Newer
Older
/*----------------------------------------------------------------------
PuReMD - Purdue ReaxFF Molecular Dynamics Program
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "reax_types.h"
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
#include "cuda_allocate.h"
#include "cuda_list.h"
Kurt A. O'Hearn
committed
#include "cuda_copy.h"
#include "cuda_forces.h"
#include "cuda_init_md.h"
#include "cuda_neighbors.h"
#include "cuda_reset_tools.h"
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
#include "init_md.h"
#include "allocate.h"
#include "box.h"
#include "comm_tools.h"
#include "forces.h"
#include "grid.h"
#include "integrate.h"
#include "io_tools.h"
#include "list.h"
#include "lookup.h"
#include "neighbors.h"
#include "random.h"
#include "reset_tools.h"
#include "system_props.h"
#include "tool_box.h"
#include "vector.h"
Kurt A. O'Hearn
committed
#include "reax_init_md.h"
#include "reax_allocate.h"
#include "reax_forces.h"
#include "reax_io_tools.h"
#include "reax_list.h"
#include "reax_lookup.h"
#include "reax_reset_tools.h"
#include "reax_system_props.h"
#include "reax_tool_box.h"
#include "reax_vector.h"
#endif
#if defined(PURE_REAX)
/************************ initialize system ************************/
int Reposition_Atoms( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, mpi_datatypes *mpi_data, char *msg )
Kurt A. O'Hearn
committed
int i;
rvec dx;
/* reposition atoms */
if ( control->reposition_atoms == 0 ) //fit atoms to periodic box
{
rvec_MakeZero( dx );
}
else if ( control->reposition_atoms == 1 ) //put center of mass to center
{
rvec_Scale( dx, 0.5, system->big_box.box_norms );
rvec_ScaledAdd( dx, -1., data->xcm );
}
else if ( control->reposition_atoms == 2 ) //put center of mass to origin
{
rvec_Scale( dx, -1., data->xcm );
}
else
{
strcpy( msg, "reposition_atoms: invalid option" );
return FAILURE;
}
for ( i = 0; i < system->n; ++i )
// Inc_on_T3_Gen( system->my_atoms[i].x, dx, &(system->big_box) );
rvec_Add( system->my_atoms[i].x, dx );
return SUCCESS;
}
void Generate_Initial_Velocities( reax_system *system, real T )
{
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
int i;
real m, scale, norm;
if ( T <= 0.1 )
{
for ( i = 0; i < system->n; i++ )
rvec_MakeZero( system->my_atoms[i].v );
}
else
{
Randomize();
for ( i = 0; i < system->n; i++ )
{
rvec_Random( system->my_atoms[i].v );
norm = rvec_Norm_Sqr( system->my_atoms[i].v );
m = system->reax_param.sbp[ system->my_atoms[i].type ].mass;
scale = SQRT( m * norm / (3.0 * K_B * T) );
rvec_Scale( system->my_atoms[i].v, 1. / scale, system->my_atoms[i].v );
// fprintf( stderr, "v = %f %f %f\n",
// system->my_atoms[i].v[0],
// system->my_atoms[i].v[1],
// system->my_atoms[i].v[2] );
// fprintf( stderr, "scale = %f\n", scale );
// fprintf( stderr, "v = %f %f %f\n",
// system->my_atoms[i].v[0],
// system->my_atoms[i].v[1],
// system->my_atoms[i].v[2] );
}
int Init_System( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, storage *workspace,
mpi_datatypes *mpi_data, char *msg )
int i;
reax_atom *atom;
int nrecv[MAX_NBRS];
Setup_New_Grid( system, control, MPI_COMM_WORLD );
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d GRID:\n", system->my_rank );
Print_Grid( &(system->my_grid), stderr );
Kurt A. O'Hearn
committed
Bin_My_Atoms( system, &(workspace->realloc) );
Reorder_My_Atoms( system, workspace );
/* estimate N and total capacity */
Kurt A. O'Hearn
