Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
Reyesrivera, Jose
Hj scattering amplitudes
Commits
34924362
Commit
34924362
authored
Oct 04, 2019
by
Reyesrivera, Jose
Browse files
add vel series
parent
4151946b
Changes
9
Expand all
Hide whitespace changes
Inline
Side-by-side
feynamps/ggH_LR.m
0 → 100644
View file @
34924362
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
(
Alfas
*
EL
*
MT
^
2
*
Mat
[
SUNT
[
Glu1
,
Glu2
,
0
,
0
]]
*
((
2
+
Eps
^
(
-
1
)
+
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
4
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
MH
^
2
)
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
))
*
Pair
[
e
[
1
]
,
e
[
2
]]
+
4
*
(
1
/
(
2
*
MH
^
2
)
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
MH
^
4
))
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
-
(
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
*
(
-
(
MH
^
2
*
Pair
[
e
[
1
]
,
e
[
2
]])
+
2
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]))
/
(
4
*
MH
^
2
)))
/
(
MW
*
Pi
*
SW
)
feynamps/ggH_LRS.m
0 → 100644
View file @
34924362
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
(
Alfas
*
EL
*
MT
^
2
*
Mat
[
SUNT
[
Glu1
,
Glu2
,
0
,
0
]]
*
((
2
+
Eps
^
(
-
1
)
+
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
4
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
MH
^
2
)
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
))
*
Pair
[
e
[
1
]
,
e
[
2
]]
+
4
*
(
1
/
(
2
*
MH
^
2
)
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
MH
^
4
))
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
-
(
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
*
(
-
(
MH
^
2
*
Pair
[
e
[
1
]
,
e
[
2
]])
+
2
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]))
/
(
4
*
MH
^
2
)))
/
(
MW
*
Pi
*
SW
)
feynamps/ggHg_LR.m
0 → 100644
View file @
34924362
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
Amp
[{{
V
[
5
,
{
Glu1
}]
,
k
[
1
]
,
0
,
{
Sqrt
[
3
]
*
ColorCharge
}}
,
{
V
[
5
,
{
Glu2
}]
,
k
[
2
]
,
0
,
{
Sqrt
[
3
]
*
ColorCharge
}}}
->
{{
S
[
1
]
,
k
[
3
]
,
MH
,
{}}
,
{
V
[
5
,
{
Glu4
}]
,
k
[
4
]
,
0
,
{
Sqrt
[
3
]
*
ColorCharge
}}}][
(
Alfas
*
EL
*
GS
*
MT
^
2
*
Mat
[
SUNT
[
Glu1
,
Glu2
,
Glu4
,
0
,
0
]]
*
(((
2
+
Eps
^
(
-
1
)
+
DiscB
[
S
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
S
))
-
(
S
*
DiscB
[
S
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
S
))
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
S
))
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
-
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
-
((
4
*
MT
^
2
-
S
)
*
S
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
S
))))
*
(
2
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
2
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
e
[
2
]]
*
(
Pair
[
ec
[
4
]
,
k
[
1
]]
-
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
2
*
(
-
1
/
(
2
*
(
MH
^
2
-
S
))
-
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
S
)
^
2
)
-
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
S
))
+
(
MH
^
2
*
DiscB
[
S
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
S
)
^
2
)
+
DiscB
[
S
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
S
))
-
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
S
)
^
2
)
+
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
-
((
4
*
MT
^
2
-
S
)
*
S
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
S
)
^
2
))
*
((
-
T
+
U
)
*
Pair
[
e
[
1
]
,
e
[
2
]]
+
4
*
(
-
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
e
[
2
]
,
k
[
1
]])
+
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
3
]]))
*
Pair
[
ec
[
4
]
,
k
[
3
]]
-
(
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
S
)
-
DiscB
[
S
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
S
))
*
(
2
*
(
-
MH
^
2
+
S
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
2
*
(
MH
^
2
-
S
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
8
*
(
-
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
e
[
2
]
,
k
[
1
]])
+
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
3
]])
*
Pair
[
ec
[
4
]
,
k
[
3
]]
-
Pair
[
e
[
1
]
,
e
[
2
]]
*
(
2
*
(
T
+
U
)
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
(
T
-
3
*
U
)
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
-
(
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
S
))
-
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
-
((
4
*
MT
^
2
-
S
)
*
S
)])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
S
)))
*
((
-
MH
^
2
+
S
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
(
MH
^
2
-
S
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
2
*
(
-
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
e
[
2
]
,
k
[
1
]])
+
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
3
]])
*
Pair
[
ec
[
4
]
,
k
[
3
]]
-
Pair
[
e
[
1
]
,
e
[
2
]]
*
((
T
+
U
)
*
Pair
[
ec
[
4
]
,
k
[
1
]]
-
U
*
Pair
[
ec
[
4
]
,
