Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "forces.h"
#include "box.h"
#include "bond_orders.h"
#include "single_body_interactions.h"
#include "two_body_interactions.h"
#include "three_body_interactions.h"
#include "four_body_interactions.h"
#include "list.h"
#include "print_utils.h"
#include "system_props.h"
Kurt A. O'Hearn
committed
#include "charges.h"
Kurt A. O'Hearn
committed
typedef enum
{
DIAGONAL = 0,
OFF_DIAGONAL = 1,
} MATRIX_ENTRY_POSITION;
void Dummy_Interaction( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
{
}
void Init_Bonded_Force_Functions( control_params *control )
{
Interaction_Functions[0] = Calculate_Bond_Orders;
Interaction_Functions[1] = Bond_Energy; //*/Dummy_Interaction;
Interaction_Functions[2] = LonePair_OverUnder_Coordination_Energy;
//*/Dummy_Interaction;
Interaction_Functions[3] = Three_Body_Interactions; //*/Dummy_Interaction;
Interaction_Functions[4] = Four_Body_Interactions; //*/Dummy_Interaction;
if ( control->hb_cut > 0 )
Interaction_Functions[5] = Hydrogen_Bonds; //*/Dummy_Interaction;
else Interaction_Functions[5] = Dummy_Interaction;
Interaction_Functions[6] = Dummy_Interaction; //empty
Interaction_Functions[7] = Dummy_Interaction; //empty
Interaction_Functions[8] = Dummy_Interaction; //empty
Interaction_Functions[9] = Dummy_Interaction; //empty
void Compute_Bonded_Forces( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/* Mark beginning of a new timestep in each energy file */
fprintf( out_control->ebond, "step: %d\n%6s%6s%12s%12s%12s\n",
data->step, "atom1", "atom2", "bo", "ebond", "total" );
fprintf( out_control->elp, "step: %d\n%6s%12s%12s%12s\n",
data->step, "atom", "nlp", "elp", "total" );
fprintf( out_control->eov, "step: %d\n%6s%12s%12s\n",
data->step, "atom", "eov", "total" );
fprintf( out_control->eun, "step: %d\n%6s%12s%12s\n",
data->step, "atom", "eun", "total" );
fprintf( out_control->eval, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "eval", "epen", "total" );
fprintf( out_control->epen, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "epen", "total" );
fprintf( out_control->ecoa, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "ecoa", "total" );
fprintf( out_control->ehb, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"r(23)", "angle", "bo(12)", "ehb", "total" );
fprintf( out_control->etor, "step: %d\n%6s%6s%6s%6s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3", "atom4",
"phi", "bo(23)", "etor", "total" );
fprintf( out_control->econ, "step:%d\n%6s%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3", "atom4",
"phi", "bo(12)", "bo(23)", "bo(34)", "econ", "total" );
#endif
/* Implement all the function calls as function pointers */
for ( i = 0; i < NO_OF_INTERACTIONS; i++ )
{
(Interaction_Functions[i])(system, control, data, workspace,
lists, out_control);
(Print_Interactions[i])(system, control, data, workspace,
lists, out_control);
void Compute_NonBonded_Forces( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list** lists, output_controls *out_control )