committed
for ( i = 0; i < MAX_NBRS; ++i )
{
nrecv[i] = 0;
}
MPI_Barrier( MPI_COMM_WORLD );
system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
Estimate_Boundary_Atoms, Unpack_Estimate_Message, TRUE );
system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP );
Bin_Boundary_Atoms( system );
/* estimate numH and Hcap */
system->numH = 0;
Kurt A. O'Hearn
committed
if ( control->hbond_cut > 0.0 )
{
for ( i = 0; i < system->n; ++i )
{
atom = &(system->my_atoms[i]);
Kurt A. O'Hearn
committed
if ( system->reax_param.sbp[ atom->type ].p_hbond == H_ATOM )
Kurt A. O'Hearn
committed
{
atom->Hindex = system->numH++;
Kurt A. O'Hearn
committed
}
else
{
atom->Hindex = -1;
}
Kurt A. O'Hearn
committed
}
//Tried fix
//system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
system->Hcap = MAX( system->n * SAFER_ZONE, MIN_CAP );
// Sudhir-style below
/*
Kurt A. O'Hearn
committed
if ( control->hbond_cut > 0.0 )
for ( i = 0; i < system->n; ++i )
{
atom = &(system->my_atoms[i]);
if ( system->reax_param.sbp[ atom->type ].p_hbond == H_ATOM )
atom->Hindex = system->numH++;
else atom->Hindex = -1;
}
system->Hcap = MAX( system->numH * SAFER_ZONE, MIN_CAP );
Kurt A. O'Hearn
committed
//Sync_System( system );
//Allocate_System( system, system->local_cap, system->total_cap, msg );
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: n=%d local_cap=%d\n",
system->my_rank, system->n, system->local_cap );
fprintf( stderr, "p%d: N=%d total_cap=%d\n",
system->my_rank, system->N, system->total_cap );
fprintf( stderr, "p%d: numH=%d H_cap=%d\n",
system->my_rank, system->numH, system->Hcap );
Compute_Total_Mass( system, data, mpi_data->comm_mesh3D );
Compute_Center_of_Mass( system, data, mpi_data, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
// if( Reposition_Atoms( system, control, data, mpi_data, msg ) == FAILURE )
// {
// return FAILURE;
// }
/* initialize velocities so that desired init T can be attained */
if ( !control->restart || (control->restart && control->random_vel) )
Kurt A. O'Hearn
committed
{
Generate_Initial_Velocities( system, control->T_init );
Kurt A. O'Hearn
committed
}
Compute_Kinetic_Energy( system, data, mpi_data->comm_mesh3D );
return SUCCESS;
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
int Cuda_Init_System( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, storage *workspace,
mpi_datatypes *mpi_data, char *msg )
Kurt A. O'Hearn
committed
int i, ret;
reax_atom *atom;
int nrecv[MAX_NBRS];
Setup_New_Grid( system, control, MPI_COMM_WORLD );
Kurt A. O'Hearn
committed
fprintf( stderr, " [SETUP NEW GRID]\n" );
fprintf( stderr, "p%d GRID:\n", system->my_rank );
Print_Grid( &(system->my_grid), stderr );
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
fprintf( stderr, " [BIN MY ATOMS]\n" );
Kurt A. O'Hearn
committed
fprintf( stderr, " [REORDER MY ATOMS]\n" );
Kurt A. O'Hearn
committed
for ( i = 0; i < MAX_NBRS; ++i )
{
nrecv[i] = 0;
}
MPI_Barrier( MPI_COMM_WORLD );
system->max_recved = 0;
system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
Estimate_Boundary_Atoms, Unpack_Estimate_Message, TRUE );
fprintf( stderr, " [SEND_RECV:ESTIMATE_BOUNDARY_ATOMS]\n" );
system->total_cap = MAX( (int)(system->N * SAFE_ZONE), MIN_CAP );
Bin_Boundary_Atoms( system );
fprintf( stderr, " [BIN_BOUNDARY_ATOMS]\n" );
Kurt A. O'Hearn
committed
/* Sync atoms here to continue the computation */
Kurt A. O'Hearn
committed
dev_alloc_system( system );