k
[
3
]])))
/
S
+
((
2
+
Eps
^
(
-
1
)
+
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
U
))
-
(
U
*
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
U
))
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
U
))
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
-
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
U
+
Sqrt
[
-
((
4
*
MT
^
2
-
U
)
*
U
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
U
))))
*
(
2
*
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
Pair
[
e
[
1
]
,
ec
[
4
]]
*
(
Pair
[
e
[
2
]
,
k
[
1
]]
+
Pair
[
e
[
2
]
,
k
[
4
]])
+
2
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]])
-
2
*
(
-
1
/
(
2
*
(
MH
^
2
-
U
))
-
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
U
)
^
2
)
+
(
MH
^
2
*
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
U
)
^
2
)
-
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
U
)
^
2
)
+
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
U
+
Sqrt
[
-
((
4
*
MT
^
2
-
U
)
*
U
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
U
)
^
2
))
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
((
-
S
+
T
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
+
4
*
(
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
(
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
U
))
-
Log
[(
2
*
MT
^
2
-
U
+
Sqrt
[
-
((
4
*
MT
^
2
-
U
)
*
U
)])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
U
)))
*
((
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
Pair
[
e
[
1
]
,
ec
[
4
]]
*
((
-
MH
^
2
+
U
)
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
S
*
Pair
[
e
[
2
]
,
k
[
3
]])
+
(
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
2
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
(
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
2
*
(
-
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
U
))
+
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
U
)))
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
((
-
S
+
T
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
+
4
*
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
-
(
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
U
)
-
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
U
))
*
(
2
*
(
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
Pair
[
e
[
1
]
,
ec
[
4
]]
*
(
2
*
(
S
+
T
)
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
(
-
3
*
S
+
T
)
*
Pair
[
e
[
2
]
,
k
[
3
]])
+
2
*
(
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
8
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]])))
/
U
-
((
2
+
Eps
^
(
-
1
)
+
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
T
))
-
(
T
*
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
T
))
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
T
))
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
-
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
T
+
Sqrt
[
-
((
4
*
MT
^
2
-
T
)
*
T
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
T
))))
*
(
-
((
Pair
[
e
[
1
]
,
k
[
2
]]
+
Pair
[
e
[
1
]
,
k
[
4
]])
*
Pair
[
e
[
2
]
,
ec
[
4
]])
+
2
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
4
]]
+
2
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]])
-
(
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
T
))
-
Log
[(
2
*
MT
^
2
-
T
+
Sqrt
[
-
((
4
*
MT
^
2
-
T
)
*
T
)])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
T
)))
*
(((
S
+
U
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
-
S
*
Pair
[
e
[
1
]
,
k
[
3
]])
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
(
MH
^
2
-
T
)
*
(
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
4
]]
+
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]])
+
2
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
(
Pair
[
e
[
2
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
2
]
,
k
[
1
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
(
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
T
)
-
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
T
))
*
((
2
*
(
S
+
U
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
+
(
-
3
*
S
+
U
)
*
Pair
[
e
[
1
]
,
k
[
3
]])
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
2
*
(
MH
^
2
-
T
)
*
(
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
4
]]
+
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]])
+
8
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
(
Pair
[
e
[
2
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]
+
Pair
[
e
[
2
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
-
2
*
((
-
1
/
(
2
*
(
MH
^
2
-
T
))
-
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
T
)
^
2
)
+
(
MH
^
2
*
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
T
)
^
2
)
-
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
T
)
^
2
)
+
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
T
+
Sqrt
[
-
((
4
*
MT
^
2
-
T
)
*
T
