Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "GMRES.h"
#include "allocate.h"
Kurt A. O'Hearn
committed
#include "tool_box.h"
Kurt A. O'Hearn
committed
typedef enum
{
LOWER = 0,
UPPER = 1,
} TRIANGULARITY;
/* global to make OpenMP shared (Sparse_MatVec) */
#ifdef _OPENMP
real *b_local = NULL;
#endif
/* global to make OpenMP shared (apply_preconditioner) */
real *Dinv_L = NULL, *Dinv_U = NULL;
/* global to make OpenMP shared (tri_solve_level_sched) */
int levels = 1;
int levels_L = 1, levels_U = 1;
unsigned int *row_levels_L = NULL, *level_rows_L = NULL, *level_rows_cnt_L = NULL;
unsigned int *row_levels_U = NULL, *level_rows_U = NULL, *level_rows_cnt_U = NULL;
unsigned int *row_levels, *level_rows, *level_rows_cnt;
unsigned int *top = NULL;
/* global to make OpenMP shared (tri_solve_gc) */
unsigned int *color = NULL;
unsigned int *to_color = NULL;
unsigned int *recolor = NULL;
unsigned int recolor_cnt;
unsigned int *color_top = NULL;
unsigned int *permuted_row_col = NULL;
sparse_matrix *H_full;
/* global to make OpenMP shared (jacobi_iter) */
real *Dinv_b = NULL, *rp = NULL, *rp2 = NULL, *rp3 = NULL;
/* sparse matrix-vector product Ax=b
* where:
* A: lower triangular matrix
* x: vector
* b: vector (result) */
static void Sparse_MatVec( const sparse_matrix * const A,
const real * const x, real * const b )
#ifdef _OPENMP
unsigned int tid;
#endif
Kurt A. O'Hearn
committed
#ifdef _OPENMP
tid = omp_get_thread_num();
Kurt A. O'Hearn
committed
#pragma omp master
{
/* keep b_local for program duration to avoid allocate/free
* overhead per Sparse_MatVec call*/
if ( b_local == NULL )
{
if ( (b_local = (real*) malloc( omp_get_num_threads() * n * sizeof(real))) == NULL )
exit( INSUFFICIENT_MEMORY );
}
}
#pragma omp barrier
Vector_MakeZero( (real * const)b_local, omp_get_num_threads() * n );
#endif
#pragma omp for schedule(static)
for ( i = 0; i < n; ++i )
{
si = A->start[i];
ei = A->start[i + 1] - 1;
for ( k = si; k < ei; ++k )
{
j = A->j[k];
H = A->val[k];
#ifdef _OPENMP
b_local[tid * n + j] += H * x[i];
b_local[tid * n + i] += H * x[j];
#else
b[j] += H * x[i];
b[i] += H * x[j];
#endif
// the diagonal entry is the last one in
#ifdef _OPENMP
b_local[tid * n + i] += A->val[k] * x[i];
#else
b[i] += A->val[k] * x[i];
#endif
#ifdef _OPENMP
#pragma omp for schedule(static)
for ( i = 0; i < n; ++i )
{
for ( j = 0; j < omp_get_num_threads(); ++j )
b[i] += b_local[j * n + i];
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/* Transpose A and copy into A^T
*
* A: symmetric, lower triangular (half-format), stored in CSR
* A_t: symmetric, upper triangular (half-format), stored in CSR
*
* Assumptions:
* A has non-zero diagonals
* Each row of A has at least one non-zero (i.e., no rows with all zeros) */
void Transpose( const sparse_matrix const *A, sparse_matrix const *A_t )
{
unsigned int i, j, pj, *A_t_top;
if ( (A_t_top = (unsigned int*) calloc( A->n + 1, sizeof(unsigned int))) == NULL )
{
fprintf( stderr, "Not enough space for matrix tranpose. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
memset( A_t->start, 0, (A->n + 1) * sizeof(unsigned int) );
/* count nonzeros in each column of A^T */
