Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "forces.h"
#include "box.h"
#include "bond_orders.h"
#include "single_body_interactions.h"
#include "two_body_interactions.h"
#include "three_body_interactions.h"
#include "four_body_interactions.h"
#include "list.h"
#include "print_utils.h"
#include "system_props.h"
#include "QEq.h"
#include "vector.h"
Kurt A. O'Hearn
committed
typedef enum
{
DIAGONAL = 0,
OFF_DIAGONAL = 1,
} MATRIX_ENTRY_POSITION;
void Dummy_Interaction( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
{
}
void Init_Bonded_Force_Functions( control_params *control )
{
Interaction_Functions[0] = Calculate_Bond_Orders;
Interaction_Functions[1] = Bond_Energy; //*/Dummy_Interaction;
Interaction_Functions[2] = LonePair_OverUnder_Coordination_Energy;
//*/Dummy_Interaction;
Interaction_Functions[3] = Three_Body_Interactions; //*/Dummy_Interaction;
Interaction_Functions[4] = Four_Body_Interactions; //*/Dummy_Interaction;
if ( control->hb_cut > 0 )
Interaction_Functions[5] = Hydrogen_Bonds; //*/Dummy_Interaction;
else Interaction_Functions[5] = Dummy_Interaction;
Interaction_Functions[6] = Dummy_Interaction; //empty
Interaction_Functions[7] = Dummy_Interaction; //empty
Interaction_Functions[8] = Dummy_Interaction; //empty
Interaction_Functions[9] = Dummy_Interaction; //empty
void Compute_Bonded_Forces( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/* Mark beginning of a new timestep in each energy file */
fprintf( out_control->ebond, "step: %d\n%6s%6s%12s%12s%12s\n",
data->step, "atom1", "atom2", "bo", "ebond", "total" );
fprintf( out_control->elp, "step: %d\n%6s%12s%12s%12s\n",
data->step, "atom", "nlp", "elp", "total" );
fprintf( out_control->eov, "step: %d\n%6s%12s%12s\n",
data->step, "atom", "eov", "total" );
fprintf( out_control->eun, "step: %d\n%6s%12s%12s\n",
data->step, "atom", "eun", "total" );
fprintf( out_control->eval, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "eval", "epen", "total" );
fprintf( out_control->epen, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "epen", "total" );
fprintf( out_control->ecoa, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "ecoa", "total" );
fprintf( out_control->ehb, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"r(23)", "angle", "bo(12)", "ehb", "total" );
fprintf( out_control->etor, "step: %d\n%6s%6s%6s%6s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3", "atom4",
"phi", "bo(23)", "etor", "total" );
fprintf( out_control->econ, "step:%d\n%6s%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3", "atom4",
"phi", "bo(12)", "bo(23)", "bo(34)", "econ", "total" );
#endif
/* Implement all the function calls as function pointers */
for ( i = 0; i < NO_OF_INTERACTIONS; i++ )
{
(Interaction_Functions[i])(system, control, data, workspace,
lists, out_control);
(Print_Interactions[i])(system, control, data, workspace,
lists, out_control);
void Compute_NonBonded_Forces( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list** lists, output_controls *out_control )