Kurt A. O'Hearn
committed
fprintf( stderr, " [DEV ALLOC SYSTEM]\n" );
Sync_System( system );
fprintf( stderr, " [SYNC SYSTEM]\n" );
/* estimate numH and Hcap */
Cuda_Reset_Atoms( system, control );
fprintf( stderr, "p%d: n=%d local_cap=%d\n",
system->my_rank, system->n, system->local_cap );
fprintf( stderr, "p%d: N=%d total_cap=%d\n",
system->my_rank, system->N, system->total_cap );
fprintf( stderr, "p%d: numH=%d H_cap=%d\n",
system->my_rank, system->numH, system->Hcap );
Cuda_Compute_Total_Mass( system, data, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
fprintf( stderr, " [CUDA COMPUTE TOTAL MASS]\n" );
Cuda_Compute_Center_of_Mass( system, data, mpi_data, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
fprintf( stderr, " [CUDA COMPUTE CENTER OF MASS]\n" );
Kurt A. O'Hearn
committed
// if( Reposition_Atoms( system, control, data, mpi_data, msg ) == FAILURE )
// {
// return FAILURE;
// }
/* initialize velocities so that desired init T can be attained */
if ( !control->restart || (control->restart && control->random_vel) )
Kurt A. O'Hearn
committed
{
Generate_Initial_Velocities( system, control->T_init );
Kurt A. O'Hearn
committed
fprintf( stderr, " [GENERATE INITIAL VELOCITIES]\n" );
}
Cuda_Compute_Kinetic_Energy( system, data, mpi_data->comm_mesh3D );
Kurt A. O'Hearn
committed
fprintf( stderr, " [CUDA COMPUTE K.E.]\n" );
Kurt A. O'Hearn
committed
#endif
/************************ initialize simulation data ************************/
Kurt A. O'Hearn
committed
void Init_Simulation_Data( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, char *msg )
Reset_Simulation_Data( data );
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
switch ( control->ensemble )
{
case NVE:
data->N_f = 3 * system->bigN;
Evolve = Velocity_Verlet_NVE;
control->virial = 0;
break;
case bNVT:
data->N_f = 3 * system->bigN + 1;
Evolve = Velocity_Verlet_Berendsen_NVT;
control->virial = 0;
break;
case nhNVT:
fprintf( stderr, "WARNING: Nose-Hoover NVT is still under testing.\n" );
data->N_f = 3 * system->bigN + 1;
Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
control->virial = 0;
if ( !control->restart || (control->restart && control->random_vel) )
{
data->therm.G_xi = control->Tau_T *
(2.0 * data->sys_en.e_kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
}
break;
case sNPT: /* Semi-Isotropic NPT */
data->N_f = 3 * system->bigN + 4;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
break;
case iNPT: /* Isotropic NPT */
data->N_f = 3 * system->bigN + 2;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
fprintf( stderr, "p%d: init_simulation_data: option not yet implemented\n",
system->my_rank );
MPI_Abort( MPI_COMM_WORLD, INVALID_INPUT );
data->N_f = 3 * system->bigN + 9;
Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
/*if( !control->restart ) {
data->therm.G_xi = control->Tau_T *
(2.0 * data->my_en.e_Kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->iso_bar.eps = (1.0 / 3.0) * log(system->box.volume);
data->inv_W = 1.0 /
( data->N_f * K_B * control->T * SQR(control->Tau_P) );
Compute_Pressure( system, control, data, out_control );
}*/
break;
default:
fprintf( stderr, "p%d: init_simulation_data: ensemble not recognized\n",
system->my_rank );
MPI_Abort( MPI_COMM_WORLD, INVALID_INPUT );
/* initialize the timer(s) */
MPI_Barrier( MPI_COMM_WORLD ); // wait for everyone to come here
if ( system->my_rank == MASTER_NODE )
{
