Newer
Older
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "reax_types.h"
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
#include "cuda_allocate.h"
#include "cuda_list.h"
Kurt A. O'Hearn
committed
#include "cuda_copy.h"
#include "cuda_forces.h"
#include "cuda_init_md.h"
#include "cuda_neighbors.h"
#include "cuda_reset_tools.h"
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
#include "init_md.h"
#include "allocate.h"
#include "box.h"
#include "comm_tools.h"
#include "forces.h"
#include "grid.h"
#include "integrate.h"
#include "io_tools.h"
#include "list.h"
#include "lookup.h"
#include "neighbors.h"
#include "random.h"
#include "reset_tools.h"
#include "system_props.h"
#include "tool_box.h"
#include "vector.h"
Kurt A. O'Hearn
committed
#include "reax_init_md.h"
#include "reax_allocate.h"
#include "reax_forces.h"
#include "reax_io_tools.h"
#include "reax_list.h"
#include "reax_lookup.h"
#include "reax_reset_tools.h"
#include "reax_system_props.h"
#include "reax_tool_box.h"
#include "reax_vector.h"
#endif
#if defined(PURE_REAX)
/************************ initialize system ************************/
int Reposition_Atoms( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, mpi_datatypes *mpi_data, char *msg )
Kurt A. O'Hearn
committed
int i;
rvec dx;
/* reposition atoms */
if ( control->reposition_atoms == 0 ) //fit atoms to periodic box
{
rvec_MakeZero( dx );
}
else if ( control->reposition_atoms == 1 ) //put center of mass to center
{
rvec_Scale( dx, 0.5, system->big_box.box_norms );
rvec_ScaledAdd( dx, -1., data->xcm );
}
else if ( control->reposition_atoms == 2 ) //put center of mass to origin
{
rvec_Scale( dx, -1., data->xcm );
}
else
{
strcpy( msg, "reposition_atoms: invalid option" );
return FAILURE;
}
for ( i = 0; i < system->n; ++i )
// Inc_on_T3_Gen( system->my_atoms[i].x, dx, &(system->big_box) );
rvec_Add( system->my_atoms[i].x, dx );
return SUCCESS;
}
void Generate_Initial_Velocities( reax_system *system, real T )
{
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
int i;
real m, scale, norm;
if ( T <= 0.1 )
{
for ( i = 0; i < system->n; i++ )
rvec_MakeZero( system->my_atoms[i].v );
}
else
{
Randomize();
for ( i = 0; i < system->n; i++ )
{
rvec_Random( system->my_atoms[i].v );
norm = rvec_Norm_Sqr( system->my_atoms[i].v );
m = system->reax_param.sbp[ system->my_atoms[i].type ].mass;
scale = SQRT( m * norm / (3.0 * K_B * T) );
rvec_Scale( system->my_atoms[i].v, 1. / scale, system->my_atoms[i].v );
// fprintf( stderr, "v = %f %f %f\n",
// system->my_atoms[i].v[0],
// system->my_atoms[i].v[1],
// system->my_atoms[i].v[2] );
// fprintf( stderr, "scale = %f\n", scale );
// fprintf( stderr, "v = %f %f %f\n",
// system->my_atoms[i].v[0],
// system->my_atoms[i].v[1],
// system->my_atoms[i].v[2] );
}
int Init_System( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, storage *workspace,
mpi_datatypes *mpi_data, char *msg )
int i;
reax_atom *atom;
int nrecv[MAX_NBRS];
Setup_New_Grid( system, control, MPI_COMM_WORLD );
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d GRID:\n", system->my_rank );
Print_Grid( &(system->my_grid), stderr );
Kurt A. O'Hearn
committed
Bin_My_Atoms( system, &(workspace->realloc) );
Reorder_My_Atoms( system, workspace );
/* estimate N and total capacity */
Kurt A. O'Hearn
committed
for ( i = 0; i < MAX_NBRS; ++i )
{
nrecv[i] = 0;