fprintf( out_control->evdw, "step: %d\n%6s%6s%12s%12s%12s\n",
data->step, "atom1", "atom2", "r12", "evdw", "total" );
fprintf( out_control->ecou, "step: %d\n%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "r12", "q1", "q2", "ecou", "total" );
t_start = Get_Time( );
QEq( system, control, data, workspace, lists[FAR_NBRS], out_control );
t_elapsed = Get_Timing_Info( t_start );
data->timing.QEq += t_elapsed;
{
vdW_Coulomb_Energy( system, control, data, workspace, lists, out_control );
}
{
Tabulated_vdW_Coulomb_Energy( system, control, data, workspace,
lists, out_control );
}
Print_vdW_Coulomb_Forces( system, control, data, workspace,
lists, out_control );
/* This version of Compute_Total_Force computes forces from coefficients
accumulated by all interaction functions. Saves enormous time & space! */
void Compute_Total_Force( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists )
int i, pj;
list *bonds = (*lists) + BONDS;
for ( i = 0; i < system->N; ++i )
for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
if ( i < bonds->select.bond_list[pj].nbr )
{
if ( control->ensemble == NVE || control->ensemble == NVT || control->ensemble == bNVT)
Add_dBond_to_Forces( i, pj, system, data, workspace, lists );
else
Add_dBond_to_Forces_NPT( i, pj, system, data, workspace, lists );
}
}
void Validate_Lists( static_storage *workspace, list **lists, int step, int n,
int i, flag;
list *bonds, *hbonds;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
/* far neighbors */
if ( Htop > Hmax * DANGER_ZONE )
{
workspace->realloc.Htop = Htop;
if ( Htop > Hmax )
{
fprintf( stderr,
"step%d - ran out of space on H matrix: Htop=%d, max = %d",
step, Htop, Hmax );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
workspace->realloc.num_bonds = num_bonds;
for ( i = 0; i < n - 1; ++i )
if ( End_Index(i, bonds) >= Start_Index(i + 1, bonds) - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > Start_Index(i + 1, bonds) )
flag = i;
}
if ( flag > -1 )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, bonds), Start_Index(flag + 1, bonds) );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
}
if ( End_Index(i, bonds) >= bonds->num_intrs - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > bonds->num_intrs )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d bond_end=%d\n",
step, flag, End_Index(i, bonds), bonds->num_intrs );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
/* hbonds list */
if ( workspace->num_H > 0 )
{
flag = -1;
workspace->realloc.num_hbonds = num_hbonds;
for ( i = 0; i < workspace->num_H - 1; ++i )
if ( Num_Entries(i, hbonds) >=
(Start_Index(i + 1, hbonds) - Start_Index(i, hbonds)) * DANGER_ZONE )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > Start_Index(i + 1, hbonds) )
flag = i;
}
if ( flag > -1 )
{
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, hbonds), Start_Index(flag + 1, hbonds) );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
}