fprintf( out_control->evdw, "step: %d\n%6s%6s%12s%12s%12s\n",
data->step, "atom1", "atom2", "r12", "evdw", "total" );
fprintf( out_control->ecou, "step: %d\n%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "r12", "q1", "q2", "ecou", "total" );
Kurt A. O'Hearn
committed
Compute_Charges( system, control, data, workspace, lists[FAR_NBRS], out_control );
Kurt A. O'Hearn
committed
data->timing.cm += t_elapsed;
{
vdW_Coulomb_Energy( system, control, data, workspace, lists, out_control );
}
{
Tabulated_vdW_Coulomb_Energy( system, control, data, workspace,
lists, out_control );
}
Print_vdW_Coulomb_Forces( system, control, data, workspace,
lists, out_control );
/* This version of Compute_Total_Force computes forces from coefficients
accumulated by all interaction functions. Saves enormous time & space! */
void Compute_Total_Force( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists )
int i, pj;
list *bonds = (*lists) + BONDS;
for ( i = 0; i < system->N; ++i )
for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
if ( i < bonds->select.bond_list[pj].nbr )
{
if ( control->ensemble == NVE || control->ensemble == NVT || control->ensemble == bNVT)
Add_dBond_to_Forces( i, pj, system, data, workspace, lists );
else
Add_dBond_to_Forces_NPT( i, pj, system, data, workspace, lists );
}
}
void Validate_Lists( static_storage *workspace, list **lists, int step, int n,
int i, flag;
list *bonds, *hbonds;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
/* far neighbors */
if ( Htop > Hmax * DANGER_ZONE )
{
workspace->realloc.Htop = Htop;
if ( Htop > Hmax )
{
fprintf( stderr,
"step%d - ran out of space on H matrix: Htop=%d, max = %d",
step, Htop, Hmax );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
workspace->realloc.num_bonds = num_bonds;
for ( i = 0; i < n - 1; ++i )
if ( End_Index(i, bonds) >= Start_Index(i + 1, bonds) - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > Start_Index(i + 1, bonds) )
flag = i;
}
if ( flag > -1 )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, bonds), Start_Index(flag + 1, bonds) );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
}
if ( End_Index(i, bonds) >= bonds->num_intrs - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > bonds->num_intrs )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d bond_end=%d\n",
step, flag, End_Index(i, bonds), bonds->num_intrs );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
/* hbonds list */
if ( workspace->num_H > 0 )
{
flag = -1;
workspace->realloc.num_hbonds = num_hbonds;
for ( i = 0; i < workspace->num_H - 1; ++i )
if ( Num_Entries(i, hbonds) >=
(Start_Index(i + 1, hbonds) - Start_Index(i, hbonds)) * DANGER_ZONE )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > Start_Index(i + 1, hbonds) )
flag = i;
}
if ( flag > -1 )
{
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, hbonds), Start_Index(flag + 1, hbonds) );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
}