}
MPI_Barrier( MPI_COMM_WORLD );
system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
Estimate_Boundary_Atoms, Unpack_Estimate_Message, TRUE );
system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP );
Bin_Boundary_Atoms( system );
/* estimate numH and Hcap */
system->numH = 0;
Kurt A. O'Hearn
committed
if ( control->hbond_cut > 0.0 )
{
for ( i = 0; i < system->n; ++i )
{
atom = &(system->my_atoms[i]);
Kurt A. O'Hearn
committed
if ( system->reax_param.sbp[ atom->type ].p_hbond == 1 )
Kurt A. O'Hearn
committed
{
atom->Hindex = system->numH++;
Kurt A. O'Hearn
committed
}
else
{
atom->Hindex = -1;
}
Kurt A. O'Hearn
committed
}
//Tried fix
//system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
system->Hcap = MAX( system->n * SAFER_ZONE, MIN_CAP );
// Sudhir-style below
/*
Kurt A. O'Hearn
committed
if ( control->hbond_cut > 0.0 )
for ( i = 0; i < system->n; ++i )
{
atom = &(system->my_atoms[i]);
if ( system->reax_param.sbp[ atom->type ].p_hbond == 1 )
atom->Hindex = system->numH++;
else atom->Hindex = -1;
}
system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
Kurt A. O'Hearn
committed
//Sync_System( system );
//Allocate_System( system, system->local_cap, system->total_cap, msg );
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: n=%d local_cap=%d\n",
system->my_rank, system->n, system->local_cap );
fprintf( stderr, "p%d: N=%d total_cap=%d\n",
system->my_rank, system->N, system->total_cap );
fprintf( stderr, "p%d: numH=%d H_cap=%d\n",
system->my_rank, system->numH, system->Hcap );
Compute_Total_Mass( system, data, mpi_data->comm_mesh3D );
Compute_Center_of_Mass( system, data, mpi_data, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
// if( Reposition_Atoms( system, control, data, mpi_data, msg ) == FAILURE )
// {
// return FAILURE;
// }
/* initialize velocities so that desired init T can be attained */
if ( !control->restart || (control->restart && control->random_vel) )
Kurt A. O'Hearn
committed
{
Generate_Initial_Velocities( system, control->T_init );
Kurt A. O'Hearn
committed
}
Compute_Kinetic_Energy( system, data, mpi_data->comm_mesh3D );
return SUCCESS;
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
int Cuda_Init_System( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, storage *workspace,
mpi_datatypes *mpi_data, char *msg )
Kurt A. O'Hearn
committed
int i, ret;
reax_atom *atom;
int nrecv[MAX_NBRS];
Setup_New_Grid( system, control, MPI_COMM_WORLD );
Kurt A. O'Hearn
committed
fprintf( stderr, " [SETUP NEW GRID]\n" );
fprintf( stderr, "p%d GRID:\n", system->my_rank );
Print_Grid( &(system->my_grid), stderr );
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
fprintf( stderr, " [BIN MY ATOMS]\n" );
Kurt A. O'Hearn
committed
fprintf( stderr, " [REORDER MY ATOMS]\n" );
Kurt A. O'Hearn
committed
for ( i = 0; i < MAX_NBRS; ++i )
{
nrecv[i] = 0;
}
MPI_Barrier( MPI_COMM_WORLD );
system->max_recved = 0;
system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
Estimate_Boundary_Atoms, Unpack_Estimate_Message, TRUE );
fprintf( stderr, " [SEND_RECV:ESTIMATE_BOUNDARY_ATOMS]\n" );
system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP );
Bin_Boundary_Atoms( system );
fprintf( stderr, " [BIN_BOUNDARY_ATOMS]\n" );
system->max_far_nbrs = (int*)
scalloc( system->total_cap, sizeof(int), "system:max_far_nbrs" );
system->max_bonds = (int*)