if ( Num_Entries(i, hbonds) >=
(hbonds->num_intrs - Start_Index(i, hbonds)) * DANGER_ZONE )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > hbonds->num_intrs )
{
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d hbondend=%d\n",
step, flag, End_Index(i, hbonds), hbonds->num_intrs );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
Kurt A. O'Hearn
committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
static inline real Init_Charge_Matrix_Entry_Tab( reax_system *system,
control_params *control, int i, int j,
real r_ij, MATRIX_ENTRY_POSITION pos )
{
int r;
real base, dif, val, ret = 0.0;
LR_lookup_table *t;
switch ( control->charge_method )
{
case QEQ_CM:
switch ( pos )
{
case OFF_DIAGONAL:
t = &( LR
[MIN( system->atoms[i].type, system->atoms[j].type )]
[MAX( system->atoms[i].type, system->atoms[j].type )] );
/* cubic spline interpolation */
r = (int)(r_ij * t->inv_dx);
if ( r == 0 ) ++r;
base = (real)(r + 1) * t->dx;
dif = r_ij - base;
val = ((t->ele[r].d * dif + t->ele[r].c) * dif + t->ele[r].b) * dif +
t->ele[r].a;
val *= EV_to_KCALpMOL / C_ele;
ret = ((i == j) ? 0.5 : 1.0) * val;
break;
case DIAGONAL:
ret = system->reaxprm.sbp[system->atoms[i].type].eta;
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case EEM_CM:
switch ( pos )
{
case OFF_DIAGONAL:
break;
case DIAGONAL:
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case ACKS2_CM:
//TODO
switch ( pos )
{
case OFF_DIAGONAL:
break;
case DIAGONAL:
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "Invalid charge method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
return ret;
}
static inline real Init_Charge_Matrix_Entry( reax_system *system,
control_params *control, int i, int j,
real r_ij, MATRIX_ENTRY_POSITION pos )
{
real Tap, dr3gamij_1, dr3gamij_3, ret = 0.0;
switch ( control->charge_method )
{
case QEQ_CM:
switch ( pos )
{
case OFF_DIAGONAL:
Tap = control->Tap7 * r_ij + control->Tap6;
Tap = Tap * r_ij + control->Tap5;
Tap = Tap * r_ij + control->Tap4;
Tap = Tap * r_ij + control->Tap3;
Tap = Tap * r_ij + control->Tap2;
Tap = Tap * r_ij + control->Tap1;
Tap = Tap * r_ij + control->Tap0;
dr3gamij_1 = ( r_ij * r_ij * r_ij +
system->reaxprm.tbp[system->atoms[i].type][system->atoms[j].type].gamma );
dr3gamij_3 = POW( dr3gamij_1 , 0.33333333333333 );
ret = ((i == j) ? 0.5 : 1.0) * Tap * EV_to_KCALpMOL / dr3gamij_3;
break;
case DIAGONAL:
ret = system->reaxprm.sbp[system->atoms[i].type].eta;
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case EEM_CM:
switch ( pos )
{
case OFF_DIAGONAL:
break;
case DIAGONAL:
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case ACKS2_CM:
//TODO
switch ( pos )
{
case OFF_DIAGONAL:
break;
case DIAGONAL:
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "Invalid charge method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
return ret;
}
void Init_Forces( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
{
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int Htop, H_sp_top, btop_i, btop_j, num_bonds, num_hbonds;