for ( i = 0; i < A->n; ++i )
{
for ( pj = A->start[i]; pj < A->start[i + 1]; ++pj )
{
++A_t->start[A->j[pj] + 1];
}
}
/* setup the row pointers for A^T */
for ( i = 1; i <= A->n; ++i )
{
A_t_top[i] = A_t->start[i] = A_t->start[i] + A_t->start[i - 1];
}
/* fill in A^T */
for ( i = 0; i < A->n; ++i )
{
for ( pj = A->start[i]; pj < A->start[i + 1]; ++pj )
{
j = A->j[pj];
A_t->j[A_t_top[j]] = i;
A_t->val[A_t_top[j]] = A->val[pj];
++A_t_top[j];
}
}
free( A_t_top );
}
/* Transpose A in-place
*
* A: symmetric, lower triangular (half-format), stored in CSR
*
* Assumptions:
* A has non-zero diagonals
* Each row of A has at least one non-zero (i.e., no rows with all zeros) */
void Transpose_I( sparse_matrix * const A )
{
sparse_matrix * A_t;
if ( Allocate_Matrix( &A_t, A->n, A->m ) == FAILURE )
{
fprintf( stderr, "not enough memory for transposing matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
Transpose( A, A_t );
memcpy( A->start, A_t->start, sizeof(int) * (A_t->n + 1) );
memcpy( A->j, A_t->j, sizeof(int) * (A_t->start[A_t->n]) );
memcpy( A->val, A_t->val, sizeof(real) * (A_t->start[A_t->n]) );
Deallocate_Matrix( A_t );
}
/* Apply diagonal inverse (Jacobi) preconditioner to system residual
*
* Hdia_inv: diagonal inverse preconditioner (constructed using H)
* y: current residual
* x: preconditioned residual
* N: length of preconditioner and vectors (# rows in H)
*/
Kurt A. O'Hearn
committed
static void diag_pre_app( const real * const Hdia_inv, const real * const y,
Kurt A. O'Hearn
committed
unsigned int i;
#pragma omp for schedule(static)
Kurt A. O'Hearn
committed
for ( i = 0; i < N; ++i )
Kurt A. O'Hearn
committed
x[i] = y[i] * Hdia_inv[i];
Kurt A. O'Hearn
committed
/* Solve triangular system LU*x = y using level scheduling
*
* LU: lower/upper triangular, stored in CSR
* y: constants in linear system (RHS)
* x: solution
* tri: triangularity of LU (lower/upper)
Kurt A. O'Hearn
committed
* Assumptions:
* LU has non-zero diagonals
* Each row of LU has at least one non-zero (i.e., no rows with all zeros) */
static void tri_solve( const sparse_matrix * const LU, const real * const y,
real * const x, const TRIANGULARITY tri )
#pragma omp master
if ( tri == LOWER )
for ( i = 0; i < LU->n; ++i )
Kurt A. O'Hearn
committed
{
x[i] = y[i];
si = LU->start[i];
ei = LU->start[i + 1];
for ( pj = si; pj < ei - 1; ++pj )
{
j = LU->j[pj];
val = LU->val[pj];
x[i] -= val * x[j];
}
x[i] /= LU->val[pj];
Kurt A. O'Hearn
committed
}
}
Kurt A. O'Hearn
committed
{
for ( i = LU->n - 1; i >= 0; --i )
Kurt A. O'Hearn
committed
{
x[i] = y[i];
si = LU->start[i];
ei = LU->start[i + 1];
for ( pj = si + 1; pj < ei; ++pj )
{
j = LU->j[pj];
val = LU->val[pj];
x[i] -= val * x[j];
}
x[i] /= LU->val[si];
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
/* Solve triangular system LU*x = y using level scheduling
*
* LU: lower/upper triangular, stored in CSR
* y: constants in linear system (RHS)
* x: solution
Kurt A. O'Hearn
committed
* tri: triangularity of LU (lower/upper)
* find_levels: perform level search if positive, otherwise reuse existing levels
* Assumptions:
* LU has non-zero diagonals
* Each row of LU has at least one non-zero (i.e., no rows with all zeros) */