scalloc( system->total_cap, sizeof(int), "system:max_bonds" );
Kurt A. O'Hearn
committed
if ( control->hbond_cut > 0.0 )
Kurt A. O'Hearn
committed
{
//TODO
//for( i = 0; i < system->n; ++i ) {
for ( i = 0; i < system->N; ++i )
{
atom = &(system->my_atoms[i]);
atom->Hindex = i;
//FIX - 4 - Added fix for HBond Issue
if ( system->reax_param.sbp[ atom->type ].p_hbond == 1 )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
}
system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
Kurt A. O'Hearn
committed
/* Sync atoms here to continue the computation */
Kurt A. O'Hearn
committed
dev_alloc_system( system );
Kurt A. O'Hearn
committed
fprintf( stderr, " [DEV ALLOC SYSTEM]\n" );
Sync_System( system );
fprintf( stderr, " [SYNC SYSTEM]\n" );
fprintf( stderr, "p%d: n=%d local_cap=%d\n",
system->my_rank, system->n, system->local_cap );
fprintf( stderr, "p%d: N=%d total_cap=%d\n",
system->my_rank, system->N, system->total_cap );
fprintf( stderr, "p%d: numH=%d H_cap=%d\n",
system->my_rank, system->numH, system->Hcap );
Cuda_Compute_Total_Mass( system, data, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
fprintf( stderr, " [CUDA COMPUTE TOTAL MASS]\n" );
Cuda_Compute_Center_of_Mass( system, data, mpi_data, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
fprintf( stderr, " [CUDA COMPUTE CENTER OF MASS]\n" );
Kurt A. O'Hearn
committed
// if( Reposition_Atoms( system, control, data, mpi_data, msg ) == FAILURE )
// {
// return FAILURE;
// }
/* initialize velocities so that desired init T can be attained */
if ( !control->restart || (control->restart && control->random_vel) )
Kurt A. O'Hearn
committed
{
Generate_Initial_Velocities( system, control->T_init );
Kurt A. O'Hearn
committed
fprintf( stderr, " [GENERATE INITIAL VELOCITIES]\n" );
}
Cuda_Compute_Kinetic_Energy( system, data, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
fprintf( stderr, " [CUDA COMPUTE K.E.]\n" );
Kurt A. O'Hearn
committed
#endif
/************************ initialize simulation data ************************/
Kurt A. O'Hearn
committed
void Init_Simulation_Data( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, char *msg )
Reset_Simulation_Data( data );
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
switch ( control->ensemble )
{
case NVE:
data->N_f = 3 * system->bigN;
Evolve = Velocity_Verlet_NVE;
control->virial = 0;
break;
case bNVT:
data->N_f = 3 * system->bigN + 1;
Evolve = Velocity_Verlet_Berendsen_NVT;
control->virial = 0;
break;
case nhNVT:
fprintf( stderr, "WARNING: Nose-Hoover NVT is still under testing.\n" );
//return FAILURE;
data->N_f = 3 * system->bigN + 1;
Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
control->virial = 0;
if ( !control->restart || (control->restart && control->random_vel) )
{
data->therm.G_xi = control->Tau_T *
(2.0 * data->sys_en.e_kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
}
break;
case sNPT: /* Semi-Isotropic NPT */
data->N_f = 3 * system->bigN + 4;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Reset_Pressures( data );
break;
case iNPT: /* Isotropic NPT */
data->N_f = 3 * system->bigN + 2;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Reset_Pressures( data );
break;
case NPT: /* Anisotropic NPT */
strcpy( msg, "init_simulation_data: option not yet implemented" );
return FAILURE;
data->N_f = 3 * system->bigN + 9;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