Kurt A. O'Hearn
committed
real r_ij, r2;
real C12, C34, C56;
real Cln_BOp_s, Cln_BOp_pi, Cln_BOp_pi2;
real BO, BO_s, BO_pi, BO_pi2;
real p_boc1, p_boc2;
sparse_matrix *H, *H_sp;
list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
bond_data *ibond, *jbond;
bond_order_data *bo_ij, *bo_ji;
far_nbrs = *lists + FAR_NBRS;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
H = workspace->H;
H_sp = workspace->H_sp;
num_bonds = 0;
num_hbonds = 0;
btop_i = btop_j = 0;
p_boc1 = system->reaxprm.gp.l[0];
p_boc2 = system->reaxprm.gp.l[1];
for ( i = 0; i < system->N; ++i )
{
atom_i = &(system->atoms[i]);
type_i = atom_i->type;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
H->start[i] = Htop;
H_sp->start[i] = H_sp_top;
btop_i = End_Index( i, bonds );
sbp_i = &(system->reaxprm.sbp[type_i]);
ihb = ihb_top = -1;
if ( control->hb_cut > 0 && (ihb = sbp_i->p_hbond) == 1 )
ihb_top = End_Index( workspace->hbond_index[i], hbonds );
for ( pj = start_i; pj < end_i; ++pj )
{
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
atom_j = &(system->atoms[j]);
flag = 0;
if ((data->step - data->prev_steps) % control->reneighbor == 0)
{
if ( nbr_pj->d <= control->r_cut )
{
if ( nbr_pj->d <= control->r_sp_cut )
{
flag_sp = 1;
}
}
else
{
flag = 0;
flag_sp = 0;
}
}
else if ((nbr_pj->d = Sq_Distance_on_T3(atom_i->x, atom_j->x, &(system->box),
nbr_pj->dvec)) <= SQR(control->r_cut))
{
if ( nbr_pj->d <= SQR(control->r_sp_cut))
{
flag_sp = 1;
}
nbr_pj->d = SQRT( nbr_pj->d );
flag = 1;
}
if ( flag )
{
type_j = system->atoms[j].type;
r_ij = nbr_pj->d;
sbp_j = &(system->reaxprm.sbp[type_j]);
twbp = &(system->reaxprm.tbp[type_i][type_j]);
Kurt A. O'Hearn
committed
H->j[Htop] = j;
Kurt A. O'Hearn
committed
H->val[Htop] = Init_Charge_Matrix_Entry( system, control, i, j,
r_ij, OFF_DIAGONAL );
/* H_sp matrix entry */
if ( flag_sp )
{
Kurt A. O'Hearn
committed
H_sp->j[H_sp_top] = j;
H_sp->val[H_sp_top] = H->val[Htop - 1];
++H_sp_top;
}
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
/* hydrogen bond lists */
if ( control->hb_cut > 0 && (ihb == 1 || ihb == 2) &&
nbr_pj->d <= control->hb_cut )
{
// fprintf( stderr, "%d %d\n", atom1, atom2 );
jhb = sbp_j->p_hbond;
if ( ihb == 1 && jhb == 2 )
{
hbonds->select.hbond_list[ihb_top].nbr = j;
hbonds->select.hbond_list[ihb_top].scl = 1;
hbonds->select.hbond_list[ihb_top].ptr = nbr_pj;
++ihb_top;
++num_hbonds;
}
else if ( ihb == 2 && jhb == 1 )
{
jhb_top = End_Index( workspace->hbond_index[j], hbonds );
hbonds->select.hbond_list[jhb_top].nbr = i;
hbonds->select.hbond_list[jhb_top].scl = -1;
hbonds->select.hbond_list[jhb_top].ptr = nbr_pj;
Set_End_Index( workspace->hbond_index[j], jhb_top + 1, hbonds );
++num_hbonds;
}
}
/* uncorrected bond orders */
if ( far_nbrs->select.far_nbr_list[pj].d <= control->nbr_cut )
{
r2 = SQR(r_ij);
if ( sbp_i->r_s > 0.0 && sbp_j->r_s > 0.0)
{
C12 = twbp->p_bo1 * POW( r_ij / twbp->r_s, twbp->p_bo2 );
BO_s = (1.0 + control->bo_cut) * EXP( C12 );