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
T
)
^
2
))
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
((
-
S
+
U
)
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
4
*
(
-
(
Pair
[
e
[
2
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]])
+
Pair
[
e
[
2
]
,
k
[
1
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
+
(
-
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
T
))
+
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
T
)))
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
((
-
S
+
U
)
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
4
*
(
Pair
[
e
[
2
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]
+
Pair
[
e
[
2
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))))
/
T
))
/
(
MW
*
Pi
*
SW
)
-
(
Alfas
*
EL
*
GS
*
MT
^
2
*
Mat
[
SUNT
[
Glu1
,
Glu4
,
Glu2
,
0
,
0
]]
*
(((
2
+
Eps
^
(
-
1
)
+
DiscB
[
S
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
S
))
-
(
S
*
DiscB
[
S
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
S
))
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
S
))
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
-
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
-
((
4
*
MT
^
2
-
S
)
*
S
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
S
))))
*
(
2
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
2
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
e
[
2
]]
*
(
Pair
[
ec
[
4
]
,
k
[
1
]]
-
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
2
*
(
-
1
/
(
2
*
(
MH
^
2
-
S
))
-
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
S
)
^
2
)
-
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
S
))
+
(
MH
^
2
*
DiscB
[
S
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
S
)
^
2
)
+
DiscB
[
S
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
S
))
-
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
S
)
^
2
)
+
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
-
((
4
*
MT
^
2
-
S
)
*
S
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
S
)
^
2
))
*
((
-
T
+
U
)
*
Pair
[
e
[
1
]
,
e
[
2
]]
+
4
*
(
-
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
e
[
2
]
,
k
[
1
]])
+
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
3
]]))
*
Pair
[
ec
[
4
]
,
k
[
3
]]
-
(
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
S
)
-
DiscB
[
S
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
S
))
*
(
2
*
(
-
MH
^
2
+
S
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
2
*
(
MH
^
2
-
S
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
8
*
(
-
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
e
[
2
]
,
k
[
1
]])
+
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
3
]])
*
Pair
[
ec
[
4
]
,
k
[
3
]]
-
Pair
[
e
[
1
]
,
e
[
2
]]
*
(
2
*
(
T
+
U
)
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
(
T
-
3
*
U
)
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
-
(
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
S
))
-
Log
[(
2
*
MT
^
2
-
S
+
Sqrt
[
-
((
4
*
MT
^
2
-
S
)
*
S
)])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
S
)))
*
((
-
MH
^
2
+
S
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
(
MH
^
2
-
S
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
2
*
(
-
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
e
[
2
]
,
k
[
1
]])
+
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
3
]])
*
Pair
[
ec
[
4
]
,
k
[
3
]]
-
Pair
[
e
[
1
]
,
e
[
2
]]
*
((
T
+
U
)
*
Pair
[
ec
[
4
]
,
k
[
1
]]
-
U
*
Pair
[
ec
[
4
]
,
k
[
3
]])))
/
S
+
((
2
+
Eps
^
(
-
1
)
+
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
U
))
-
(
U
*
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
U
))
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
U
))
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
-
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
U
+
Sqrt
[
-
((
4
*
MT
^
2
-
U
)
*
U
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
U
))))
*
(
2
*
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
Pair
[
e
[
1
]
,
ec
[
4
]]
*
(
Pair
[
e
[
2
]
,
k
[
1
]]
+
Pair
[
e
[
2
]
,
k
[
4
]])
+
2
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]])
-
2
*
(
-
1
/
(
2
*
(
MH
^
2
-
U
))
-
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
U
)
^
2
)
+
(
MH
^
2
*
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
U
)
^
2
)
-
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
U
)
^
2
)
+
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
U
+
Sqrt
[
-
((
4
*
MT
^
2
-
U
)
*
U
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
U
)
^
2
))
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
((
-
S
+
T
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
+
4
*
(
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
(
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
U
))
-
Log
[(
2
*
MT
^
2
-
U
+
Sqrt
[
-
((
4
*
MT
^
2
-
U
)
*
U