/*if( !control->restart ) {
data->therm.G_xi = control->Tau_T *
(2.0 * data->my_en.e_Kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->iso_bar.eps = (1.0 / 3.0) * log(system->box.volume);
data->inv_W = 1.0 /
( data->N_f * K_B * control->T * SQR(control->Tau_P) );
Compute_Pressure( system, control, data, out_control );
}*/
break;
default:
strcpy( msg, "init_simulation_data: ensemble not recognized" );
return FAILURE;
/* initialize the timer(s) */
MPI_Barrier( MPI_COMM_WORLD ); // wait for everyone to come here
if ( system->my_rank == MASTER_NODE )
{
data->timing.start = Get_Time( );
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
Kurt A. O'Hearn
committed
void Cuda_Init_Simulation_Data( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, char *msg )
Kurt A. O'Hearn
committed
dev_alloc_simulation_data( data );
Kurt A. O'Hearn
committed
Reset_Simulation_Data( data );
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
switch ( control->ensemble )
{
case NVE:
data->N_f = 3 * system->bigN;
Cuda_Evolve = Velocity_Verlet_NVE;
control->virial = 0;
break;
case bNVT:
data->N_f = 3 * system->bigN + 1;
Cuda_Evolve = Cuda_Velocity_Verlet_Berendsen_NVT;
control->virial = 0;
break;
case nhNVT:
fprintf( stderr, "WARNING: Nose-Hoover NVT is still under testing.\n" );
//return FAILURE;
data->N_f = 3 * system->bigN + 1;
Cuda_Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
control->virial = 0;
if ( !control->restart || (control->restart && control->random_vel) )
{
data->therm.G_xi = control->Tau_T *
(2.0 * data->sys_en.e_kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
}
break;
case sNPT: /* Semi-Isotropic NPT */
data->N_f = 3 * system->bigN + 4;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
break;
case iNPT: /* Isotropic NPT */
data->N_f = 3 * system->bigN + 2;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
break;
case NPT: /* Anisotropic NPT */
strcpy( msg, "init_simulation_data: option not yet implemented" );
return FAILURE;
data->N_f = 3 * system->bigN + 9;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
break;
default:
strcpy( msg, "init_simulation_data: ensemble not recognized" );
return FAILURE;
Kurt A. O'Hearn
committed
MPI_Barrier( MPI_COMM_WORLD );
if ( system->my_rank == MASTER_NODE )
{
data->timing.start = Get_Time( );
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
#endif
#elif defined(LAMMPS_REAX)
int Init_System( reax_system *system, char *msg )
{
system->big_box.V = 0;
system->big_box.box_norms[0] = 0;
system->big_box.box_norms[1] = 0;
system->big_box.box_norms[2] = 0;
system->local_cap = (int)(system->n * SAFE_ZONE);
system->total_cap = (int)(system->N * SAFE_ZONE);
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: local_cap=%d total_cap=%d\n",
system->my_rank, system->local_cap, system->total_cap );
Allocate_System( system, system->local_cap, system->total_cap, msg );
return SUCCESS;
Kurt A. O'Hearn
committed
void Init_Simulation_Data( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
//if( !control->restart )
data->step = data->prev_steps = 0;
}
#endif
/************************ initialize workspace ************************/
/* Initialize Taper params */
void Init_Taper( control_params *control, storage *workspace )
{
real d1, d7;
real swa, swa2, swa3;
real swb, swb2, swb3;
swa = control->nonb_low;