}
else BO_s = C12 = 0.0;
if ( sbp_i->r_pi > 0.0 && sbp_j->r_pi > 0.0)
{
C34 = twbp->p_bo3 * POW( r_ij / twbp->r_p, twbp->p_bo4 );
BO_pi = EXP( C34 );
}
else BO_pi = C34 = 0.0;
if ( sbp_i->r_pi_pi > 0.0 && sbp_j->r_pi_pi > 0.0)
{
C56 = twbp->p_bo5 * POW( r_ij / twbp->r_pp, twbp->p_bo6 );
BO_pi2 = EXP( C56 );
}
else BO_pi2 = C56 = 0.0;
/* Initially BO values are the uncorrected ones, page 1 */
BO = BO_s + BO_pi + BO_pi2;
if ( BO >= control->bo_cut )
{
num_bonds += 2;
/****** bonds i-j and j-i ******/
ibond = &( bonds->select.bond_list[btop_i] );
btop_j = End_Index( j, bonds );
jbond = &(bonds->select.bond_list[btop_j]);
ibond->nbr = j;
jbond->nbr = i;
ibond->d = r_ij;
jbond->d = r_ij;
rvec_Copy( ibond->dvec, nbr_pj->dvec );
rvec_Scale( jbond->dvec, -1, nbr_pj->dvec );
ivec_Copy( ibond->rel_box, nbr_pj->rel_box );
ivec_Scale( jbond->rel_box, -1, nbr_pj->rel_box );
ibond->dbond_index = btop_i;
jbond->dbond_index = btop_i;
ibond->sym_index = btop_j;
jbond->sym_index = btop_i;
++btop_i;
Set_End_Index( j, btop_j + 1, bonds );
bo_ij = &( ibond->bo_data );
bo_ji = &( jbond->bo_data );
bo_ji->BO = bo_ij->BO = BO;
bo_ji->BO_s = bo_ij->BO_s = BO_s;
bo_ji->BO_pi = bo_ij->BO_pi = BO_pi;
bo_ji->BO_pi2 = bo_ij->BO_pi2 = BO_pi2;
/* Bond Order page2-3, derivative of total bond order prime */
Cln_BOp_s = twbp->p_bo2 * C12 / r2;
Cln_BOp_pi = twbp->p_bo4 * C34 / r2;
Cln_BOp_pi2 = twbp->p_bo6 * C56 / r2;
/* Only dln_BOp_xx wrt. dr_i is stored here, note that
dln_BOp_xx/dr_i = -dln_BOp_xx/dr_j and all others are 0 */
rvec_Scale(bo_ij->dln_BOp_s, -bo_ij->BO_s * Cln_BOp_s, ibond->dvec);
rvec_Scale(bo_ij->dln_BOp_pi, -bo_ij->BO_pi * Cln_BOp_pi, ibond->dvec);
rvec_Scale(bo_ij->dln_BOp_pi2,
-bo_ij->BO_pi2 * Cln_BOp_pi2, ibond->dvec);
rvec_Scale(bo_ji->dln_BOp_s, -1., bo_ij->dln_BOp_s);
rvec_Scale(bo_ji->dln_BOp_pi, -1., bo_ij->dln_BOp_pi );
rvec_Scale(bo_ji->dln_BOp_pi2, -1., bo_ij->dln_BOp_pi2 );
/* Only dBOp wrt. dr_i is stored here, note that
dBOp/dr_i = -dBOp/dr_j and all others are 0 */
rvec_Scale( bo_ij->dBOp,
-(bo_ij->BO_s * Cln_BOp_s +
bo_ij->BO_pi * Cln_BOp_pi +
bo_ij->BO_pi2 * Cln_BOp_pi2), ibond->dvec );
rvec_Scale( bo_ji->dBOp, -1., bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[i], bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[j], bo_ji->dBOp );
bo_ij->BO_s -= control->bo_cut;
bo_ij->BO -= control->bo_cut;
bo_ji->BO_s -= control->bo_cut;
bo_ji->BO -= control->bo_cut;
workspace->total_bond_order[i] += bo_ij->BO; //currently total_BOp
workspace->total_bond_order[j] += bo_ji->BO; //currently total_BOp
bo_ij->Cdbo = bo_ij->Cdbopi = bo_ij->Cdbopi2 = 0.0;
bo_ji->Cdbo = bo_ji->Cdbopi = bo_ji->Cdbopi2 = 0.0;
/*fprintf( stderr, "%d %d %g %g %g\n",
i+1, j+1, bo_ij->BO, bo_ij->BO_pi, bo_ij->BO_pi2 );*/
/*fprintf( stderr, "Cln_BOp_s: %f, pbo2: %f, C12:%f\n",
Cln_BOp_s, twbp->p_bo2, C12 );
fprintf( stderr, "Cln_BOp_pi: %f, pbo4: %f, C34:%f\n",
Cln_BOp_pi, twbp->p_bo4, C34 );
fprintf( stderr, "Cln_BOp_pi2: %f, pbo6: %f, C56:%f\n",
