Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "forces.h"
#include "box.h"
#include "bond_orders.h"
#include "single_body_interactions.h"
#include "two_body_interactions.h"
#include "three_body_interactions.h"
#include "four_body_interactions.h"
#include "list.h"
#include "print_utils.h"
#include "system_props.h"
Kurt A. O'Hearn
committed
#include "charges.h"
Kurt A. O'Hearn
committed
/* File scope variables */
static interaction_function Interaction_Functions[NO_OF_INTERACTIONS];
Kurt A. O'Hearn
committed
typedef enum
{
DIAGONAL = 0,
OFF_DIAGONAL = 1,
} MATRIX_ENTRY_POSITION;
void Dummy_Interaction( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
{
}
void Init_Bonded_Force_Functions( control_params *control )
{
Interaction_Functions[0] = Calculate_Bond_Orders;
Interaction_Functions[1] = Bond_Energy; //*/Dummy_Interaction;
Interaction_Functions[2] = LonePair_OverUnder_Coordination_Energy;
//*/Dummy_Interaction;
Interaction_Functions[3] = Three_Body_Interactions; //*/Dummy_Interaction;
Interaction_Functions[4] = Four_Body_Interactions; //*/Dummy_Interaction;
Kurt A. O'Hearn
committed
if ( control->hb_cut > 0.0 )
{
Interaction_Functions[5] = Hydrogen_Bonds; //*/Dummy_Interaction;
Kurt A. O'Hearn
committed
}
else
{
Interaction_Functions[5] = Dummy_Interaction;
}
Interaction_Functions[6] = Dummy_Interaction; //empty
Interaction_Functions[7] = Dummy_Interaction; //empty
Interaction_Functions[8] = Dummy_Interaction; //empty
Interaction_Functions[9] = Dummy_Interaction; //empty
void Compute_Bonded_Forces( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
Kurt A. O'Hearn
committed
//real t_start, t_end, t_elapsed;
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/* Mark beginning of a new timestep in each energy file */
fprintf( out_control->ebond, "step: %d\n%6s%6s%12s%12s%12s\n",
data->step, "atom1", "atom2", "bo", "ebond", "total" );
fprintf( out_control->elp, "step: %d\n%6s%12s%12s%12s\n",
data->step, "atom", "nlp", "elp", "total" );
fprintf( out_control->eov, "step: %d\n%6s%12s%12s\n",
data->step, "atom", "eov", "total" );
fprintf( out_control->eun, "step: %d\n%6s%12s%12s\n",
data->step, "atom", "eun", "total" );
fprintf( out_control->eval, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "eval", "epen", "total" );
fprintf( out_control->epen, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "epen", "total" );
fprintf( out_control->ecoa, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "ecoa", "total" );
fprintf( out_control->ehb, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"r(23)", "angle", "bo(12)", "ehb", "total" );
fprintf( out_control->etor, "step: %d\n%6s%6s%6s%6s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3", "atom4",
"phi", "bo(23)", "etor", "total" );
fprintf( out_control->econ, "step:%d\n%6s%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3", "atom4",
"phi", "bo(12)", "bo(23)", "bo(34)", "econ", "total" );
#endif
/* Implement all the function calls as function pointers */
for ( i = 0; i < NO_OF_INTERACTIONS; i++ )
{
Kurt A. O'Hearn
committed
(Interaction_Functions[i])( system, control, data, workspace,
lists, out_control );
Kurt A. O'Hearn
committed
(Print_Interactions[i])(system, control, data, workspace,
lists, out_control);
void Compute_NonBonded_Forces( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace,
list** lists, output_controls *out_control )
Kurt A. O'Hearn
committed
fprintf( out_control->evdw, "step: %d\n%6s%6s%12s%12s%12s\n",
data->step, "atom1", "atom2", "r12", "evdw", "total" );
fprintf( out_control->ecou, "step: %d\n%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "r12", "q1", "q2", "ecou", "total" );