swb = control->nonb_cut;
Kurt A. O'Hearn
committed
if ( FABS( swa ) > 0.01 )
Kurt A. O'Hearn
committed
{
fprintf( stderr, "Warning: non-zero lower Taper-radius cutoff\n" );
Kurt A. O'Hearn
committed
}
if ( swb < 0 )
{
fprintf( stderr, "Negative upper Taper-radius cutoff\n" );
MPI_Abort( MPI_COMM_WORLD, INVALID_INPUT );
}
else if ( swb < 5 )
Kurt A. O'Hearn
committed
{
fprintf( stderr, "Warning: very low Taper-radius cutoff: %f\n", swb );
Kurt A. O'Hearn
committed
}
d1 = swb - swa;
d7 = POW( d1, 7.0 );
swa2 = SQR( swa );
swa3 = CUBE( swa );
swb2 = SQR( swb );
swb3 = CUBE( swb );
workspace->Tap[7] = 20.0 / d7;
workspace->Tap[6] = -70.0 * (swa + swb) / d7;
workspace->Tap[5] = 84.0 * (swa2 + 3.0 * swa * swb + swb2) / d7;
workspace->Tap[4] = -35.0 * (swa3 + 9.0 * swa2 * swb + 9.0 * swa * swb2 + swb3 ) / d7;
workspace->Tap[3] = 140.0 * (swa3 * swb + 3.0 * swa2 * swb2 + swa * swb3 ) / d7;
workspace->Tap[2] = -210.0 * (swa3 * swb2 + swa2 * swb3) / d7;
workspace->Tap[1] = 140.0 * swa3 * swb3 / d7;
workspace->Tap[0] = (-35.0 * swa3 * swb2 * swb2 + 21.0 * swa2 * swb3 * swb2 +
Kurt A. O'Hearn
committed
7.0 * swa * swb3 * swb3 + swb3 * swb3 * swb ) / d7;
Kurt A. O'Hearn
committed
void Init_Workspace( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
storage *workspace, char *msg )
Kurt A. O'Hearn
committed
Allocate_Workspace( system, control, workspace, system->local_cap,
system->total_cap, msg );
memset( &(workspace->realloc), 0, sizeof(reallocate_data) );
Reset_Workspace( system, workspace );
/* Initialize the Taper function */
Init_Taper( control, workspace );
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
Kurt A. O'Hearn
committed
void Cuda_Init_Workspace( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
storage *workspace, char *msg )
Kurt A. O'Hearn
committed
dev_alloc_workspace( system, control, dev_workspace,
Kurt A. O'Hearn
committed
system->local_cap, system->total_cap, msg );
memset( &(workspace->realloc), 0, sizeof(reallocate_data) );
Cuda_Reset_Workspace( system, workspace );
/* Initialize the Taper function */
Init_Taper( control, dev_workspace );
Kurt A. O'Hearn
committed
#endif
/************** setup communication data structures **************/
int Init_MPI_Datatypes( reax_system *system, storage *workspace,
Kurt A. O'Hearn
committed
mpi_datatypes *mpi_data, char *msg )
Kurt A. O'Hearn
committed
int i, block[11];
MPI_Aint base, disp[11];
MPI_Datatype type[11];
mpi_atom sample;
Kurt A. O'Hearn
committed
restart_atom r_sample;
rvec rvec_sample;
rvec2 rvec2_sample;
/* setup the world */
mpi_data->world = MPI_COMM_WORLD;
/* allocate mpi buffers */
Kurt A. O'Hearn
committed
//Allocate_MPI_Buffers( mpi_data, system->est_recv,
// system->gcell_cap, system->my_nbrs, msg );
//tmp = 0;
//#if defined(DEBUG_FOCUS)
//for( i = 0; i < MAX_NBRS; ++i )
//if( i != MYSELF )
// tmp += system->my_nbrs[i].est_send;
//fprintf( stderr, "p%d: allocated mpi_buffers: recv=%d send=%d total=%dMB\n",
// system->my_rank, system->est_recv, tmp,
// (int)((system->est_recv+tmp)*sizeof(boundary_atom)/(1024*1024)) );
//#endif
//if( ret != SUCCESS )
// return ret;
/* mpi_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, name,
x, v, f_old, s, t] */
block[0] = block[1] = block[2] = block[3] = block[4] = 1;
block[5] = 8;
block[6] = block[7] = block[8] = 3;
block[9] = block[10] = 4;