Cln_BOp_pi2, twbp->p_bo6, C56 );*/
/*fprintf(stderr, "pbo1: %f, pbo2:%f\n", twbp->p_bo1, twbp->p_bo2);
fprintf(stderr, "pbo3: %f, pbo4:%f\n", twbp->p_bo3, twbp->p_bo4);
fprintf(stderr, "pbo5: %f, pbo6:%f\n", twbp->p_bo5, twbp->p_bo6);
fprintf( stderr, "r_s: %f, r_p: %f, r_pp: %f\n",
twbp->r_s, twbp->r_p, twbp->r_pp );
fprintf( stderr, "C12: %g, C34:%g, C56:%g\n", C12, C34, C56 );*/
/*fprintf( stderr, "\tfactors: %g %g %g\n",
-(bo_ij->BO_s * Cln_BOp_s + bo_ij->BO_pi * Cln_BOp_pi +
bo_ij->BO_pi2 * Cln_BOp_pp),
-bo_ij->BO_pi * Cln_BOp_pi, -bo_ij->BO_pi2 * Cln_BOp_pi2 );*/
/*fprintf( stderr, "dBOpi:\t[%g, %g, %g]\n",
bo_ij->dBOp[0], bo_ij->dBOp[1], bo_ij->dBOp[2] );
fprintf( stderr, "dBOpi:\t[%g, %g, %g]\n",
bo_ij->dln_BOp_pi[0], bo_ij->dln_BOp_pi[1],
bo_ij->dln_BOp_pi[2] );
fprintf( stderr, "dBOpi2:\t[%g, %g, %g]\n\n",
bo_ij->dln_BOp_pi2[0], bo_ij->dln_BOp_pi2[1],
bo_ij->dln_BOp_pi2[2] );*/
Set_End_Index( j, btop_j + 1, bonds );
}
}
}
}
/* diagonal entry */
Kurt A. O'Hearn
committed
H->j[Htop] = i;
Kurt A. O'Hearn
committed
H->val[Htop] = Init_Charge_Matrix_Entry( system, control, i, j,
r_ij, DIAGONAL );
Kurt A. O'Hearn
committed
H_sp->j[H_sp_top] = i;
H_sp->val[H_sp_top] = H->val[Htop - 1];
Set_End_Index( i, btop_i, bonds );
if ( ihb == 1 )
Set_End_Index( workspace->hbond_index[i], ihb_top, hbonds );
//fprintf( stderr, "%d bonds start: %d, end: %d\n",
// i, Start_Index( i, bonds ), End_Index( i, bonds ) );
// printf("Htop = %d\n", Htop);
// printf("H_sp_top = %d\n", H_sp_top);
H_sp->start[i] = H_sp_top;
/* validate lists - decide if reallocation is required! */
Validate_Lists( workspace, lists,
data->step, system->N, H->m, Htop, num_bonds, num_hbonds );
fprintf( stderr, "step%d: Htop = %d, num_bonds = %d, num_hbonds = %d\n",
data->step, Htop, num_bonds, num_hbonds );
void Init_Forces_Tab( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
{
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int Htop, H_sp_top, btop_i, btop_j, num_bonds, num_hbonds;
int flag, flag_sp;
Kurt A. O'Hearn
committed
real r_ij, r2;
real C12, C34, C56;
real Cln_BOp_s, Cln_BOp_pi, Cln_BOp_pi2;
real BO, BO_s, BO_pi, BO_pi2;
real p_boc1, p_boc2;
sparse_matrix *H, *H_sp;
list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
bond_data *ibond, *jbond;
bond_order_data *bo_ij, *bo_ji;
far_nbrs = *lists + FAR_NBRS;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
H = workspace->H;
H_sp = workspace->H_sp;
H_sp_top = 0;
num_bonds = 0;
num_hbonds = 0;
btop_i = btop_j = 0;
p_boc1 = system->reaxprm.gp.l[0];
p_boc2 = system->reaxprm.gp.l[1];
for ( i = 0; i < system->N; ++i )
{
atom_i = &(system->atoms[i]);
type_i = atom_i->type;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
H->start[i] = Htop;
H_sp->start[i] = H_sp_top;
btop_i = End_Index( i, bonds );
sbp_i = &(system->reaxprm.sbp[type_i]);
ihb = ihb_top = -1;
if ( control->hb_cut > 0 && (ihb = sbp_i->p_hbond) == 1 )
ihb_top = End_Index( workspace->hbond_index[i], hbonds );