Kurt A. O'Hearn
committed
Compute_Charges( system, control, data, workspace, lists[FAR_NBRS], out_control );
Kurt A. O'Hearn
committed
data->timing.cm += t_elapsed;
{
vdW_Coulomb_Energy( system, control, data, workspace, lists, out_control );
}
{
Tabulated_vdW_Coulomb_Energy( system, control, data, workspace,
Kurt A. O'Hearn
committed
lists, out_control );
}
Print_vdW_Coulomb_Forces( system, control, data, workspace,
Kurt A. O'Hearn
committed
lists, out_control );
/* This version of Compute_Total_Force computes forces from coefficients
accumulated by all interaction functions. Saves enormous time & space! */
void Compute_Total_Force( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace, list **lists )
Kurt A. O'Hearn
committed
int i;
list *bonds;
Kurt A. O'Hearn
committed
bonds = (*lists) + BONDS;
Kurt A. O'Hearn
committed
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp parallel default(shared)
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
{
int pj;
#ifdef _OPENMP
int j;
#endif
Kurt A. O'Hearn
committed
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp for schedule(static)
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
for ( i = 0; i < system->N; ++i )
{
for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
Kurt A. O'Hearn
committed
if ( i < bonds->select.bond_list[pj].nbr )
{
if ( control->ensemble == NVE || control->ensemble == NVT || control->ensemble == bNVT)
{
Add_dBond_to_Forces( i, pj, system, data, workspace, lists );
}
else
{
Add_dBond_to_Forces_NPT( i, pj, system, data, workspace, lists );
}
}
Kurt A. O'Hearn
committed
}
#ifdef _OPENMP
#pragma omp barrier
#pragma omp for schedule(static)
for ( i = 0; i < system->N; ++i )
{
for ( j = 0; j < control->num_threads; ++j )
{
rvec_Add( system->atoms[i].f, workspace->f_local[j * system->N + i] );
}
}
#endif
}
}
void Validate_Lists( static_storage *workspace, list **lists, int step, int n,
Kurt A. O'Hearn
committed
int Hmax, int Htop, int num_bonds, int num_hbonds )
int i, flag;
list *bonds, *hbonds;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
/* far neighbors */
if ( Htop > Hmax * DANGER_ZONE )
{
workspace->realloc.Htop = Htop;
if ( Htop > Hmax )
{
fprintf( stderr,
"step%d - ran out of space on H matrix: Htop=%d, max = %d",
step, Htop, Hmax );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
workspace->realloc.num_bonds = num_bonds;
for ( i = 0; i < n - 1; ++i )
Kurt A. O'Hearn
committed
{
if ( End_Index(i, bonds) >= Start_Index(i + 1, bonds) - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > Start_Index(i + 1, bonds) )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
}
if ( flag > -1 )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, bonds), Start_Index(flag + 1, bonds) );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
}
if ( End_Index(i, bonds) >= bonds->num_intrs - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > bonds->num_intrs )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d bond_end=%d\n",
step, flag, End_Index(i, bonds), bonds->num_intrs );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
/* hbonds list */
if ( workspace->num_H > 0 )
{
flag = -1;
workspace->realloc.num_hbonds = num_hbonds;
for ( i = 0; i < workspace->num_H - 1; ++i )
Kurt A. O'Hearn
committed
{
if ( Num_Entries(i, hbonds) >=
(Start_Index(i + 1, hbonds) - Start_Index(i, hbonds)) * DANGER_ZONE )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > Start_Index(i + 1, hbonds) )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
}
if ( flag > -1 )
{