Kurt A. O'Hearn
committed
MPI_Address( &(sample.orig_id), disp + 0 );
MPI_Address( &(sample.imprt_id), disp + 1 );
MPI_Address( &(sample.type), disp + 2 );
MPI_Address( &(sample.num_bonds), disp + 3 );
Kurt A. O'Hearn
committed
MPI_Address( &(sample.name), disp + 5 );
MPI_Address( &(sample.x[0]), disp + 6 );
MPI_Address( &(sample.v[0]), disp + 7 );
MPI_Address( &(sample.f_old[0]), disp + 8 );
MPI_Address( &(sample.s[0]), disp + 9 );
MPI_Address( &(sample.t[0]), disp + 10 );
Kurt A. O'Hearn
committed
for ( i = 0; i < 11; ++i )
{
disp[i] -= base;
}
type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT;
type[5] = MPI_CHAR;
type[6] = type[7] = type[8] = type[9] = type[10] = MPI_DOUBLE;
MPI_Type_struct( 11, block, disp, type, &(mpi_data->mpi_atom_type) );
MPI_Type_commit( &(mpi_data->mpi_atom_type) );
/* boundary_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, x] */
block[0] = block[1] = block[2] = block[3] = block[4] = 1;
block[5] = 3;
Kurt A. O'Hearn
committed
MPI_Address( &(b_sample.orig_id), disp + 0 );
MPI_Address( &(b_sample.imprt_id), disp + 1 );
MPI_Address( &(b_sample.type), disp + 2 );
MPI_Address( &(b_sample.num_bonds), disp + 3 );
Kurt A. O'Hearn
committed
MPI_Address( &(b_sample.x[0]), disp + 5 );
Kurt A. O'Hearn
committed
for ( i = 0; i < 6; ++i )
{
disp[i] -= base;
}
type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT;
type[5] = MPI_DOUBLE;
MPI_Type_struct( 6, block, disp, type, &(mpi_data->boundary_atom_type) );
MPI_Type_commit( &(mpi_data->boundary_atom_type) );
/* mpi_rvec */
block[0] = 3;
MPI_Address( &(rvec_sample[0]), disp + 0 );
base = disp[0];
Kurt A. O'Hearn
committed
for ( i = 0; i < 1; ++i )
{
disp[i] -= base;
}
type[0] = MPI_DOUBLE;
MPI_Type_struct( 1, block, disp, type, &(mpi_data->mpi_rvec) );
MPI_Type_commit( &(mpi_data->mpi_rvec) );
/* mpi_rvec2 */
block[0] = 2;
MPI_Address( &(rvec2_sample[0]), disp + 0 );
base = disp[0];
Kurt A. O'Hearn
committed
for ( i = 0; i < 1; ++i )
{
disp[i] -= base;
}
type[0] = MPI_DOUBLE;
MPI_Type_struct( 1, block, disp, type, &(mpi_data->mpi_rvec2) );
MPI_Type_commit( &(mpi_data->mpi_rvec2) );
/* restart_atom - [orig_id, type, name[8], x, v] */
block[0] = block[1] = 1 ;
block[2] = 8;
block[3] = block[4] = 3;
Kurt A. O'Hearn
committed
MPI_Address( &(r_sample.orig_id), disp + 0 );
MPI_Address( &(r_sample.type), disp + 1 );
MPI_Address( &(r_sample.name), disp + 2 );
MPI_Address( &(r_sample.x[0]), disp + 3 );
MPI_Address( &(r_sample.v[0]), disp + 4 );
Kurt A. O'Hearn
committed
for ( i = 0; i < 5; ++i )
{
disp[i] -= base;
}
type[0] = type[1] = MPI_INT;
type[2] = MPI_CHAR;
type[3] = type[4] = MPI_DOUBLE;
MPI_Type_struct( 5, block, disp, type, &(mpi_data->restart_atom_type) );
MPI_Type_commit( &(mpi_data->restart_atom_type) );
return SUCCESS;
}
/********************** allocate lists *************************/
Kurt A. O'Hearn
committed
int Init_Lists( reax_system *system, control_params *control,
simulation_data *data, storage *workspace, reax_list **lists,
mpi_datatypes *mpi_data, char *msg )
int i, num_nbrs;
int total_hbonds, total_bonds, bond_cap, num_3body, cap_3body, Htop;
int *hb_top, *bond_top;
//for( i = 0; i < MAX_NBRS; ++i ) nrecv[i] = system->my_nbrs[i].est_recv;
//system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
// Sort_Boundary_Atoms, Unpack_Exchange_Message, TRUE );
Kurt A. O'Hearn
committed
