhs as well */
tmp1 = workspace->hc[j] * workspace->g[j];
tmp2 = -workspace->hs[j] * workspace->g[j];
workspace->g[j] = tmp1;
workspace->g[j + 1] = tmp2;
Kurt A. O'Hearn
committed
// fprintf( stderr, "%10.6f\n", FABS(workspace->g[j+1]) );
}
/* solve Hy = g.
H is now upper-triangular, do back-substitution */
for ( i = j - 1; i >= 0; i-- )
{
temp = workspace->g[i];
for ( k = j - 1; k > i; k-- )
temp -= workspace->h[i][k] * workspace->y[k];
workspace->y[i] = temp / workspace->h[i][i];
}
/* update x = x_0 + Vy */
for ( i = 0; i < j; i++ )
Vector_Add( x, workspace->y[i], workspace->v[i], N );
/* stopping condition */
Kurt A. O'Hearn
committed
if ( FABS(workspace->g[j]) / bnorm <= tol )
/*Sparse_MatVec( system, H, x, workspace->b_prm, mpi_data );
for( i = 0; i < N; ++i )
workspace->b_prm[i] *= workspace->Hdia_inv[i];
fprintf( fout, "\n%10s%15s%15s\n", "b_prc", "b_prm", "x" );
for( i = 0; i < N; ++i )
fprintf( fout, "%10.5f%15.12f%15.12f\n",
workspace->b_prc[i], workspace->b_prm[i], x[i] );*/
fprintf( fout, "GMRES outer: %d, inner: %d - |rel residual| = %15.10f\n",
Kurt A. O'Hearn
committed
itr, j, FABS( workspace->g[j] ) / bnorm );
if ( itr >= MAX_ITR )
{
fprintf( stderr, "GMRES convergence failed\n" );
return FAILURE;
int GMRES_HouseHolder( reax_system *system, storage *workspace,
sparse_matrix *H, real *b, real tol, real *x,
mpi_datatypes* mpi_data, FILE *fout )
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
int i, j, k, itr, N;
real cc, tmp1, tmp2, temp, bnorm;
real v[10000], z[RESTART + 2][10000], w[RESTART + 2];
real u[RESTART + 2][10000];
N = system->N;
bnorm = Norm( b, N );
/* apply the diagonal pre-conditioner to rhs */
for ( i = 0; i < N; ++i )
workspace->b_prc[i] = b[i] * workspace->Hdia_inv[i];
/* GMRES outer-loop */
for ( itr = 0; itr < MAX_ITR; ++itr )
{
/* compute z = r0 */
Sparse_MatVec( H, x, workspace->b_prm, N );
for ( i = 0; i < N; ++i )
workspace->b_prm[i] *= workspace->Hdia_inv[i]; /* pre-conditioner */
Vector_Sum( z[0], 1., workspace->b_prc, -1., workspace->b_prm, N );
Vector_MakeZero( w, RESTART + 1 );
w[0] = Norm( z[0], N );
Vector_Copy( u[0], z[0], N );
u[0][0] += ( u[0][0] < 0.0 ? -1 : 1 ) * w[0];
Vector_Scale( u[0], 1 / Norm( u[0], N ), u[0], N );
w[0] *= ( u[0][0] < 0.0 ? 1 : -1 );
// fprintf( stderr, "\n\n%12.6f\n", w[0] );
/* GMRES inner-loop */
Kurt A. O'Hearn
committed
for ( j = 0; j < RESTART && FABS( w[j] ) / bnorm > tol; j++ )
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
{
/* compute v_j */
Vector_Scale( z[j], -2 * u[j][j], u[j], N );
z[j][j] += 1.; /* due to e_j */
for ( i = j - 1; i >= 0; --i )
Vector_Add( z[j] + i, -2 * Dot( u[i] + i, z[j] + i, N - i ), u[i] + i, N - i );
/* matvec */
Sparse_MatVec( H, z[j], v, N );
for ( k = 0; k < N; ++k )
v[k] *= workspace->Hdia_inv[k]; /* pre-conditioner */
for ( i = 0; i <= j; ++i )
Vector_Add( v + i, -2 * Dot( u[i] + i, v + i, N - i ), u[i] + i, N - i );
if ( !Vector_isZero( v + (j + 1), N - (j + 1) ) )
{
/* compute the HouseHolder unit vector u_j+1 */
for ( i = 0; i <= j; ++i )
u[j + 1][i] = 0;
Vector_Copy( u[j + 1] + (j + 1), v + (j + 1), N - (j + 1) );
u[j + 1][j + 1] +=
( v[j + 1] < 0.0 ? -1 : 1 ) * Norm( v + (j + 1), N - (j + 1) );
Vector_Scale( u[j + 1], 1 / Norm( u[j + 1], N ), u[j + 1], N );
/* overwrite v with P_m+1 * v */
v[j + 1] -=
2 * Dot( u[j + 1] + (j + 1), v + (j + 1), N - (j + 1) ) * u[j + 1][j + 1];
Vector_MakeZero( v + (j + 2), N - (j + 2) );
}
/* previous Givens rotations on H matrix to make it U */
for ( i = 0; i < j; i++ )
{
tmp1 = workspace->hc[i] * v[i] + workspace->hs[i] * v[i + 1];
tmp2 = -workspace->hs[i] * v[i] + workspace->hc[i] * v[i + 1];
v[i] = tmp1;
v[i + 1] = tmp2;
}
/* apply the new Givens rotation to H and right-hand side */
Kurt A. O'Hearn
committed
if ( FABS(v[j + 1]) >= ALMOST_ZERO )
{
cc = SQRT( SQR( v[j] ) + SQR( v[j + 1] ) );
workspace->hc[j] = v[j] / cc;