)])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
U
)))
*
((
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
Pair
[
e
[
1
]
,
ec
[
4
]]
*
((
-
MH
^
2
+
U
)
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
S
*
Pair
[
e
[
2
]
,
k
[
3
]])
+
(
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
2
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
(
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
2
*
(
-
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
U
))
+
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
U
)))
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
((
-
S
+
T
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
+
4
*
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
-
(
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
U
)
-
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
U
))
*
(
2
*
(
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
Pair
[
e
[
1
]
,
ec
[
4
]]
*
(
2
*
(
S
+
T
)
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
(
-
3
*
S
+
T
)
*
Pair
[
e
[
2
]
,
k
[
3
]])
+
2
*
(
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
8
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]])))
/
U
-
((
2
+
Eps
^
(
-
1
)
+
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
T
))
-
(
T
*
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
T
))
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
T
))
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
-
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
T
+
Sqrt
[
-
((
4
*
MT
^
2
-
T
)
*
T
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
T
))))
*
(
-
((
Pair
[
e
[
1
]
,
k
[
2
]]
+
Pair
[
e
[
1
]
,
k
[
4
]])
*
Pair
[
e
[
2
]
,
ec
[
4
]])
+
2
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
4
]]
+
2
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]])
-
(
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
T
))
-
Log
[(
2
*
MT
^
2
-
T
+
Sqrt
[
-
((
4
*
MT
^
2
-
T
)
*
T
)])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
T
)))
*
(((
S
+
U
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
-
S
*
Pair
[
e
[
1
]
,
k
[
3
]])
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
(
MH
^
2
-
T
)
*
(
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
4
]]
+
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]])
+
2
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
(
Pair
[
e
[
2
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
2
]
,
k
[
1
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
(
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
T
)
-
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
T
))
*
((
2
*
(
S
+
U
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
+
(
-
3
*
S
+
U
)
*
Pair
[
e
[
1
]
,
k
[
3
]])
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
2
*
(
MH
^
2
-
T
)
*
(
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
4
]]
+
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]])
+
8
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
(
Pair
[
e
[
2
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]
+
Pair
[
e
[
2
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
-
2
*
((
-
1
/
(
2
*
(
MH
^
2
-
T
))
-
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
T
)
^
2
)
+
(
MH
^
2
*
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
T
)
^
2
)
-
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
T
)
^
2
)
+
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
T
+
Sqrt
[
-
((
4
*
MT
^
2
-
T
)
*
T
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
T
)
^
2
))
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
((
-
S
+
U
)
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
4
*
(
-
(
Pair
[
e
[
2
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]])
+
Pair
[
e
[
2
]
,
k
[
1
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
+
(
-
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
T
))
+
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
T
)))
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
((
-
S
+
U
)
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
4
*
(
Pair
[
e
[
2
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]
+
Pair
[
e
[
2
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))))
/
T
))
/
(
MW
*
Pi
*
SW
)]
feynamps/ggHg_LRS.m
0 → 100644
View file @
34924362
(* Created with the Wolfram Language for Students - Personal Use Only : www.wolfram.com *)
Amp
[{{
V
[
5
,
{
Glu1
}]
,
k
[
1
]
,
0
,
{
Sqrt
[
3
]
*
ColorCharge
}}
,
{
V
[
5
,
{
Glu2
}]
,
k
[
2
]
,
0
,
{
Sqrt
[
3
]
*
ColorCharge
}}}
->
{{
S
[
1
]
,
k
[
3
]
,
MH
,
{}}
,
{
V
[
5
,
{
Glu4
}]
,
k
[
4
]
,
0
,
{
Sqrt
[
3
]
*
ColorCharge
}}}][
(
Alfas
*
EL
*
GS
*
MT
^
2
*
Mat
[
SUNT
[
Glu1
,
Glu2
,
Glu4
,
0
,
0
]]
*
(((
2
+
Eps
^
(
-
1
)
+
DiscB
[(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
-
(
MT
^
2
*
DiscB
[(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