for ( pj = start_i; pj < end_i; ++pj )
{
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
atom_j = &(system->atoms[j]);
flag = 0;
flag_sp = 0;
if ((data->step - data->prev_steps) % control->reneighbor == 0)
{
if (nbr_pj->d <= control->r_cut)
{
if ( nbr_pj->d <= control->r_sp_cut )
{
flag_sp = 1;
}
}
else
{
flag = 0;
flag_sp = 0;
}
}
else if ((nbr_pj->d = Sq_Distance_on_T3(atom_i->x, atom_j->x, &(system->box),
nbr_pj->dvec)) <= SQR(control->r_cut))
{
if ( nbr_pj->d <= SQR(control->r_sp_cut))
{
flag_sp = 1;
}
nbr_pj->d = sqrt(nbr_pj->d);
flag = 1;
}
if ( flag )
{
type_j = system->atoms[j].type;
r_ij = nbr_pj->d;
sbp_j = &(system->reaxprm.sbp[type_j]);
twbp = &(system->reaxprm.tbp[type_i][type_j]);
Kurt A. O'Hearn
committed
H->j[Htop] = j;
Kurt A. O'Hearn
committed
H->val[Htop] = Init_Charge_Matrix_Entry_Tab( system, control, i, j,
r_ij, OFF_DIAGONAL );
/* H_sp matrix entry */
if ( flag_sp )
{
H_sp->j[H_sp_top] = j;
H_sp->val[H_sp_top] = H->val[Htop - 1];
++H_sp_top;
}
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
/* hydrogen bond lists */
if ( control->hb_cut > 0 && (ihb == 1 || ihb == 2) &&
nbr_pj->d <= control->hb_cut )
{
// fprintf( stderr, "%d %d\n", atom1, atom2 );
jhb = sbp_j->p_hbond;
if ( ihb == 1 && jhb == 2 )
{
hbonds->select.hbond_list[ihb_top].nbr = j;
hbonds->select.hbond_list[ihb_top].scl = 1;
hbonds->select.hbond_list[ihb_top].ptr = nbr_pj;
++ihb_top;
++num_hbonds;
}
else if ( ihb == 2 && jhb == 1 )
{
jhb_top = End_Index( workspace->hbond_index[j], hbonds );
hbonds->select.hbond_list[jhb_top].nbr = i;
hbonds->select.hbond_list[jhb_top].scl = -1;
hbonds->select.hbond_list[jhb_top].ptr = nbr_pj;
Set_End_Index( workspace->hbond_index[j], jhb_top + 1, hbonds );
++num_hbonds;
}
}
/* uncorrected bond orders */
if ( far_nbrs->select.far_nbr_list[pj].d <= control->nbr_cut )
{
r2 = SQR(r_ij);
if ( sbp_i->r_s > 0.0 && sbp_j->r_s > 0.0)
{
C12 = twbp->p_bo1 * POW( r_ij / twbp->r_s, twbp->p_bo2 );
BO_s = (1.0 + control->bo_cut) * EXP( C12 );
}
else BO_s = C12 = 0.0;
if ( sbp_i->r_pi > 0.0 && sbp_j->r_pi > 0.0)
{
C34 = twbp->p_bo3 * POW( r_ij / twbp->r_p, twbp->p_bo4 );
BO_pi = EXP( C34 );
}
else BO_pi = C34 = 0.0;
if ( sbp_i->r_pi_pi > 0.0 && sbp_j->r_pi_pi > 0.0)
{
C56 = twbp->p_bo5 * POW( r_ij / twbp->r_pp, twbp->p_bo6 );
BO_pi2 = EXP( C56 );
}
else BO_pi2 = C56 = 0.0;
/* Initially BO values are the uncorrected ones, page 1 */
BO = BO_s + BO_pi + BO_pi2;
if ( BO >= control->bo_cut )
{
num_bonds += 2;
/****** bonds i-j and j-i ******/
ibond = &( bonds->select.bond_list[btop_i] );
btop_j = End_Index( j, bonds );
jbond = &(bonds->select.bond_list[btop_j]);
ibond->nbr = j;
jbond->nbr = i;
ibond->d = r_ij;
jbond->d = r_ij;
rvec_Copy( ibond->dvec, nbr_pj->dvec );
//fprintf (stderr, " %f - %f - %f \n", nbr_pj->dvec[0], nbr_pj->dvec[1], nbr_pj->dvec[2]);
rvec_Scale( jbond->dvec, -1, nbr_pj->dvec );
ivec_Copy( ibond->rel_box, nbr_pj->rel_box );
ivec_Scale( jbond->rel_box, -1, nbr_pj->rel_box );