Kurt A. O'Hearn
committed
static void tri_solve_level_sched( const sparse_matrix * const LU, const real * const y,
real * const x, const TRIANGULARITY tri, int find_levels )
int i, j, pj, local_row, local_level;
Kurt A. O'Hearn
committed
#pragma omp master
Kurt A. O'Hearn
committed
{
if ( tri == LOWER )
Kurt A. O'Hearn
committed
{
row_levels = row_levels_L;
level_rows = level_rows_L;
level_rows_cnt = level_rows_cnt_L;
levels = levels_L;
}
else
{
row_levels = row_levels_U;
level_rows = level_rows_U;
level_rows_cnt = level_rows_cnt_U;
levels = levels_U;
Kurt A. O'Hearn
committed
}
if ( row_levels == NULL || level_rows == NULL || level_rows_cnt == NULL )
Kurt A. O'Hearn
committed
{
if ( (row_levels = (unsigned int*) malloc((size_t)LU->n * sizeof(unsigned int))) == NULL
|| (level_rows = (unsigned int*) malloc((size_t)LU->n * sizeof(unsigned int))) == NULL
|| (level_rows_cnt = (unsigned int*) malloc((size_t)(LU->n + 1) * sizeof(unsigned int))) == NULL )
{
fprintf( stderr, "Not enough space for triangular solve via level scheduling. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
Kurt A. O'Hearn
committed
}
if ( top == NULL )
{
if ( (top = (unsigned int*) malloc((size_t)(LU->n + 1) * sizeof(unsigned int))) == NULL )
{
fprintf( stderr, "Not enough space for triangular solve via level scheduling. Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
}
Kurt A. O'Hearn
committed
/* find levels (row dependencies in substitutions) */
if ( find_levels )
memset( row_levels, 0, LU->n * sizeof(unsigned int) );
memset( level_rows_cnt, 0, LU->n * sizeof(unsigned int) );
memset( top, 0, LU->n * sizeof(unsigned int) );
levels = 1;
if ( tri == LOWER )
for ( i = 0; i < LU->n; ++i )
Kurt A. O'Hearn
committed
{
local_level = 1;
for ( pj = LU->start[i]; pj < LU->start[i + 1] - 1; ++pj )
{
local_level = MAX( local_level, row_levels[LU->j[pj]] + 1 );
}
levels = MAX( levels, local_level );
row_levels[i] = local_level;
++level_rows_cnt[local_level];
Kurt A. O'Hearn
committed
}
fprintf(stderr, "levels(L): %d\n", levels);
fprintf(stderr, "NNZ(L): %d\n", LU->start[LU->n]);
for ( i = LU->n - 1; i >= 0; --i )
Kurt A. O'Hearn
committed
{
local_level = 1;
for ( pj = LU->start[i] + 1; pj < LU->start[i + 1]; ++pj )
{
local_level = MAX( local_level, row_levels[LU->j[pj]] + 1 );
}
levels = MAX( levels, local_level );
row_levels[i] = local_level;
++level_rows_cnt[local_level];
Kurt A. O'Hearn
committed
}
fprintf(stderr, "levels(U): %d\n", levels);
fprintf(stderr, "NNZ(U): %d\n", LU->start[LU->n]);
Kurt A. O'Hearn
committed
for ( i = 1; i < levels + 1; ++i )
{
level_rows_cnt[i] += level_rows_cnt[i - 1];
top[i] = level_rows_cnt[i];
}
Kurt A. O'Hearn
committed
for ( i = 0; i < LU->n; ++i )
{
level_rows[top[row_levels[i] - 1]] = i;
++top[row_levels[i] - 1];
}
#pragma omp barrier
/* perform substitutions by level */
if ( tri == LOWER )
for ( i = 0; i < levels; ++i )
#pragma omp for schedule(static)
for ( j = level_rows_cnt[i]; j < level_rows_cnt[i + 1]; ++j )
local_row = level_rows[j];
x[local_row] = y[local_row];
for ( pj = LU->start[local_row]; pj < LU->start[local_row + 1] - 1; ++pj )