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, hbonds), Start_Index(flag + 1, hbonds) );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
}
if ( Num_Entries(i, hbonds) >=
(hbonds->num_intrs - Start_Index(i, hbonds)) * DANGER_ZONE )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > hbonds->num_intrs )
{
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d hbondend=%d\n",
step, flag, End_Index(i, hbonds), hbonds->num_intrs );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
Kurt A. O'Hearn
committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
static inline real Init_Charge_Matrix_Entry_Tab( reax_system *system,
control_params *control, int i, int j,
real r_ij, MATRIX_ENTRY_POSITION pos )
{
int r;
real base, dif, val, ret = 0.0;
LR_lookup_table *t;
switch ( control->charge_method )
{
case QEQ_CM:
switch ( pos )
{
case OFF_DIAGONAL:
t = &( LR
[MIN( system->atoms[i].type, system->atoms[j].type )]
[MAX( system->atoms[i].type, system->atoms[j].type )] );
/* cubic spline interpolation */
r = (int)(r_ij * t->inv_dx);
if ( r == 0 ) ++r;
base = (real)(r + 1) * t->dx;
dif = r_ij - base;
val = ((t->ele[r].d * dif + t->ele[r].c) * dif + t->ele[r].b) * dif +
t->ele[r].a;
val *= EV_to_KCALpMOL / C_ele;
ret = ((i == j) ? 0.5 : 1.0) * val;
break;
case DIAGONAL:
ret = system->reaxprm.sbp[system->atoms[i].type].eta;
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
Kurt A. O'Hearn
committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
switch ( pos )
{
case OFF_DIAGONAL:
break;
case DIAGONAL:
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case ACKS2_CM:
//TODO
switch ( pos )
{
case OFF_DIAGONAL:
break;
case DIAGONAL:
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "Invalid charge method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
return ret;
}
static inline real Init_Charge_Matrix_Entry( reax_system *system,
control_params *control, int i, int j,
real r_ij, MATRIX_ENTRY_POSITION pos )
{
Kurt A. O'Hearn
committed
real Tap, gamij, dr3gamij_1, dr3gamij_3, ret;
ret = 0.0;
Kurt A. O'Hearn
committed
switch ( control->charge_method )
{
case QEQ_CM:
switch ( pos )
{
case OFF_DIAGONAL:
Tap = control->Tap7 * r_ij + control->Tap6;
Tap = Tap * r_ij + control->Tap5;
Tap = Tap * r_ij + control->Tap4;
Tap = Tap * r_ij + control->Tap3;
Tap = Tap * r_ij + control->Tap2;
Tap = Tap * r_ij + control->Tap1;
Tap = Tap * r_ij + control->Tap0;
Kurt A. O'Hearn
committed
/* shielding */
Kurt A. O'Hearn
committed
dr3gamij_1 = ( r_ij * r_ij * r_ij +
system->reaxprm.tbp[system->atoms[i].type][system->atoms[j].type].gamma );
Kurt A. O'Hearn
committed
dr3gamij_3 = POW( dr3gamij_1 , 1.0 / 3.0 );
Kurt A. O'Hearn
committed
ret = ((i == j) ? 0.5 : 1.0) * Tap * EV_to_KCALpMOL / dr3gamij_3;
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
case DIAGONAL:
ret = system->reaxprm.sbp[system->atoms[i].type].eta;
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
Kurt A. O'Hearn
committed
switch ( pos )
{
case OFF_DIAGONAL:
Kurt A. O'Hearn
committed
if ( r_ij < control->r_cut && r_ij > 0.001 )
{
Tap = control->Tap7 * r_ij + control->Tap6;
Tap = Tap * r_ij + control->Tap5;
Tap = Tap * r_ij + control->Tap4;
Tap = Tap * r_ij + control->Tap3;
Tap = Tap * r_ij + control->Tap2;
Tap = Tap * r_ij + control->Tap1;
Tap = Tap * r_ij + control->Tap0;
gamij = SQRT( system->reaxprm.sbp[system->atoms[i].type].gamma
* system->reaxprm.sbp[system->atoms[j].type].gamma );
/* shielding */
dr3gamij_1 = POW( r_ij, 3.0 ) + 1.0 / POW( gamij, 3.0 );
dr3gamij_3 = POW( dr3gamij_1 , 1.0 / 3.0 );
ret = Tap * EV_to_KCALpMOL / dr3gamij_3;
}
Kurt A. O'Hearn
committed
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