if ( Num_Entries(i, hbonds) >=
(hbonds->num_intrs - Start_Index(i, hbonds)) * DANGER_ZONE )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > hbonds->num_intrs )
{
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d hbondend=%d\n",
step, flag, End_Index(i, hbonds), hbonds->num_intrs );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
Kurt A. O'Hearn
committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
static inline real Init_Charge_Matrix_Entry_Tab( reax_system *system,
control_params *control, int i, int j,
real r_ij, MATRIX_ENTRY_POSITION pos )
{
int r;
real base, dif, val, ret = 0.0;
LR_lookup_table *t;
switch ( control->charge_method )
{
case QEQ_CM:
switch ( pos )
{
case OFF_DIAGONAL:
t = &( LR
[MIN( system->atoms[i].type, system->atoms[j].type )]
[MAX( system->atoms[i].type, system->atoms[j].type )] );
/* cubic spline interpolation */
r = (int)(r_ij * t->inv_dx);
if ( r == 0 ) ++r;
base = (real)(r + 1) * t->dx;
dif = r_ij - base;
val = ((t->ele[r].d * dif + t->ele[r].c) * dif + t->ele[r].b) * dif +
t->ele[r].a;
val *= EV_to_KCALpMOL / C_ele;
ret = ((i == j) ? 0.5 : 1.0) * val;
break;
case DIAGONAL:
ret = system->reaxprm.sbp[system->atoms[i].type].eta;
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case EEM_CM:
switch ( pos )
{
case OFF_DIAGONAL:
break;
case DIAGONAL:
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case ACKS2_CM:
//TODO
switch ( pos )
{
case OFF_DIAGONAL:
break;
case DIAGONAL:
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "Invalid charge method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
return ret;
}
static inline real Init_Charge_Matrix_Entry( reax_system *system,
control_params *control, int i, int j,
real r_ij, MATRIX_ENTRY_POSITION pos )
{
Kurt A. O'Hearn
committed
real Tap, gamij, dr3gamij_1, dr3gamij_3, ret = 0.0;
Kurt A. O'Hearn
committed
switch ( control->charge_method )
{
case QEQ_CM:
switch ( pos )
{
case OFF_DIAGONAL:
Tap = control->Tap7 * r_ij + control->Tap6;
Tap = Tap * r_ij + control->Tap5;
Tap = Tap * r_ij + control->Tap4;
Tap = Tap * r_ij + control->Tap3;
Tap = Tap * r_ij + control->Tap2;
Tap = Tap * r_ij + control->Tap1;
Tap = Tap * r_ij + control->Tap0;
Kurt A. O'Hearn
committed
/* shielding */
Kurt A. O'Hearn
committed
dr3gamij_1 = ( r_ij * r_ij * r_ij +
system->reaxprm.tbp[system->atoms[i].type][system->atoms[j].type].gamma );
Kurt A. O'Hearn
committed
dr3gamij_3 = POW( dr3gamij_1 , 1.0 / 3.0 );
Kurt A. O'Hearn
committed
ret = ((i == j) ? 0.5 : 1.0) * Tap * EV_to_KCALpMOL / dr3gamij_3;
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
case DIAGONAL:
ret = system->reaxprm.sbp[system->atoms[i].type].eta;
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case EEM_CM:
switch ( pos )
{
case OFF_DIAGONAL:
Kurt A. O'Hearn
committed
if ( r_ij < control->r_cut && r_ij > 0.001 )
{
Tap = control->Tap7 * r_ij + control->Tap6;
Tap = Tap * r_ij + control->Tap5;
Tap = Tap * r_ij + control->Tap4;
Tap = Tap * r_ij + control->Tap3;