x[local_row] -= LU->val[pj] * x[LU->j[pj]];
x[local_row] /= LU->val[pj];
}
else
{
for ( i = 0; i < levels; ++i )
#pragma omp for schedule(static)
for ( j = level_rows_cnt[i]; j < level_rows_cnt[i + 1]; ++j )
local_row = level_rows[j];
x[local_row] = y[local_row];
for ( pj = LU->start[local_row] + 1; pj < LU->start[local_row + 1]; ++pj )
x[local_row] -= LU->val[pj] * x[LU->j[pj]];
x[local_row] /= LU->val[LU->start[local_row]];
}
}
}
#pragma omp master
Kurt A. O'Hearn
committed
{
/* save level info for re-use if performing repeated triangular solves via preconditioning */
if ( tri == LOWER )
{
row_levels_L = row_levels;
level_rows_L = level_rows;
level_rows_cnt_L = level_rows_cnt;
levels_L = levels;
}
else
{
row_levels_U = row_levels;
level_rows_U = level_rows;
level_rows_cnt_U = level_rows_cnt;
levels_U = levels;
}
Kurt A. O'Hearn
committed
}
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
static void compute_H_full( const sparse_matrix * const H )
{
int count, i, j, pj;
sparse_matrix *H_t;
#pragma omp master
{
if ( Allocate_Matrix( &H_t, H->n, H->m ) == FAILURE )
{
fprintf( stderr, "not enough memory for full H. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
/* Set up the sparse matrix data structure for A. */
Transpose( H, H_t );
count = 0;
for ( i = 0; i < H->n; ++i )
{
H_full->start[i] = count;
for ( pj = H->start[i]; pj < H->start[i + 1]; ++pj )
{
H_full->val[count] = H->val[pj];
H_full->j[count] = H->j[pj];
++count;
}
for ( pj = H_t->start[i] + 1; pj < H_t->start[i + 1]; ++pj )
{
H_full->val[count] = H_t->val[pj];
H_full->j[count] = H_t->j[pj];
++count;
}
}
H_full->start[i] = count;
Deallocate_Matrix( H_t );
}
#pragma omp barrier
}
static void graph_coloring()
{
#define MAX_COLOR (500)
int i, pj, v;
int fb_color[MAX_COLOR];
#pragma omp master
{
memset( color, 0, sizeof(unsigned int) * H_full->n );
recolor_cnt = H_full->n;
for ( i = 0; i < H_full->n; ++i )
{
to_color[i] = i;
}
}
memset( fb_color, -1, sizeof(unsigned int) * MAX_COLOR );
#pragma omp barrier
while ( recolor_cnt > 0 )
{
#pragma omp for schedule(static)
for ( i = 0; i < H_full->n; ++i )
{
v = to_color[i];
for ( pj = H_full->start[v]; pj < H_full->start[v + 1]; ++pj )
{
fb_color[color[H_full->j[pj]]] = v;
}
for ( pj = 1; fb_color[pj] == v; ++pj );
color[v] = pj;
}
#pragma omp for schedule(static)
for ( i = 0; i < H_full->n; ++i )
{
v = to_color[i];
recolor[i] = FALSE;
for ( pj = H_full->start[v]; pj < H_full->start[v + 1]; ++pj )
{
if ( color[v] == color[H_full->j[pj]] && v > H_full->j[pj] )
{
recolor[i] = TRUE;
break;
}
}
}
//TODO: switch to reduction on recolor_cnt (+) via parallel scan through recolor
#pragma omp master
{
recolor_cnt = 0;
for ( i = 0; i < H_full->n; ++i )
{
if ( recolor[i] == TRUE )
{
to_color[recolor_cnt] = i;
color[i] = 0;
++recolor_cnt;
}
}
}
#pragma omp barrier
}
}
static void permute_factor( sparse_matrix * const LU, const TRIANGULARITY tri, const int find_mapping )
{
unsigned int i, pj;
sparse_matrix *LUtemp;
#pragma omp master
{
memset( color_top, 0, sizeof(unsigned int) * (H_full->n + 1) );
if ( Allocate_Matrix( &LUtemp, LU->n, LU->m ) == FAILURE )
{
fprintf( stderr, "Not enough space for graph coloring (factor permutation). Terminating...\n" );