case DIAGONAL:
Kurt A. O'Hearn
committed
ret = system->reaxprm.sbp[system->atoms[i].type].eta;
Kurt A. O'Hearn
committed
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
case ACKS2_CM:
switch ( pos )
{
case OFF_DIAGONAL:
Kurt A. O'Hearn
committed
if ( r_ij < control->r_cut && r_ij > 0.001 )
{
Tap = control->Tap7 * r_ij + control->Tap6;
Tap = Tap * r_ij + control->Tap5;
Tap = Tap * r_ij + control->Tap4;
Tap = Tap * r_ij + control->Tap3;
Tap = Tap * r_ij + control->Tap2;
Tap = Tap * r_ij + control->Tap1;
Tap = Tap * r_ij + control->Tap0;
gamij = SQRT( system->reaxprm.sbp[system->atoms[i].type].gamma
* system->reaxprm.sbp[system->atoms[j].type].gamma );
/* shielding */
dr3gamij_1 = POW( r_ij, 3.0 ) + 1.0 / POW( gamij, 3.0 );
dr3gamij_3 = POW( dr3gamij_1 , 1.0 / 3.0 );
ret = Tap * EV_to_KCALpMOL / dr3gamij_3;
}
Kurt A. O'Hearn
committed
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
case DIAGONAL:
Kurt A. O'Hearn
committed
ret = system->reaxprm.sbp[system->atoms[i].type].eta;
Kurt A. O'Hearn
committed
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "Invalid charge method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
return ret;
}
Kurt A. O'Hearn
committed
static void Init_Charge_Matrix_Remaining_Entries( reax_system *system,
Kurt A. O'Hearn
committed
control_params *control, list *far_nbrs,
sparse_matrix * H, sparse_matrix * H_sp,
Kurt A. O'Hearn
committed
int * Htop, int * H_sp_top )
{
Kurt A. O'Hearn
committed
int i, j, pj;
real d, xcut, bond_softness, * X_diag;
Kurt A. O'Hearn
committed
switch ( control->charge_method )
{
case QEQ_CM:
break;
Kurt A. O'Hearn
committed
H->start[system->N_cm - 1] = *Htop;
H_sp->start[system->N_cm - 1] = *H_sp_top;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
for ( i = 0; i < system->N_cm - 1; ++i )
Kurt A. O'Hearn
committed
{
H->j[*Htop] = i;
H->val[*Htop] = 1.0;
Kurt A. O'Hearn
committed
*Htop = *Htop + 1;
Kurt A. O'Hearn
committed
H_sp->j[*H_sp_top] = i;
H_sp->val[*H_sp_top] = 1.0;
Kurt A. O'Hearn
committed
*H_sp_top = *H_sp_top + 1;
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
H->j[*Htop] = system->N_cm - 1;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N_cm - 1;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
Kurt A. O'Hearn
committed
break;
case ACKS2_CM:
Kurt A. O'Hearn
committed
if ( (X_diag = (real*) calloc(system->N, sizeof(real))) == NULL )
{
fprintf( stderr, "not enough memory for charge matrix. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
H->start[system->N] = *Htop;
H_sp->start[system->N] = *H_sp_top;
for ( i = 0; i < system->N; ++i )
{
H->j[*Htop] = i;
Kurt A. O'Hearn
committed
H->val[*Htop] = -1.0;
Kurt A. O'Hearn
committed
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = i;
Kurt A. O'Hearn
committed
H_sp->val[*H_sp_top] = -1.0;
Kurt A. O'Hearn
committed
*H_sp_top = *H_sp_top + 1;
}
H->j[*Htop] = system->N;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
for ( i = 0; i < system->N; ++i )
{
H->start[system->N + i + 1] = *Htop;
H_sp->start[system->N + i + 1] = *H_sp_top;
H->j[*Htop] = i;
Kurt A. O'Hearn
committed
H->val[*Htop] = -1.0;
Kurt A. O'Hearn
committed
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = i;
Kurt A. O'Hearn
committed
H_sp->val[*H_sp_top] = -1.0;
Kurt A. O'Hearn
committed
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
*H_sp_top = *H_sp_top + 1;
for ( pj = Start_Index(i, far_nbrs); pj < End_Index(i, far_nbrs); ++pj )
{
if ( far_nbrs->select.far_nbr_list[pj].d <= control->r_cut )
{
j = far_nbrs->select.far_nbr_list[pj].nbr;
xcut = ( system->reaxprm.sbp[ system->atoms[i].type ].b_s_acks2