data->timing.start = Get_Time( );
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
Kurt A. O'Hearn
committed
void Cuda_Init_Simulation_Data( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, char *msg )
Kurt A. O'Hearn
committed
dev_alloc_simulation_data( data );
Kurt A. O'Hearn
committed
Reset_Simulation_Data( data );
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
switch ( control->ensemble )
{
case NVE:
data->N_f = 3 * system->bigN;
Cuda_Evolve = Velocity_Verlet_NVE;
control->virial = 0;
break;
case bNVT:
data->N_f = 3 * system->bigN + 1;
Cuda_Evolve = Cuda_Velocity_Verlet_Berendsen_NVT;
control->virial = 0;
break;
case nhNVT:
fprintf( stderr, "WARNING: Nose-Hoover NVT is still under testing.\n" );
data->N_f = 3 * system->bigN + 1;
Cuda_Evolve = Velocity_Verlet_Nose_Hoover_NVT_Klein;
control->virial = 0;
if ( !control->restart || (control->restart && control->random_vel) )
{
data->therm.G_xi = control->Tau_T *
(2.0 * data->sys_en.e_kin - data->N_f * K_B * control->T );
data->therm.v_xi = data->therm.G_xi * control->dt;
data->therm.v_xi_old = 0;
data->therm.xi = 0;
}
break;
case sNPT: /* Semi-Isotropic NPT */
data->N_f = 3 * system->bigN + 4;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
break;
case iNPT: /* Isotropic NPT */
data->N_f = 3 * system->bigN + 2;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
if ( !control->restart )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
break;
case NPT: /* Anisotropic NPT */
data->N_f = 3 * system->bigN + 9;
Cuda_Evolve = Velocity_Verlet_Berendsen_NPT;
control->virial = 1;
fprintf( stderr, "p%d: init_simulation_data: option not yet implemented\n",
system->my_rank );
MPI_Abort( MPI_COMM_WORLD, INVALID_INPUT );
fprintf( stderr, "p%d: init_simulation_data: ensemble not recognized\n",
system->my_rank );
MPI_Abort( MPI_COMM_WORLD, INVALID_INPUT );
Kurt A. O'Hearn
committed
MPI_Barrier( MPI_COMM_WORLD );
if ( system->my_rank == MASTER_NODE )
{
data->timing.start = Get_Time( );
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
#endif
#elif defined(LAMMPS_REAX)
int Init_System( reax_system *system, char *msg )
{
system->big_box.V = 0;
system->big_box.box_norms[0] = 0;
system->big_box.box_norms[1] = 0;
system->big_box.box_norms[2] = 0;
system->local_cap = (int)(system->n * SAFE_ZONE);
system->total_cap = (int)(system->N * SAFE_ZONE);
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: local_cap=%d total_cap=%d\n",
system->my_rank, system->local_cap, system->total_cap );
Allocate_System( system, system->local_cap, system->total_cap, msg );
return SUCCESS;
Kurt A. O'Hearn
committed
void Init_Simulation_Data( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
//if( !control->restart )
data->step = data->prev_steps = 0;
}
#endif
/************************ initialize workspace ************************/
/* Initialize Taper params */
void Init_Taper( control_params *control, storage *workspace )
{
real d1, d7;
real swa, swa2, swa3;
real swb, swb2, swb3;
swa = control->nonb_low;
swb = control->nonb_cut;
Kurt A. O'Hearn
committed
if ( FABS( swa ) > 0.01 )
Kurt A. O'Hearn
committed
{
fprintf( stderr, "Warning: non-zero lower Taper-radius cutoff\n" );
Kurt A. O'Hearn
committed
}
if ( swb < 0 )
{
fprintf( stderr, "Negative upper Taper-radius cutoff\n" );
MPI_Abort( MPI_COMM_WORLD, INVALID_INPUT );
}
else if ( swb < 5 )
Kurt A. O'Hearn
committed
{
fprintf( stderr, "Warning: very low Taper-radius cutoff: %f\n", swb );