((
1
-
\[Beta]
^
2
)
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
-
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)
+
2
*
Sqrt
[
-
((
MT
^
2
*
(
4
*
MT
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
/
(
1
-
\[Beta]
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))))
*
(
2
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
2
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
e
[
2
]]
*
(
Pair
[
ec
[
4
]
,
k
[
1
]]
-
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
2
*
(
-
1
/
(
2
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
-
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
))
^
2
)
-
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
+
(
MH
^
2
*
DiscB
[(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
))
^
2
)
+
DiscB
[(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
-
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
))
^
2
)
+
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)
+
2
*
Sqrt
[
-
((
MT
^
2
*
(
4
*
MT
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
/
(
1
-
\[Beta]
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
))
^
2
))
*
((
-
T
+
U
)
*
Pair
[
e
[
1
]
,
e
[
2
]]
+
4
*
(
-
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
e
[
2
]
,
k
[
1
]])
+
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
3
]]))
*
Pair
[
ec
[
4
]
,
k
[
3
]]
-
(
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
))
-
DiscB
[(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
*
(
2
*
(
-
MH
^
2
+
S
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
2
*
(
MH
^
2
-
S
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
8
*
(
-
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
e
[
2
]
,
k
[
1
]])
+
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
3
]])
*
Pair
[
ec
[
4
]
,
k
[
3
]]
-
Pair
[
e
[
1
]
,
e
[
2
]]
*
(
2
*
(
T
+
U
)
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
(
T
-
3
*
U
)
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
-
(
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
-
Log
[(
2
*
MT
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)
+
2
*
Sqrt
[
-
((
MT
^
2
*
(
4
*
MT
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
/
(
1
-
\[Beta]
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
))))
*
((
-
MH
^
2
+
S
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
(
MH
^
2
-
S
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
2
*
(
-
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
e
[
2
]
,
k
[
1
]])
+
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
k
[
3
]])
*
Pair
[
ec
[
4
]
,
k
[
3
]]
-
Pair
[
e
[
1
]
,
e
[
2
]]
*
((
T
+
U
)
*
Pair
[
ec
[
4
]
,
k
[
1
]]
-
U
*
Pair
[
ec
[
4
]
,
k
[
3
]])))
/
S
+
((
2
+
Eps
^
(
-
1
)
+
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
U
))
-
(
U
*
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
U
))
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
U
))
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
-
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
U
+
Sqrt
[
-
((
4
*
MT
^
2
-
U
)
*
U
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
U
))))
*
(
2
*
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
Pair
[
e
[
1
]
,
ec
[
4
]]
*
(
Pair
[
e
[
2
]
,
k
[
1
]]
+
Pair
[
e
[
2
]
,
k
[
4
]])
+
2
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]])
-
2
*
(
-
1
/
(
2
*
(
MH
^
2
-
U
))
-
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
U
)
^
2
)
+
(
MH
^
2
*
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
U
)
^
2
)
-
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
U
)
^
2
)
+
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
U
+
Sqrt
[
-
((
4
*
MT
^
2
-
U
)
*
U
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
U
)
^
2
))
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
((
-
S
+
T
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
+
4
*
(
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
(
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
U
))
-
Log
[(
2
*
MT
^
2
-
U
+
Sqrt
[
-
((
4
*
MT
^
2
-
U
)
*
U
)])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
U
)))
*
((
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
Pair
[
e
[
1
]
,
ec
[
4
]]
*
((
-
MH
^
2
+
U
)
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
S
*
Pair
[
e
[
2
]
,
k
[
3
]])
+
(
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
2
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
(
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
2
*
(
-
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
U
))
+
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
U
)))
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
((
-
S
+
T
)
*
Pair
[
e
[
1
]
,
ec
[
4
]]
+
4
*
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
-
(
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