Tap = Tap * r_ij + control->Tap2;
Tap = Tap * r_ij + control->Tap1;
Tap = Tap * r_ij + control->Tap0;
gamij = SQRT( system->reaxprm.sbp[system->atoms[i].type].gamma
* system->reaxprm.sbp[system->atoms[j].type].gamma );
/* shielding */
dr3gamij_1 = POW( r_ij, 3.0 ) + 1.0 / POW( gamij, 3.0 );
dr3gamij_3 = POW( dr3gamij_1 , 1.0 / 3.0 );
ret = Tap * EV_to_KCALpMOL / dr3gamij_3;
}
Kurt A. O'Hearn
committed
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
case DIAGONAL:
Kurt A. O'Hearn
committed
ret = system->reaxprm.sbp[system->atoms[i].type].eta;
Kurt A. O'Hearn
committed
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case ACKS2_CM:
//TODO
switch ( pos )
{
case OFF_DIAGONAL:
break;
case DIAGONAL:
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "Invalid charge method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
return ret;
}
Kurt A. O'Hearn
committed
static void Init_Charge_Matrix_Remaining_Entries( reax_system *system,
control_params *control, sparse_matrix * H, sparse_matrix * H_sp,
int * Htop, int * H_sp_top )
{
int i;
switch ( control->charge_method )
{
case QEQ_CM:
break;
case EEM_CM:
Kurt A. O'Hearn
committed
H->start[system->N_cm - 1] = *Htop;
H_sp->start[system->N_cm - 1] = *H_sp_top;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
for ( i = 0; i < system->N_cm - 1; ++i )
Kurt A. O'Hearn
committed
{
H->j[*Htop] = i;
H->val[*Htop] = 1.0;
Kurt A. O'Hearn
committed
*Htop = *Htop + 1;
Kurt A. O'Hearn
committed
H_sp->j[*H_sp_top] = i;
H_sp->val[*H_sp_top] = 1.0;
Kurt A. O'Hearn
committed
*H_sp_top = *H_sp_top + 1;
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
H->j[*Htop] = system->N_cm - 1;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N_cm - 1;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
Kurt A. O'Hearn
committed
break;
case ACKS2_CM:
break;
default:
break;
}
}
void Init_Forces( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
{
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int Htop, H_sp_top, btop_i, btop_j, num_bonds, num_hbonds;
Kurt A. O'Hearn
committed
real r_ij, r2;
real C12, C34, C56;
real Cln_BOp_s, Cln_BOp_pi, Cln_BOp_pi2;
real BO, BO_s, BO_pi, BO_pi2;
real p_boc1, p_boc2;
sparse_matrix *H, *H_sp;
list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
bond_data *ibond, *jbond;
bond_order_data *bo_ij, *bo_ji;
far_nbrs = *lists + FAR_NBRS;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
H = workspace->H;
H_sp = workspace->H_sp;
num_bonds = 0;
num_hbonds = 0;
btop_i = btop_j = 0;
p_boc1 = system->reaxprm.gp.l[0];
p_boc2 = system->reaxprm.gp.l[1];
for ( i = 0; i < system->N; ++i )
{
atom_i = &(system->atoms[i]);
type_i = atom_i->type;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
H->start[i] = Htop;
H_sp->start[i] = H_sp_top;
btop_i = End_Index( i, bonds );
sbp_i = &(system->reaxprm.sbp[type_i]);
ihb = ihb_top = -1;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
for ( pj = start_i; pj < end_i; ++pj )
{
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