Kurt A. O'Hearn
committed
}
d1 = swb - swa;
d7 = POW( d1, 7.0 );
swa2 = SQR( swa );
swa3 = CUBE( swa );
swb2 = SQR( swb );
swb3 = CUBE( swb );
workspace->Tap[7] = 20.0 / d7;
workspace->Tap[6] = -70.0 * (swa + swb) / d7;
workspace->Tap[5] = 84.0 * (swa2 + 3.0 * swa * swb + swb2) / d7;
workspace->Tap[4] = -35.0 * (swa3 + 9.0 * swa2 * swb + 9.0 * swa * swb2 + swb3 ) / d7;
workspace->Tap[3] = 140.0 * (swa3 * swb + 3.0 * swa2 * swb2 + swa * swb3 ) / d7;
workspace->Tap[2] = -210.0 * (swa3 * swb2 + swa2 * swb3) / d7;
workspace->Tap[1] = 140.0 * swa3 * swb3 / d7;
workspace->Tap[0] = (-35.0 * swa3 * swb2 * swb2 + 21.0 * swa2 * swb3 * swb2 +
Kurt A. O'Hearn
committed
7.0 * swa * swb3 * swb3 + swb3 * swb3 * swb ) / d7;
Kurt A. O'Hearn
committed
void Init_Workspace( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
storage *workspace, char *msg )
Kurt A. O'Hearn
committed
Allocate_Workspace( system, control, workspace, system->local_cap,
system->total_cap, msg );
memset( &(workspace->realloc), 0, sizeof(reallocate_data) );
Reset_Workspace( system, workspace );
/* Initialize the Taper function */
Init_Taper( control, workspace );
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
Kurt A. O'Hearn
committed
void Cuda_Init_Workspace( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
storage *workspace, char *msg )
Kurt A. O'Hearn
committed
dev_alloc_workspace( system, control, dev_workspace,
Kurt A. O'Hearn
committed
system->local_cap, system->total_cap, msg );
memset( &(workspace->realloc), 0, sizeof(reallocate_data) );
Cuda_Reset_Workspace( system, workspace );
/* Initialize the Taper function */
Init_Taper( control, dev_workspace );
Kurt A. O'Hearn
committed
#endif
/************** setup communication data structures **************/
int Init_MPI_Datatypes( reax_system *system, storage *workspace,
Kurt A. O'Hearn
committed
mpi_datatypes *mpi_data, char *msg )
Kurt A. O'Hearn
committed
int i, block[11];
MPI_Aint base, disp[11];
MPI_Datatype type[11];
mpi_atom sample;
Kurt A. O'Hearn
committed
restart_atom r_sample;
rvec rvec_sample;
rvec2 rvec2_sample;
/* setup the world */
mpi_data->world = MPI_COMM_WORLD;
/* mpi_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, name,
x, v, f_old, s, t] */
block[0] = block[1] = block[2] = block[3] = block[4] = 1;
block[5] = MAX_ATOM_NAME_LEN;
block[6] = block[7] = block[8] = 3;
block[9] = block[10] = 4;
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
// MPI_Get_address( &sample, &base );
// MPI_Get_address( &(sample.orig_id), disp + 0 );
// MPI_Get_address( &(sample.imprt_id), disp + 1 );
// MPI_Get_address( &(sample.type), disp + 2 );
// MPI_Get_address( &(sample.num_bonds), disp + 3 );
// MPI_Get_address( &(sample.num_hbonds), disp + 4 );
// MPI_Get_address( &(sample.name), disp + 5 );
// MPI_Get_address( &(sample.x[0]), disp + 6 );
// MPI_Get_address( &(sample.v[0]), disp + 7 );
// MPI_Get_address( &(sample.f_old[0]), disp + 8 );
// MPI_Get_address( &(sample.s[0]), disp + 9 );
// MPI_Get_address( &(sample.t[0]), disp + 10 );
// for ( i = 0; i < 11; ++i )
// {
// disp[i] -= base;
// }
disp[0] = offsetof( mpi_atom, orig_id );
disp[1] = offsetof( mpi_atom, imprt_id );
disp[2] = offsetof( mpi_atom, type );
disp[3] = offsetof( mpi_atom, num_bonds );
disp[4] = offsetof( mpi_atom, num_hbonds );
disp[5] = offsetof( mpi_atom, name );
disp[6] = offsetof( mpi_atom, x );
disp[7] = offsetof( mpi_atom, v );