U
)
-
DiscB
[
U
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
U
))
*
(
2
*
(
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
Pair
[
e
[
1
]
,
ec
[
4
]]
*
(
2
*
(
S
+
T
)
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
(
-
3
*
S
+
T
)
*
Pair
[
e
[
2
]
,
k
[
3
]])
+
2
*
(
-
MH
^
2
+
U
)
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
8
*
Pair
[
e
[
2
]
,
k
[
3
]]
*
(
Pair
[
e
[
1
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]])))
/
U
-
((
2
+
Eps
^
(
-
1
)
+
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
T
))
-
(
T
*
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
T
))
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
T
))
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
-
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
T
+
Sqrt
[
-
((
4
*
MT
^
2
-
T
)
*
T
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
T
))))
*
(
-
((
Pair
[
e
[
1
]
,
k
[
2
]]
+
Pair
[
e
[
1
]
,
k
[
4
]])
*
Pair
[
e
[
2
]
,
ec
[
4
]])
+
2
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
4
]]
+
2
*
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]])
-
(
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
T
))
-
Log
[(
2
*
MT
^
2
-
T
+
Sqrt
[
-
((
4
*
MT
^
2
-
T
)
*
T
)])
/
(
2
*
MT
^
2
)]
^
2
/
(
2
*
(
MH
^
2
-
T
)))
*
(((
S
+
U
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
-
S
*
Pair
[
e
[
1
]
,
k
[
3
]])
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
(
MH
^
2
-
T
)
*
(
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
4
]]
+
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]])
+
2
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
(
Pair
[
e
[
2
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]]
+
Pair
[
e
[
2
]
,
k
[
1
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
(
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
T
)
-
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
MH
^
2
-
T
))
*
((
2
*
(
S
+
U
)
*
Pair
[
e
[
1
]
,
k
[
2
]]
+
(
-
3
*
S
+
U
)
*
Pair
[
e
[
1
]
,
k
[
3
]])
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
2
*
(
MH
^
2
-
T
)
*
(
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
4
]]
+
Pair
[
e
[
1
]
,
e
[
2
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]])
+
8
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
(
Pair
[
e
[
2
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]
+
Pair
[
e
[
2
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
-
2
*
((
-
1
/
(
2
*
(
MH
^
2
-
T
))
-
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
T
)
^
2
)
+
(
MH
^
2
*
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
2
*
(
MH
^
2
-
T
)
^
2
)
-
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
T
)
^
2
)
+
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
T
+
Sqrt
[
-
((
4
*
MT
^
2
-
T
)
*
T
)])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
2
*
(
MH
^
2
-
T
)
^
2
))
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
((
-
S
+
U
)
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
4
*
(
-
(
Pair
[
e
[
2
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
1
]])
+
Pair
[
e
[
2
]
,
k
[
1
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))
+
(
-
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
T
))
+
DiscB
[
T
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
/
(
2
*
(
MH
^
2
-
T
)))
*
Pair
[
e
[
1
]
,
k
[
3
]]
*
((
-
S
+
U
)
*
Pair
[
e
[
2
]
,
ec
[
4
]]
+
4
*
(
Pair
[
e
[
2
]
,
k
[
3
]]
*
Pair
[
ec
[
4
]
,
k
[
2
]]
+
Pair
[
e
[
2
]
,
k
[
4
]]
*
Pair
[
ec
[
4
]
,
k
[
3
]]))))
/
T
))
/
(
MW
*
Pi
*
SW
)
-
(
Alfas
*
EL
*
GS
*
MT
^
2
*
Mat
[
SUNT
[
Glu1
,
Glu4
,
Glu2
,
0
,
0
]]
*
(((
2
+
Eps
^
(
-
1
)
+
DiscB
[(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]]
+
Log
[
Mu
^
2
/
MT
^
2
]
-
4
*
(
3
/
4
+
(
MH
^
2
*
DiscB
[
MH
^
2
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
(
4
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
-
(
MT
^
2
*
DiscB
[(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)
,
Sqrt
[
MT
^
2
]
,
Sqrt
[
MT
^
2
]])
/
((
1
-
\[Beta]
^
2
)
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
+
(
MT
^
2
*
Log
[(
-
MH
^
2
+
2
*
MT
^
2
+
Sqrt
[
-
(
MH
^
2
*
(
-
MH
^
2
+
4
*
MT
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
+
(
Eps
^
(
-
1
)
+
Log
[
Mu
^
2
/
MT
^
2
])
/
4
-
(
MT
^
2
*
Log
[(
2
*
MT
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)
+
2
*
Sqrt
[
-
((
MT
^
2
*
(
4
*
MT
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))
/
(
1
-
\[Beta]
^
2
))])
/
(
2
*
MT
^
2
)]
^
2
)
/
(
4
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1
-
\[Beta]
^
2
)))))
*
(
2
*
Pair
[
e
[
1
]
,
k
[
2
]]
*
Pair
[
e
[
2
]
,
ec
[
4
]]
-
2
*
Pair
[
e
[
1
]
,
ec
[
4
]]
*
Pair
[
e
[
2
]
,
k
[
1
]]
+
Pair
[
e
[
1
]
,
e
[
2
]]
*
(
Pair
[
ec
[
4
]
,
k
[
1
]]
-
Pair
[
ec
[
4
]
,
k
[
2
]]))
-
2
*
(
-
1
/
(
2
*
(
MH
^
2
-
(
4
*
MT
^
2
)
/
(
1