Make_List( system->total_cap, num_nbrs, TYP_FAR_NEIGHBOR, *lists + FAR_NBRS );
fprintf( stderr, "p%d: allocated far_nbrs: num_far=%d, space=%dMB\n",
Kurt A. O'Hearn
committed
system->my_rank, num_nbrs,
(int)(num_nbrs * sizeof(far_neighbor_data) / (1024 * 1024)) );
Generate_Neighbor_Lists( system, data, workspace, lists );
bond_top = (int*) calloc( system->total_cap, sizeof(int) );
hb_top = (int*) calloc( system->local_cap, sizeof(int) );
Kurt A. O'Hearn
committed
// hb_top = (int*) calloc( system->Hcap, sizeof(int) );
Kurt A. O'Hearn
committed
&Htop, hb_top, bond_top, &num_3body );
// Host_Estimate_Sparse_Matrix( system, control, lists, system->local_cap, system->total_cap,
// &Htop, hb_top, bond_top, &num_3body );
Allocate_Matrix( &(workspace->H), system->local_cap, Htop );
//MATRIX CHANGES
//workspace->L = NULL;
//workspace->U = NULL;
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: allocated H matrix: Htop=%d, space=%dMB\n",
system->my_rank, Htop,
(int)(Htop * sizeof(sparse_matrix_entry) / (1024 * 1024)) );
Kurt A. O'Hearn
committed
if ( control->hbond_cut > 0.0 )
// init H indexes
total_hbonds = 0;
for ( i = 0; i < system->n; ++i )
{
system->my_atoms[i].num_hbonds = hb_top[i];
total_hbonds += hb_top[i];
}
total_hbonds = MAX( total_hbonds * SAFER_ZONE, MIN_CAP * MIN_HBONDS );
Kurt A. O'Hearn
committed
// DANIEL, to make Mpi_Not_Gpu_Validate_Lists() not complain that max_hbonds is 0
system->max_hbonds = total_hbonds * SAFER_ZONE;
Kurt A. O'Hearn
committed
Make_List( system->Hcap, total_hbonds, TYP_HBOND, *lists + HBONDS );
fprintf( stderr, "p%d: allocated hbonds: total_hbonds=%d, space=%dMB\n",
system->my_rank, total_hbonds,
(int)(total_hbonds * sizeof(hbond_data) / (1024 * 1024)) );
}
/* bonds list */
//Allocate_Bond_List( system->N, bond_top, (*lists)+BONDS );
//num_bonds = bond_top[system->N-1];
total_bonds = 0;
for ( i = 0; i < system->N; ++i )
{
system->my_atoms[i].num_bonds = bond_top[i];
total_bonds += bond_top[i];
Kurt A. O'Hearn
committed
// DANIEL, to make Mpi_Not_Gpu_Validate_Lists() not complain that max_bonds is 0
system->max_bonds[i] = MAX( bond_top[i], MIN_BONDS );
}
bond_cap = MAX( total_bonds * SAFE_ZONE, MIN_CAP * MIN_BONDS );
Kurt A. O'Hearn
committed
Make_List( system->total_cap, bond_cap, TYP_BOND, *lists + BONDS);
fprintf( stderr, "p%d: allocated bonds: total_bonds=%d, space=%dMB\n",
system->my_rank, bond_cap,
(int)(bond_cap * sizeof(bond_data) / (1024 * 1024)) );
/* 3bodies list */
cap_3body = MAX( num_3body * SAFE_ZONE, MIN_3BODIES );
Kurt A. O'Hearn
committed
Make_List(bond_cap, cap_3body, TYP_THREE_BODY, *lists + THREE_BODIES);
fprintf( stderr, "p%d: allocated 3-body list: num_3body=%d, space=%dMB\n",
system->my_rank, cap_3body,
(int)(cap_3body * sizeof(three_body_interaction_data) / (1024 * 1024)) );
Kurt A. O'Hearn
committed
Make_List(system->total_cap, bond_cap * 8, TYP_DDELTA, (*lists) + DDELTAS);
fprintf( stderr, "p%d: allocated dDelta list: num_ddelta=%d space=%ldMB\n",
system->my_rank, bond_cap * 30,
bond_cap * 8 * sizeof(dDelta_data) / (1024 * 1024) );
Kurt A. O'Hearn
committed
Make_List( bond_cap, bond_cap * 50, TYP_DBO, (*lists) + DBOS);
fprintf( stderr, "p%d: allocated dbond list: num_dbonds=%d space=%ldMB\n",
system->my_rank, bond_cap * MAX_BONDS * 3,
bond_cap * MAX_BONDS * 3 * sizeof(dbond_data) / (1024 * 1024) );
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