atom_j = &(system->atoms[j]);
flag = 0;
if ((data->step - data->prev_steps) % control->reneighbor == 0)
{
if ( nbr_pj->d <= control->r_cut )
{
if ( nbr_pj->d <= control->r_sp_cut )
{
flag_sp = 1;
}
}
else
{
flag = 0;
flag_sp = 0;
}
}
else if ((nbr_pj->d = Sq_Distance_on_T3(atom_i->x, atom_j->x, &(system->box),
nbr_pj->dvec)) <= SQR(control->r_cut))
{
if ( nbr_pj->d <= SQR(control->r_sp_cut))
{
flag_sp = 1;
}
nbr_pj->d = SQRT( nbr_pj->d );
flag = 1;
}
if ( flag )
{
type_j = system->atoms[j].type;
r_ij = nbr_pj->d;
sbp_j = &(system->reaxprm.sbp[type_j]);
twbp = &(system->reaxprm.tbp[type_i][type_j]);
Kurt A. O'Hearn
committed
H->j[Htop] = j;
Kurt A. O'Hearn
committed
H->val[Htop] = Init_Charge_Matrix_Entry( system, control, i, j,
r_ij, OFF_DIAGONAL );
/* H_sp matrix entry */
if ( flag_sp )
{
Kurt A. O'Hearn
committed
H_sp->j[H_sp_top] = j;
H_sp->val[H_sp_top] = H->val[Htop - 1];
++H_sp_top;
}
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/* hydrogen bond lists */
if ( control->hb_cut > 0 && (ihb == 1 || ihb == 2) &&
nbr_pj->d <= control->hb_cut )
{
// fprintf( stderr, "%d %d\n", atom1, atom2 );
jhb = sbp_j->p_hbond;
if ( ihb == 1 && jhb == 2 )
{
hbonds->select.hbond_list[ihb_top].nbr = j;
hbonds->select.hbond_list[ihb_top].scl = 1;
hbonds->select.hbond_list[ihb_top].ptr = nbr_pj;
++ihb_top;
++num_hbonds;
}
else if ( ihb == 2 && jhb == 1 )
{
jhb_top = End_Index( workspace->hbond_index[j], hbonds );
hbonds->select.hbond_list[jhb_top].nbr = i;
hbonds->select.hbond_list[jhb_top].scl = -1;
hbonds->select.hbond_list[jhb_top].ptr = nbr_pj;
Set_End_Index( workspace->hbond_index[j], jhb_top + 1, hbonds );
++num_hbonds;
}
}
/* uncorrected bond orders */
if ( far_nbrs->select.far_nbr_list[pj].d <= control->nbr_cut )
{
r2 = SQR(r_ij);
if ( sbp_i->r_s > 0.0 && sbp_j->r_s > 0.0)
{
C12 = twbp->p_bo1 * POW( r_ij / twbp->r_s, twbp->p_bo2 );
BO_s = (1.0 + control->bo_cut) * EXP( C12 );
}
else BO_s = C12 = 0.0;
if ( sbp_i->r_pi > 0.0 && sbp_j->r_pi > 0.0)
{
C34 = twbp->p_bo3 * POW( r_ij / twbp->r_p, twbp->p_bo4 );
BO_pi = EXP( C34 );
}
else BO_pi = C34 = 0.0;
if ( sbp_i->r_pi_pi > 0.0 && sbp_j->r_pi_pi > 0.0)
{
C56 = twbp->p_bo5 * POW( r_ij / twbp->r_pp, twbp->p_bo6 );
BO_pi2 = EXP( C56 );
}
else BO_pi2 = C56 = 0.0;
/* Initially BO values are the uncorrected ones, page 1 */
BO = BO_s + BO_pi + BO_pi2;
if ( BO >= control->bo_cut )
{
num_bonds += 2;
/****** bonds i-j and j-i ******/
ibond = &( bonds->select.bond_list[btop_i] );
btop_j = End_Index( j, bonds );
jbond = &(bonds->select.bond_list[btop_j]);
ibond->nbr = j;
jbond->nbr = i;
ibond->d = r_ij;
jbond->d = r_ij;
rvec_Copy( ibond->dvec, nbr_pj->dvec );
rvec_Scale( jbond->dvec, -1, nbr_pj->dvec );
ivec_Copy( ibond->rel_box, nbr_pj->rel_box );
ivec_Scale( jbond->rel_box, -1, nbr_pj->rel_box );
ibond->dbond_index = btop_i;
jbond->dbond_index = btop_i;
ibond->sym_index = btop_j;
jbond->sym_index = btop_i;
++btop_i;
Set_End_Index( j, btop_j + 1, bonds );