exit( INSUFFICIENT_MEMORY );
}
if ( find_mapping == TRUE )
{
for ( i = 0; i < H_full->n; ++i )
{
++color_top[color[i]];
}
for ( i = 1; i < H_full->n + 1; ++i )
{
color_top[i] += color_top[i - 1];
}
for ( i = 0; i < H_full->n; ++i )
{
permuted_row_col[color_top[color[i] - 1]] = i;
++color_top[color[i] - 1];
}
/* invert mapping */
memcpy( color_top, permuted_row_col, sizeof(unsigned int) * H_full->n );
for ( i = 0; i < H_full->n; ++i )
{
permuted_row_col[color_top[i]] = i;
}
}
memset( color_top, 0, sizeof(unsigned int) * (H_full->n + 1) );
if ( tri == LOWER )
{
/* count nonzeros in each row of permuted factor */
for ( i = 0; i < LU->n; ++i )
{
for ( pj = LU->start[i]; pj < LU->start[i + 1]; ++pj )
{
if ( permuted_row_col[i] < permuted_row_col[LU->j[pj]] )
{
++color_top[permuted_row_col[i] + 1];
}
else
{
++color_top[permuted_row_col[LU->j[pj]] + 1];
}
}
}
for ( i = 1; i < LU->n + 1; ++i )
{
color_top[i] += color_top[i - 1];
}
memcpy( LUtemp->start, color_top, sizeof(unsigned int) * (LU->n + 1) );
for ( i = 0; i < LU->n; ++i )
{
for ( pj = LU->start[i]; pj < LU->start[i + 1]; ++pj )
{
if ( permuted_row_col[i] < permuted_row_col[LU->j[pj]] )
{
LUtemp->j[color_top[permuted_row_col[i]]] = permuted_row_col[LU->j[pj]];
LUtemp->val[color_top[permuted_row_col[i]]] = LU->val[pj];
++color_top[permuted_row_col[i]];
}
else
{
LUtemp->j[color_top[permuted_row_col[LU->j[pj]]]] = permuted_row_col[i];
LUtemp->val[color_top[permuted_row_col[LU->j[pj]]]] = LU->val[pj];
++color_top[permuted_row_col[LU->j[pj]]];
}
}
}
}
memcpy( LU->start, LUtemp->start, sizeof(unsigned int) * (LU->n + 1) );
memcpy( LU->j, LUtemp->j, sizeof(unsigned int) * LU->start[LU->n] );
memcpy( LU->val, LUtemp->val, sizeof(real) * LU->start[LU->n] );
Deallocate_Matrix( LUtemp );
}
#pragma omp barrier
}
/* Jacobi iteration using truncated Neumann series: x_{k+1} = Gx_k + D^{-1}b
* where:
* G = I - D^{-1}R
* R = triangular matrix
* D = diagonal matrix, diagonals from R
*
* Note: used during the backsolves when applying preconditioners with
* triangular factors in iterative linear solvers
*
* Note: Newmann series arises from series expansion of the inverse of
* the coefficient matrix in the triangular system */
Kurt A. O'Hearn
committed
static void jacobi_iter( const sparse_matrix * const R, const real * const Dinv,
const real * const b, real * const x, const TRIANGULARITY tri,
const unsigned int maxiter )
Kurt A. O'Hearn
committed
unsigned int i, k, si = 0, ei = 0, iter;
iter = 0;
#pragma omp master
{
if ( Dinv_b == NULL )
{
if ( (Dinv_b = (real*) malloc(sizeof(real) * R->n)) == NULL )
Kurt A. O'Hearn
committed
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
Kurt A. O'Hearn
committed
}
}
if ( rp == NULL )
{
if ( (rp = (real*) malloc(sizeof(real) * R->n)) == NULL )
Kurt A. O'Hearn
committed
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
Kurt A. O'Hearn
committed
}
}
if ( rp2 == NULL )
{
if ( (rp2 = (real*) malloc(sizeof(real) * R->n)) == NULL )
Kurt A. O'Hearn
committed
{
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
Kurt A. O'Hearn
committed
}
#pragma omp barrier
Vector_MakeZero( rp, R->n );