disp[8] = offsetof( mpi_atom, f_old );
disp[9] = offsetof( mpi_atom, s );
disp[10] = offsetof( mpi_atom, t );
type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT;
type[5] = MPI_CHAR;
type[6] = type[7] = type[8] = type[9] = type[10] = MPI_DOUBLE;
MPI_Type_create_struct( 11, block, disp, type, &(mpi_data->mpi_atom_type) );
MPI_Type_commit( &(mpi_data->mpi_atom_type) );
/* boundary_atom - [orig_id, imprt_id, type, num_bonds, num_hbonds, x] */
block[0] = block[1] = block[2] = block[3] = block[4] = 1;
block[5] = 3;
// MPI_Get_address( &b_sample, &base );
// MPI_Get_address( &(b_sample.orig_id), disp + 0 );
// MPI_Get_address( &(b_sample.imprt_id), disp + 1 );
// MPI_Get_address( &(b_sample.type), disp + 2 );
// MPI_Get_address( &(b_sample.num_bonds), disp + 3 );
// MPI_Get_address( &(b_sample.num_hbonds), disp + 4 );
// MPI_Get_address( &(b_sample.x[0]), disp + 5 );
// for ( i = 0; i < 6; ++i )
// {
// disp[i] -= base;
// }
disp[0] = offsetof( boundary_atom, orig_id );
disp[1] = offsetof( boundary_atom, imprt_id );
disp[2] = offsetof( boundary_atom, type );
disp[3] = offsetof( boundary_atom, num_bonds );
disp[4] = offsetof( boundary_atom, num_hbonds );
disp[5] = offsetof( boundary_atom, x );
type[0] = type[1] = type[2] = type[3] = type[4] = MPI_INT;
type[5] = MPI_DOUBLE;
MPI_Type_create_struct( 6, block, disp, type, &(mpi_data->boundary_atom_type) );
MPI_Type_commit( &(mpi_data->boundary_atom_type) );
/* mpi_rvec */
block[0] = 3;
// MPI_Get_address( &rvec_sample, &base );
// MPI_Get_address( &(rvec_sample[0]), disp + 0 );
// for ( i = 0; i < 1; ++i )
// {
// disp[i] -= base;
// }
disp[0] = 0;
MPI_Type_create_struct( 1, block, disp, type, &(mpi_data->mpi_rvec) );
MPI_Type_commit( &(mpi_data->mpi_rvec) );
/* mpi_rvec2 */
block[0] = 2;
// MPI_Get_address( &rvec2_sample, &base );
// MPI_Get_address( &(rvec2_sample[0]), disp + 0 );
// for ( i = 0; i < 1; ++i )
// {
// disp[i] -= base;
// }
disp[0] = 0;
MPI_Type_create_struct( 1, block, disp, type, &(mpi_data->mpi_rvec2) );
/* restart_atom - [orig_id, type, name, x, v] */
block[2] = MAX_ATOM_NAME_LEN;
// MPI_Get_address( &r_sample, &base );
// MPI_Get_address( &(r_sample.orig_id), disp + 0 );
// MPI_Get_address( &(r_sample.type), disp + 1 );
// MPI_Get_address( &(r_sample.name), disp + 2 );
// MPI_Get_address( &(r_sample.x[0]), disp + 3 );
// MPI_Get_address( &(r_sample.v[0]), disp + 4 );
// for ( i = 0; i < 5; ++i )
// {
// disp[i] -= base;
// }
disp[0] = offsetof( restart_atom, orig_id );
disp[1] = offsetof( restart_atom, type );
disp[2] = offsetof( restart_atom, name );
disp[3] = offsetof( restart_atom, x );
disp[4] = offsetof( restart_atom, v );
type[0] = type[1] = MPI_INT;
type[2] = MPI_CHAR;
type[3] = type[4] = MPI_DOUBLE;
MPI_Type_create_struct( 5, block, disp, type, &(mpi_data->restart_atom_type) );
MPI_Type_commit( &(mpi_data->restart_atom_type) );
return SUCCESS;
}
/********************** allocate lists *************************/
Kurt A. O'Hearn
committed
int Init_Lists( reax_system *system, control_params *control,
simulation_data *data, storage *workspace, reax_list **lists,
mpi_datatypes *mpi_data, char *msg )
int i, num_nbrs;
int total_hbonds, total_bonds, bond_cap, num_3body, cap_3body, Htop;
int *hb_top, *bond_top;
//for( i = 0; i < MAX_NBRS; ++i ) nrecv[i] = system->my_nbrs[i].est_recv;
//system->N = SendRecv( system, mpi_data, mpi_data->boundary_atom_type, nrecv,