bo_ij = &( ibond->bo_data );
bo_ji = &( jbond->bo_data );
bo_ji->BO = bo_ij->BO = BO;
bo_ji->BO_s = bo_ij->BO_s = BO_s;
bo_ji->BO_pi = bo_ij->BO_pi = BO_pi;
bo_ji->BO_pi2 = bo_ij->BO_pi2 = BO_pi2;
/* Bond Order page2-3, derivative of total bond order prime */
Cln_BOp_s = twbp->p_bo2 * C12 / r2;
Cln_BOp_pi = twbp->p_bo4 * C34 / r2;
Cln_BOp_pi2 = twbp->p_bo6 * C56 / r2;
/* Only dln_BOp_xx wrt. dr_i is stored here, note that
dln_BOp_xx/dr_i = -dln_BOp_xx/dr_j and all others are 0 */
rvec_Scale(bo_ij->dln_BOp_s, -bo_ij->BO_s * Cln_BOp_s, ibond->dvec);
rvec_Scale(bo_ij->dln_BOp_pi, -bo_ij->BO_pi * Cln_BOp_pi, ibond->dvec);
rvec_Scale(bo_ij->dln_BOp_pi2,
-bo_ij->BO_pi2 * Cln_BOp_pi2, ibond->dvec);
rvec_Scale(bo_ji->dln_BOp_s, -1., bo_ij->dln_BOp_s);
rvec_Scale(bo_ji->dln_BOp_pi, -1., bo_ij->dln_BOp_pi );
rvec_Scale(bo_ji->dln_BOp_pi2, -1., bo_ij->dln_BOp_pi2 );
/* Only dBOp wrt. dr_i is stored here, note that
dBOp/dr_i = -dBOp/dr_j and all others are 0 */
rvec_Scale( bo_ij->dBOp,
-(bo_ij->BO_s * Cln_BOp_s +
bo_ij->BO_pi * Cln_BOp_pi +
bo_ij->BO_pi2 * Cln_BOp_pi2), ibond->dvec );
rvec_Scale( bo_ji->dBOp, -1., bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[i], bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[j], bo_ji->dBOp );
bo_ij->BO_s -= control->bo_cut;
bo_ij->BO -= control->bo_cut;
bo_ji->BO_s -= control->bo_cut;
bo_ji->BO -= control->bo_cut;
workspace->total_bond_order[i] += bo_ij->BO; //currently total_BOp
workspace->total_bond_order[j] += bo_ji->BO; //currently total_BOp
bo_ij->Cdbo = bo_ij->Cdbopi = bo_ij->Cdbopi2 = 0.0;
bo_ji->Cdbo = bo_ji->Cdbopi = bo_ji->Cdbopi2 = 0.0;
/*fprintf( stderr, "%d %d %g %g %g\n",
i+1, j+1, bo_ij->BO, bo_ij->BO_pi, bo_ij->BO_pi2 );*/
/*fprintf( stderr, "Cln_BOp_s: %f, pbo2: %f, C12:%f\n",
Cln_BOp_s, twbp->p_bo2, C12 );
fprintf( stderr, "Cln_BOp_pi: %f, pbo4: %f, C34:%f\n",
Cln_BOp_pi, twbp->p_bo4, C34 );
fprintf( stderr, "Cln_BOp_pi2: %f, pbo6: %f, C56:%f\n",
Cln_BOp_pi2, twbp->p_bo6, C56 );*/
/*fprintf(stderr, "pbo1: %f, pbo2:%f\n", twbp->p_bo1, twbp->p_bo2);
fprintf(stderr, "pbo3: %f, pbo4:%f\n", twbp->p_bo3, twbp->p_bo4);
fprintf(stderr, "pbo5: %f, pbo6:%f\n", twbp->p_bo5, twbp->p_bo6);
fprintf( stderr, "r_s: %f, r_p: %f, r_pp: %f\n",
twbp->r_s, twbp->r_p, twbp->r_pp );
fprintf( stderr, "C12: %g, C34:%g, C56:%g\n", C12, C34, C56 );*/
/*fprintf( stderr, "\tfactors: %g %g %g\n",
-(bo_ij->BO_s * Cln_BOp_s + bo_ij->BO_pi * Cln_BOp_pi +
bo_ij->BO_pi2 * Cln_BOp_pp),
-bo_ij->BO_pi * Cln_BOp_pi, -bo_ij->BO_pi2 * Cln_BOp_pi2 );*/
/*fprintf( stderr, "dBOpi:\t[%g, %g, %g]\n",
bo_ij->dBOp[0], bo_ij->dBOp[1], bo_ij->dBOp[2] );
fprintf( stderr, "dBOpi:\t[%g, %g, %g]\n",
bo_ij->dln_BOp_pi[0], bo_ij->dln_BOp_pi[1],
bo_ij->dln_BOp_pi[2] );
fprintf( stderr, "dBOpi2:\t[%g, %g, %g]\n\n",
bo_ij->dln_BOp_pi2[0], bo_ij->dln_BOp_pi2[1],
bo_ij->dln_BOp_pi2[2] );*/
Set_End_Index( j, btop_j + 1, bonds );
}
}
}
}
/* diagonal entry */
Kurt A. O'Hearn
committed
H->j[Htop] = i;
Kurt A. O'Hearn
committed