Kurt A. O'Hearn
committed
/* precompute and cache, as invariant in loop below */
#pragma omp for schedule(static)
for ( i = 0; i < R->n; ++i )
{
Dinv_b[i] = Dinv[i] * b[i];
}
do
{
// x_{k+1} = G*x_{k} + Dinv*b;
#pragma omp for schedule(guided)
for ( i = 0; i < R->n; ++i )
{
if (tri == LOWER)
{
si = R->start[i];
ei = R->start[i + 1] - 1;
}
else
Kurt A. O'Hearn
committed
{
si = R->start[i] + 1;
ei = R->start[i + 1];
Kurt A. O'Hearn
committed
}
rp2[i] = 0.;
for ( k = si; k < ei; ++k )
Kurt A. O'Hearn
committed
{
rp2[i] += R->val[k] * rp[R->j[k]];
Kurt A. O'Hearn
committed
}
rp2[i] *= -Dinv[i];
rp2[i] += Dinv_b[i];
}
#pragma omp master
{
rp3 = rp;
rp = rp2;
rp2 = rp3;
}
#pragma omp barrier
++iter;
while ( iter < maxiter );
Kurt A. O'Hearn
committed
Vector_Copy( x, rp, R->n );
Kurt A. O'Hearn
committed
/* Solve triangular system LU*x = y using level scheduling
*
* workspace: data struct containing matrices, lower/upper triangular, stored in CSR
* control: data struct containing parameters
Kurt A. O'Hearn
committed
* y: constants in linear system (RHS)
* x: solution
* fresh_pre: parameter indicating if this is a newly computed (fresh) preconditioner
Kurt A. O'Hearn
committed
* Assumptions:
* Matrices have non-zero diagonals
* Each row of a matrix has at least one non-zero (i.e., no rows with all zeros) */
static void apply_preconditioner( const static_storage * const workspace, const control_params * const control,
const real * const y, real * const x, const int fresh_pre )
Kurt A. O'Hearn
committed
int i, si;
switch ( control->pre_app_type )
Kurt A. O'Hearn
committed
{
case NONE_PA:
break;
case TRI_SOLVE_PA:
switch ( control->pre_comp_type )
{
case DIAG_PC:
diag_pre_app( workspace->Hdia_inv, y, x, workspace->H->n );
Kurt A. O'Hearn
committed
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
tri_solve( workspace->L, y, x, LOWER );
tri_solve( workspace->U, y, x, UPPER );
Kurt A. O'Hearn
committed
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
Kurt A. O'Hearn
committed
break;
}
break;
case TRI_SOLVE_LEVEL_SCHED_PA:
switch ( control->pre_comp_type )
{
case DIAG_PC:
diag_pre_app( workspace->Hdia_inv, y, x, workspace->H->n );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
tri_solve_level_sched( workspace->L, y, x, LOWER, fresh_pre );
tri_solve_level_sched( workspace->U, y, x, UPPER, fresh_pre );
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
switch ( control->pre_comp_type )
{
case DIAG_PC:
fprintf( stderr, "Unsupported preconditioner computation/application method combination. Terminating...\n" );
exit( INVALID_INPUT );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
#pragma omp master
Kurt A. O'Hearn
committed
{
if ( (color = (unsigned int*) malloc(sizeof(unsigned int) * workspace->H->n)) == NULL ||
(to_color = (unsigned int*) malloc(sizeof(unsigned int) * workspace->H->n)) == NULL ||
(recolor = (unsigned int*) malloc(sizeof(unsigned int) * workspace->H->n)) == NULL ||
(color_top = (unsigned int*) malloc(sizeof(unsigned int) * (workspace->H->n + 1))) == NULL ||
(permuted_row_col = (unsigned int*) malloc(sizeof(unsigned int) * workspace->H->n)) == NULL ||