// Sort_Boundary_Atoms, Unpack_Exchange_Message, TRUE );
Kurt A. O'Hearn
committed
Make_List( system->total_cap, num_nbrs, TYP_FAR_NEIGHBOR, *lists + FAR_NBRS );
fprintf( stderr, "p%d: allocated far_nbrs: num_far=%d, space=%dMB\n",
Kurt A. O'Hearn
committed
system->my_rank, num_nbrs,
(int)(num_nbrs * sizeof(far_neighbor_data) / (1024 * 1024)) );
Generate_Neighbor_Lists( system, data, workspace, lists );
bond_top = (int*) calloc( system->total_cap, sizeof(int) );
hb_top = (int*) calloc( system->local_cap, sizeof(int) );
Kurt A. O'Hearn
committed
// hb_top = (int*) calloc( system->Hcap, sizeof(int) );
Kurt A. O'Hearn
committed
&Htop, hb_top, bond_top, &num_3body );
// Host_Estimate_Sparse_Matrix( system, control, lists, system->local_cap, system->total_cap,
// &Htop, hb_top, bond_top, &num_3body );
Allocate_Matrix( &(workspace->H), system->local_cap, Htop );
//MATRIX CHANGES
//workspace->L = NULL;
//workspace->U = NULL;
Kurt A. O'Hearn
committed
fprintf( stderr, "p%d: allocated H matrix: Htop=%d, space=%dMB\n",
system->my_rank, Htop,
(int)(Htop * sizeof(sparse_matrix_entry) / (1024 * 1024)) );
Kurt A. O'Hearn
committed
if ( control->hbond_cut > 0.0 )
// init H indexes
total_hbonds = 0;
for ( i = 0; i < system->n; ++i )
{
system->my_atoms[i].num_hbonds = hb_top[i];
total_hbonds += hb_top[i];
}
total_hbonds = MAX( total_hbonds * SAFER_ZONE, MIN_CAP * MIN_HBONDS );
Kurt A. O'Hearn
committed
// DANIEL, to make Mpi_Not_Gpu_Validate_Lists() not complain that max_hbonds is 0
system->max_hbonds = total_hbonds * SAFER_ZONE;
Kurt A. O'Hearn
committed
Make_List( system->Hcap, total_hbonds, TYP_HBOND, *lists + HBONDS );
fprintf( stderr, "p%d: allocated hbonds: total_hbonds=%d, space=%dMB\n",
system->my_rank, total_hbonds,
(int)(total_hbonds * sizeof(hbond_data) / (1024 * 1024)) );
}
/* bonds list */
total_bonds = 0;
for ( i = 0; i < system->N; ++i )
{
system->my_atoms[i].num_bonds = bond_top[i];
total_bonds += bond_top[i];
Kurt A. O'Hearn
committed
// DANIEL, to make Mpi_Not_Gpu_Validate_Lists() not complain that max_bonds is 0
system->max_bonds[i] = MAX( bond_top[i], MIN_BONDS );
}
bond_cap = MAX( total_bonds * SAFE_ZONE, MIN_CAP * MIN_BONDS );
Kurt A. O'Hearn
committed
Make_List( system->total_cap, bond_cap, TYP_BOND, *lists + BONDS);
fprintf( stderr, "p%d: allocated bonds: total_bonds=%d, space=%dMB\n",
system->my_rank, bond_cap,
(int)(bond_cap * sizeof(bond_data) / (1024 * 1024)) );
/* 3bodies list */
cap_3body = MAX( num_3body * SAFE_ZONE, MIN_3BODIES );
Kurt A. O'Hearn
committed
Make_List(bond_cap, cap_3body, TYP_THREE_BODY, *lists + THREE_BODIES);
fprintf( stderr, "p%d: allocated 3-body list: num_3body=%d, space=%dMB\n",
system->my_rank, cap_3body,
(int)(cap_3body * sizeof(three_body_interaction_data) / (1024 * 1024)) );
Kurt A. O'Hearn
committed
Make_List(system->total_cap, bond_cap * 8, TYP_DDELTA, (*lists) + DDELTAS);
fprintf( stderr, "p%d: allocated dDelta list: num_ddelta=%d space=%ldMB\n",
system->my_rank, bond_cap * 30,
bond_cap * 8 * sizeof(dDelta_data) / (1024 * 1024) );
Kurt A. O'Hearn
committed
Make_List( bond_cap, bond_cap * 50, TYP_DBO, (*lists) + DBOS);
fprintf( stderr, "p%d: allocated dbond list: num_dbonds=%d space=%ldMB\n",
system->my_rank, bond_cap * MAX_BONDS * 3,
bond_cap * MAX_BONDS * 3 * sizeof(dbond_data) / (1024 * 1024) );
Kurt A. O'Hearn
committed
#ifdef HAVE_CUDA
Kurt A. O'Hearn
committed
int Cuda_Init_Lists( reax_system *system, control_params *control,