H->val[Htop] = Init_Charge_Matrix_Entry( system, control, i, j,
r_ij, DIAGONAL );
Kurt A. O'Hearn
committed
H_sp->j[H_sp_top] = i;
H_sp->val[H_sp_top] = H->val[Htop - 1];
Kurt A. O'Hearn
committed
{
Set_End_Index( workspace->hbond_index[i], ihb_top, hbonds );
Kurt A. O'Hearn
committed
}
//fprintf( stderr, "%d bonds start: %d, end: %d\n",
// i, Start_Index( i, bonds ), End_Index( i, bonds ) );
Kurt A. O'Hearn
committed
Init_Charge_Matrix_Remaining_Entries( system, control, H, H_sp, &Htop, &H_sp_top );
Kurt A. O'Hearn
committed
H->start[system->N_cm] = Htop;
H_sp->start[system->N_cm] = H_sp_top;
Kurt A. O'Hearn
committed
// printf("Htop = %d\n", Htop);
// printf("H_sp_top = %d\n", H_sp_top);
/* validate lists - decide if reallocation is required! */
Validate_Lists( workspace, lists,
data->step, system->N, H->m, Htop, num_bonds, num_hbonds );
fprintf( stderr, "step%d: Htop = %d, num_bonds = %d, num_hbonds = %d\n",
data->step, Htop, num_bonds, num_hbonds );
void Init_Forces_Tab( reax_system *system, control_params *control,
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
{
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int Htop, H_sp_top, btop_i, btop_j, num_bonds, num_hbonds;
int flag, flag_sp;
Kurt A. O'Hearn
committed
real r_ij, r2;
real C12, C34, C56;
real Cln_BOp_s, Cln_BOp_pi, Cln_BOp_pi2;
real BO, BO_s, BO_pi, BO_pi2;
real p_boc1, p_boc2;
sparse_matrix *H, *H_sp;
list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
bond_data *ibond, *jbond;
bond_order_data *bo_ij, *bo_ji;
far_nbrs = *lists + FAR_NBRS;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
H = workspace->H;
H_sp = workspace->H_sp;
H_sp_top = 0;
num_bonds = 0;
num_hbonds = 0;
btop_i = btop_j = 0;
p_boc1 = system->reaxprm.gp.l[0];
p_boc2 = system->reaxprm.gp.l[1];
for ( i = 0; i < system->N; ++i )
{
atom_i = &(system->atoms[i]);
type_i = atom_i->type;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
H->start[i] = Htop;
H_sp->start[i] = H_sp_top;
btop_i = End_Index( i, bonds );
sbp_i = &(system->reaxprm.sbp[type_i]);
ihb = ihb_top = -1;
if ( control->hb_cut > 0 && (ihb = sbp_i->p_hbond) == 1 )
ihb_top = End_Index( workspace->hbond_index[i], hbonds );
for ( pj = start_i; pj < end_i; ++pj )
{
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
atom_j = &(system->atoms[j]);
flag = 0;
flag_sp = 0;
if ((data->step - data->prev_steps) % control->reneighbor == 0)
{
if (nbr_pj->d <= control->r_cut)
{
if ( nbr_pj->d <= control->r_sp_cut )
{
flag_sp = 1;
}
}
else
{
flag = 0;
flag_sp = 0;
}
}
else if ((nbr_pj->d = Sq_Distance_on_T3(atom_i->x, atom_j->x, &(system->box),
nbr_pj->dvec)) <= SQR(control->r_cut))
{
if ( nbr_pj->d <= SQR(control->r_sp_cut))
{
flag_sp = 1;
}
nbr_pj->d = sqrt(nbr_pj->d);
flag = 1;
}
if ( flag )
{
type_j = system->atoms[j].type;
r_ij = nbr_pj->d;
sbp_j = &(system->reaxprm.sbp[type_j]);
twbp = &(system->reaxprm.tbp[type_i][type_j]);
Kurt A. O'Hearn
committed
H->j[Htop] = j;
Kurt A. O'Hearn
committed