ibond->dbond_index = btop_i;
jbond->dbond_index = btop_i;
ibond->sym_index = btop_j;
jbond->sym_index = btop_i;
++btop_i;
Set_End_Index( j, btop_j + 1, bonds );
bo_ij = &( ibond->bo_data );
bo_ji = &( jbond->bo_data );
bo_ji->BO = bo_ij->BO = BO;
bo_ji->BO_s = bo_ij->BO_s = BO_s;
bo_ji->BO_pi = bo_ij->BO_pi = BO_pi;
bo_ji->BO_pi2 = bo_ij->BO_pi2 = BO_pi2;
/* Bond Order page2-3, derivative of total bond order prime */
Cln_BOp_s = twbp->p_bo2 * C12 / r2;
Cln_BOp_pi = twbp->p_bo4 * C34 / r2;
Cln_BOp_pi2 = twbp->p_bo6 * C56 / r2;
/* Only dln_BOp_xx wrt. dr_i is stored here, note that
dln_BOp_xx/dr_i = -dln_BOp_xx/dr_j and all others are 0 */
rvec_Scale(bo_ij->dln_BOp_s, -bo_ij->BO_s * Cln_BOp_s, ibond->dvec);
rvec_Scale(bo_ij->dln_BOp_pi, -bo_ij->BO_pi * Cln_BOp_pi, ibond->dvec);
rvec_Scale(bo_ij->dln_BOp_pi2,
-bo_ij->BO_pi2 * Cln_BOp_pi2, ibond->dvec);
rvec_Scale(bo_ji->dln_BOp_s, -1., bo_ij->dln_BOp_s);
rvec_Scale(bo_ji->dln_BOp_pi, -1., bo_ij->dln_BOp_pi );
rvec_Scale(bo_ji->dln_BOp_pi2, -1., bo_ij->dln_BOp_pi2 );
/* Only dBOp wrt. dr_i is stored here, note that
dBOp/dr_i = -dBOp/dr_j and all others are 0 */
rvec_Scale( bo_ij->dBOp,
-(bo_ij->BO_s * Cln_BOp_s +
bo_ij->BO_pi * Cln_BOp_pi +
bo_ij->BO_pi2 * Cln_BOp_pi2), ibond->dvec );
rvec_Scale( bo_ji->dBOp, -1., bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[i], bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[j], bo_ji->dBOp );
bo_ij->BO_s -= control->bo_cut;
bo_ij->BO -= control->bo_cut;
bo_ji->BO_s -= control->bo_cut;
bo_ji->BO -= control->bo_cut;
workspace->total_bond_order[i] += bo_ij->BO; //currently total_BOp
workspace->total_bond_order[j] += bo_ji->BO; //currently total_BOp
bo_ij->Cdbo = bo_ij->Cdbopi = bo_ij->Cdbopi2 = 0.0;
bo_ji->Cdbo = bo_ji->Cdbopi = bo_ji->Cdbopi2 = 0.0;
Set_End_Index( j, btop_j + 1, bonds );
}
}
}
}
/* diagonal entry */
Kurt A. O'Hearn
committed
H->j[Htop] = i;
Kurt A. O'Hearn
committed
H->val[Htop] = Init_Charge_Matrix_Entry_Tab( system, control, i, j,
r_ij, DIAGONAL );
H_sp->j[H_sp_top] = i;
H_sp->val[H_sp_top] = H->val[Htop - 1];
++H_sp_top;
Set_End_Index( i, btop_i, bonds );
if ( ihb == 1 )
Set_End_Index( workspace->hbond_index[i], ihb_top, hbonds );
H_sp->start[i] = H_sp_top;
/* validate lists - decide if reallocation is required! */
Validate_Lists( workspace, lists,
data->step, system->N, H->m, Htop, num_bonds, num_hbonds );
fprintf( stderr, "step%d: Htop = %d, num_bonds = %d, num_hbonds = %d\n",
data->step, Htop, num_bonds, num_hbonds );
//Print_Bonds( system, bonds, "sbonds.out" );
//Print_Bond_List2( system, bonds, "sbonds.out" );
//Print_Sparse_Matrix2( H, "H.out" );
void Estimate_Storage_Sizes( reax_system *system, control_params *control,
list **lists, int *Htop, int *hb_top,
int *bond_top, int *num_3body )
{
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int ihb, jhb;
real r_ij, r2;
real C12, C34, C56;
real BO, BO_s, BO_pi, BO_pi2;
real p_boc1, p_boc2;
list *far_nbrs;
single_body_parameters *sbp_i, *sbp_j;