Kurt A. O'Hearn
committed
int Cuda_Init_Lists( reax_system *system, control_params *control,
simulation_data *data, storage *workspace, reax_list **lists,
mpi_datatypes *mpi_data, char *msg )
int i, count, ret;
int num_nbrs, total_hbonds, total_bonds, total_3body, Htop;
int *nbr_indices, *hb_top, *bond_top, *thbody;
nbr_indices = (int *) host_scratch;
bond_top = (int*) calloc( system->total_cap, sizeof(int) );
hb_top = (int*) calloc( system->total_cap, sizeof(int) );
for ( i = 0; i < system->total_cap; i++ )
{
system->max_far_nbrs[i] = MIN_NBRS;
}
/* ignore returned error, as system->max_far_nbrs is not yet set */
Kurt A. O'Hearn
committed
ret = Cuda_Estimate_Neighbors( system, nbr_indices );
Kurt A. O'Hearn
committed
/* count neighbors for list creation */
for (i = 0; i < system->total_cap; i++)
num_nbrs += system->max_far_nbrs[i];
nbr_indices[i] = system->max_far_nbrs[i];
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
Kurt A. O'Hearn
committed
fprintf( stderr, "DEVICE total neighbors entries: %d \n", num_nbrs );
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
Dev_Make_List( system->total_cap, num_nbrs, TYP_FAR_NEIGHBOR, *dev_lists + FAR_NBRS );
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated far_nbrs: num_far=%d, space=%dMB\n",
Kurt A. O'Hearn
committed
system->my_rank, num_nbrs,
(int)(num_nbrs * sizeof(far_neighbor_data) / (1024 * 1024)) );
Kurt A. O'Hearn
committed
fprintf( stderr, "N: %d and total_cap: %d \n", system->N, system->total_cap );
Cuda_Init_Neighbor_Indices( nbr_indices, system->total_cap );
Cuda_Generate_Neighbor_Lists( system, data, workspace, dev_lists );
Cuda_Estimate_Storages( system, control, dev_lists, &Htop,
hb_top, bond_top );
Cuda_Estimate_Sparse_Matrix( system, control, data, dev_lists );
Kurt A. O'Hearn
committed
dev_alloc_matrix( &(dev_workspace->H), system->total_cap,
system->total_cap * system->max_sparse_entries );
//THIS IS INITIALIZED in the init_forces function to system->n
//but this is never used in the code.
//GPU maintains the H matrix to be (NXN) symmetric matrix.
//TODO - CARVER FIX
//MATRIX CHANGES
//workspace->L = NULL;
//workspace->U = NULL;
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
Kurt A. O'Hearn
committed
fprintf( stderr, "p:%d - allocated H matrix: max_entries: %d, cap: %d \n",
system->my_rank, system->max_sparse_entries, dev_workspace->H.m );
fprintf( stderr, "p%d: allocated H matrix: Htop=%d, space=%dMB\n",
Kurt A. O'Hearn
committed
system->my_rank, Htop,
(int)(Htop * sizeof(sparse_matrix_entry) / (1024 * 1024)) );
// FIX - 4 - Added addition check here for hydrogen Bonds
if ( control->hbond_cut > 0.0 && system->numH > 0 )
Kurt A. O'Hearn
committed
count = 0;
for ( i = 0; i < system->N; ++i )
{
//system->my_atoms[i].num_hbonds = hb_top[i];
//TODO
Kurt A. O'Hearn
committed
hb_top[i] = MAX( hb_top[i] * 4, MIN_HBONDS * 4);
Kurt A. O'Hearn
committed
if ( hb_top[i] > 0 )
Kurt A. O'Hearn
committed
{
++count;
}
}
total_hbonds = MAX( total_hbonds, MIN_CAP * MIN_HBONDS );
Kurt A. O'Hearn
committed
Dev_Make_List( system->total_cap, system->total_cap *
system->max_hbonds, TYP_HBOND, *dev_lists + HBONDS );
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
Kurt A. O'Hearn
committed
fprintf( stderr, "**** Total HBonds allocated --> %d total_cap: %d per atom: %d, max_hbonds: %d \n",