H->val[Htop] = Init_Charge_Matrix_Entry_Tab( system, control, i, j,
r_ij, OFF_DIAGONAL );
/* H_sp matrix entry */
if ( flag_sp )
{
H_sp->j[H_sp_top] = j;
H_sp->val[H_sp_top] = H->val[Htop - 1];
++H_sp_top;
}
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* hydrogen bond lists */
if ( control->hb_cut > 0 && (ihb == 1 || ihb == 2) &&
nbr_pj->d <= control->hb_cut )
{
// fprintf( stderr, "%d %d\n", atom1, atom2 );
jhb = sbp_j->p_hbond;
if ( ihb == 1 && jhb == 2 )
{
hbonds->select.hbond_list[ihb_top].nbr = j;
hbonds->select.hbond_list[ihb_top].scl = 1;
hbonds->select.hbond_list[ihb_top].ptr = nbr_pj;
++ihb_top;
++num_hbonds;
}
else if ( ihb == 2 && jhb == 1 )
{
jhb_top = End_Index( workspace->hbond_index[j], hbonds );
hbonds->select.hbond_list[jhb_top].nbr = i;
hbonds->select.hbond_list[jhb_top].scl = -1;
hbonds->select.hbond_list[jhb_top].ptr = nbr_pj;
Set_End_Index( workspace->hbond_index[j], jhb_top + 1, hbonds );
++num_hbonds;
}
}
/* uncorrected bond orders */
if ( far_nbrs->select.far_nbr_list[pj].d <= control->nbr_cut )
{
r2 = SQR(r_ij);
if ( sbp_i->r_s > 0.0 && sbp_j->r_s > 0.0)
{
C12 = twbp->p_bo1 * POW( r_ij / twbp->r_s, twbp->p_bo2 );
BO_s = (1.0 + control->bo_cut) * EXP( C12 );
}
else BO_s = C12 = 0.0;
if ( sbp_i->r_pi > 0.0 && sbp_j->r_pi > 0.0)
{
C34 = twbp->p_bo3 * POW( r_ij / twbp->r_p, twbp->p_bo4 );
BO_pi = EXP( C34 );
}
else BO_pi = C34 = 0.0;
if ( sbp_i->r_pi_pi > 0.0 && sbp_j->r_pi_pi > 0.0)
{
C56 = twbp->p_bo5 * POW( r_ij / twbp->r_pp, twbp->p_bo6 );
BO_pi2 = EXP( C56 );
}
else BO_pi2 = C56 = 0.0;
/* Initially BO values are the uncorrected ones, page 1 */
BO = BO_s + BO_pi + BO_pi2;
if ( BO >= control->bo_cut )
{
num_bonds += 2;
/****** bonds i-j and j-i ******/
ibond = &( bonds->select.bond_list[btop_i] );
btop_j = End_Index( j, bonds );
jbond = &(bonds->select.bond_list[btop_j]);
ibond->nbr = j;
jbond->nbr = i;
ibond->d = r_ij;
jbond->d = r_ij;
rvec_Copy( ibond->dvec, nbr_pj->dvec );
//fprintf (stderr, " %f - %f - %f \n", nbr_pj->dvec[0], nbr_pj->dvec[1], nbr_pj->dvec[2]);
rvec_Scale( jbond->dvec, -1, nbr_pj->dvec );
ivec_Copy( ibond->rel_box, nbr_pj->rel_box );
ivec_Scale( jbond->rel_box, -1, nbr_pj->rel_box );
ibond->dbond_index = btop_i;
jbond->dbond_index = btop_i;
ibond->sym_index = btop_j;
jbond->sym_index = btop_i;
++btop_i;
Set_End_Index( j, btop_j + 1, bonds );
bo_ij = &( ibond->bo_data );
bo_ji = &( jbond->bo_data );
bo_ji->BO = bo_ij->BO = BO;
bo_ji->BO_s = bo_ij->BO_s = BO_s;
bo_ji->BO_pi = bo_ij->BO_pi = BO_pi;
bo_ji->BO_pi2 = bo_ij->BO_pi2 = BO_pi2;
/* Bond Order page2-3, derivative of total bond order prime */
Cln_BOp_s = twbp->p_bo2 * C12 / r2;
Cln_BOp_pi = twbp->p_bo4 * C34 / r2;
Cln_BOp_pi2 = twbp->p_bo6 * C56 / r2;
/* Only dln_BOp_xx wrt. dr_i is stored here, note that
dln_BOp_xx/dr_i = -dln_BOp_xx/dr_j and all others are 0 */
rvec_Scale(bo_ij->dln_BOp_s, -bo_ij->BO_s * Cln_BOp_s, ibond->dvec);
rvec_Scale(bo_ij->dln_BOp_pi, -bo_ij->BO_pi * Cln_BOp_pi, ibond->dvec);
rvec_Scale(bo_ij->dln_BOp_pi2,