(Allocate_Matrix( &H_full, workspace->H->n, 2 * workspace->H->m - workspace->H->n ) == FAILURE ) )
fprintf( stderr, "not enough memory for graph coloring. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
Kurt A. O'Hearn
committed
#pragma omp barrier
compute_H_full( workspace->H );
graph_coloring( );
permute_factor( workspace->L, LOWER, TRUE );
permute_factor( workspace->U, UPPER, FALSE );
Kurt A. O'Hearn
committed
tri_solve_level_sched( workspace->L, y, x, LOWER, fresh_pre );
tri_solve_level_sched( workspace->U, y, x, UPPER, fresh_pre );
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case JACOBI_ITER_PA:
switch ( control->pre_comp_type )
{
case DIAG_PC:
fprintf( stderr, "Unsupported preconditioner computation/application method combination. Terminating...\n" );
exit( INVALID_INPUT );
break;
case ICHOLT_PC:
case ILU_PAR_PC:
case ILUT_PAR_PC:
#pragma omp master
if ( (Dinv_L = (real*) malloc(sizeof(real) * workspace->L->n)) == NULL )
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
/* construct D^{-1}_L */
if ( fresh_pre )
{
#pragma omp for schedule(static)
for ( i = 0; i < workspace->L->n; ++i )
si = workspace->L->start[i + 1] - 1;
Dinv_L[i] = 1. / workspace->L->val[si];
}
}
jacobi_iter( workspace->L, Dinv_L, y, x, LOWER, control->pre_app_jacobi_iters );
#pragma omp master
{
if ( Dinv_U == NULL )
{
if ( (Dinv_U = (real*) malloc(sizeof(real) * workspace->U->n)) == NULL )
fprintf( stderr, "not enough memory for Jacobi iteration matrices. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
Kurt A. O'Hearn
committed
}
#pragma omp barrier
/* construct D^{-1}_U */
if ( fresh_pre )
{
#pragma omp for schedule(static)
for ( i = 0; i < workspace->U->n; ++i )
{
si = workspace->U->start[i];
Dinv_U[i] = 1. / workspace->U->val[si];
}
}
jacobi_iter( workspace->U, Dinv_U, y, x, UPPER, control->pre_app_jacobi_iters );
Kurt A. O'Hearn
committed
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "Unrecognized preconditioner application method. Terminating...\n" );
exit( INVALID_INPUT );
break;
Kurt A. O'Hearn
committed
}
return;
}
/* generalized minimual residual iterative solver for sparse linear systems */
int GMRES( const static_storage * const workspace, const control_params * const control,
simulation_data * const data, const sparse_matrix * const H,
const real * const b, const real tol, real * const x,
const FILE * const fout, const int fresh_pre )
Kurt A. O'Hearn
committed
{
int i, j, k, itr, N, g_j, g_itr;
real cc, tmp1, tmp2, temp, ret_temp, bnorm, time_start;
Kurt A. O'Hearn
committed
#pragma omp parallel default(none) private(i, j, k, itr, bnorm, ret_temp) \
shared(N, cc, tmp1, tmp2, temp, time_start, g_itr, g_j, stderr)
Kurt A. O'Hearn
committed
{
#pragma omp master
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
time_start = Get_Time( );
Kurt A. O'Hearn
committed
}
bnorm = Norm( b, N );
#pragma omp master
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
data->timing.solver_vector_ops += Get_Timing_Info( time_start );
Kurt A. O'Hearn
committed
}
if ( control->pre_comp_type == DIAG_PC )
Kurt A. O'Hearn
committed
{
/* apply preconditioner to RHS */
#pragma omp master
{
time_start = Get_Time( );