simulation_data *data, storage *workspace, reax_list **lists,
mpi_datatypes *mpi_data, char *msg )
Kurt A. O'Hearn
committed
/* ignore returned error, as system->d_max_far_nbrs was not valid */
ret = Cuda_Estimate_Neighbors( system, data->step );
Kurt A. O'Hearn
committed
Dev_Make_List( system->total_cap, system->total_far_nbrs,
TYP_FAR_NEIGHBOR, *dev_lists + FAR_NBRS );
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
fprintf( stderr, "p%d: allocated far_nbrs: num_far=%d, space=%dMB\n",
Kurt A. O'Hearn
committed
system->my_rank, system->total_far_nbrs,
(int)(system->total_far_nbrs * sizeof(far_neighbor_data) / (1024 * 1024)) );
Kurt A. O'Hearn
committed
fprintf( stderr, "N: %d and total_cap: %d \n", system->N, system->total_cap );
Kurt A. O'Hearn
committed
Cuda_Init_Neighbor_Indices( system );
Cuda_Generate_Neighbor_Lists( system, data, workspace, dev_lists );
Kurt A. O'Hearn
committed
/* estimate storage for bonds and hbonds */
Cuda_Estimate_Storages( system, control, dev_lists, &Htop, data->step );
Kurt A. O'Hearn
committed
/* estimate storage for charge sparse matrix */
Cuda_Estimate_Storage_Sparse_Matrix( system, control, data, dev_lists );
Kurt A. O'Hearn
committed
dev_alloc_matrix( &(dev_workspace->H), system->total_cap,
system->total_cap * system->max_sparse_entries );
//MATRIX CHANGES
//workspace->L = NULL;
//workspace->U = NULL;
Kurt A. O'Hearn
committed
#if defined(DEBUG_FOCUS)
Kurt A. O'Hearn
committed
fprintf( stderr, "p:%d - allocated H matrix: max_entries: %d, cap: %d \n",
system->my_rank, system->max_sparse_entries, dev_workspace->H.m );
fprintf( stderr, "p%d: allocated H matrix: Htop=%d, space=%dMB\n",
Kurt A. O'Hearn
committed
system->my_rank, Htop,
(int)(Htop * sizeof(sparse_matrix_entry) / (1024 * 1024)) );
// FIX - 4 - Added addition check here for hydrogen Bonds
if ( control->hbond_cut > 0.0 && system->numH > 0 )
Dev_Make_List( system->total_cap, system->total_hbonds, TYP_HBOND, *dev_lists + HBONDS );
// Make_List( system->total_cap, system->total_hbonds, TYP_HBOND, *lists + HBONDS );
fprintf( stderr, "p%d: allocated hbonds: total_hbonds=%d, space=%dMB\n",
system->my_rank, system->total_hbonds,
(int)(system->total_hbonds * sizeof(hbond_data) / (1024 * 1024)) );
Kurt A. O'Hearn
committed
Dev_Make_List( system->total_cap, system->total_bonds, TYP_BOND, *dev_lists + BONDS );
// Make_List( system->total_cap, system->total_bonds, TYP_BOND, *lists + BONDS );
Kurt A. O'Hearn
committed
Cuda_Init_Bond_Indices( system );
fprintf( stderr, "p%d: allocated bonds: total_bonds=%d, space=%dMB\n",
system->my_rank, total_bonds,
(int)(total_bonds * sizeof(bond_data) / (1024 * 1024)) );
/* 3bodies list: since a more accurate estimate of the num.
* of three body interactions requires that bond orders have
* been computed, delay estimation until for computation */
Kurt A. O'Hearn
committed
#endif
void Initialize( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, storage *workspace,
reax_list **lists, output_controls *out_control,
mpi_datatypes *mpi_data )
host_scratch = (void *)malloc( HOST_SCRATCH_SIZE );
char msg[MAX_STR];
if ( Init_MPI_Datatypes( system, workspace, mpi_data, msg ) == FAILURE )
{
fprintf( stderr, "p%d: init_mpi_datatypes: could not create datatypes\n",
system->my_rank );
fprintf( stderr, "p%d: mpi_data couldn't be initialized! terminating.\n",
system->my_rank );
MPI_Abort( MPI_COMM_WORLD, CANNOT_INITIALIZE );
}