+ system->reaxprm.sbp[ system->atoms[j].type ].b_s_acks2 )
/ 2.0;
if ( far_nbrs->select.far_nbr_list[pj].d < xcut &&
far_nbrs->select.far_nbr_list[pj].d > 0.001 )
{
d = far_nbrs->select.far_nbr_list[pj].d / xcut;
bond_softness = system->reaxprm.gp.l[34] * POW( d, 3.0 ) * POW( 1.0 - d, 6.0 );
H->j[*Htop] = system->N + j + 1;
H->val[*Htop] = MAX( 0.0, bond_softness );
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N + j + 1;
H_sp->val[*H_sp_top] = MAX( 0.0, bond_softness );
*H_sp_top = *H_sp_top + 1;
X_diag[i] -= bond_softness;
X_diag[j] -= bond_softness;
}
}
}
H->j[*Htop] = system->N + i + 1;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N + i + 1;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
}
H->start[system->N_cm - 1] = *Htop;
H_sp->start[system->N_cm - 1] = *H_sp_top;
for ( i = system->N + 1; i < system->N_cm - 1; ++i )
{
for ( pj = H->start[i]; pj < H->start[i + 1]; ++pj )
{
if ( H->j[pj] == i )
{
H->val[pj] = X_diag[i - system->N - 1];
break;
}
}
for ( pj = H_sp->start[i]; pj < H_sp->start[i + 1]; ++pj )
{
if ( H_sp->j[pj] == i )
{
H_sp->val[pj] = X_diag[i - system->N - 1];
break;
}
}
}
for ( i = system->N + 1; i < system->N_cm - 1; ++i )
{
H->j[*Htop] = i;
Kurt A. O'Hearn
committed
H->val[*Htop] = -1.0;
Kurt A. O'Hearn
committed
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = i;
Kurt A. O'Hearn
committed
H_sp->val[*H_sp_top] = -1.0;
Kurt A. O'Hearn
committed
*H_sp_top = *H_sp_top + 1;
}
H->j[*Htop] = system->N_cm - 1;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N_cm - 1;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
free( X_diag );
Kurt A. O'Hearn
committed
break;
default:
break;
}
}
void Init_Forces( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
{
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int Htop, H_sp_top, btop_i, btop_j, num_bonds, num_hbonds;
Kurt A. O'Hearn
committed
real r_ij, r2;
real C12, C34, C56;
real Cln_BOp_s, Cln_BOp_pi, Cln_BOp_pi2;
real BO, BO_s, BO_pi, BO_pi2;
sparse_matrix *H, *H_sp;
list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
bond_data *ibond, *jbond;
bond_order_data *bo_ij, *bo_ji;
far_nbrs = *lists + FAR_NBRS;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
H = workspace->H;
H_sp = workspace->H_sp;
num_bonds = 0;
num_hbonds = 0;
btop_i = btop_j = 0;
for ( i = 0; i < system->N; ++i )
{
atom_i = &(system->atoms[i]);
type_i = atom_i->type;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
H->start[i] = Htop;
H_sp->start[i] = H_sp_top;
btop_i = End_Index( i, bonds );
sbp_i = &(system->reaxprm.sbp[type_i]);
ihb = ihb_top = -1;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
for ( pj = start_i; pj < end_i; ++pj )
{
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
atom_j = &(system->atoms[j]);
flag = 0;
if ((data->step - data->prev_steps) % control->reneighbor == 0)
{
if ( nbr_pj->d <= control->r_cut )
{
if ( nbr_pj->d <= control->r_sp_cut )
{
flag_sp = 1;
}
}
else
{
flag = 0;
flag_sp = 0;
}
}
else if ((nbr_pj->d = Sq_Distance_on_T3(atom_i->x, atom_j->x, &(system->box),
nbr_pj->dvec)) <= SQR(control->r_cut))
{
if ( nbr_pj->d <= SQR(control->r_sp_cut))
{
flag_sp = 1;
}
nbr_pj->d = SQRT( nbr_pj->d );
flag = 1;
}
if ( flag )
{
type_j = system->atoms[j].type;
r_ij = nbr_pj->d;
sbp_j = &(system->reaxprm.sbp[type_j]);
twbp = &(system->reaxprm.tbp[type_i][type_j]);
Kurt A. O'Hearn
committed
H->j[Htop] = j;
Kurt A. O'Hearn
committed
H->val[Htop] = Init_Charge_Matrix_Entry( system, control, i, j,
r_ij, OFF_DIAGONAL );
/* H_sp matrix entry */
if ( flag_sp )
{
Kurt A. O'Hearn
committed
H_sp->j[H_sp_top] = j;
H_sp->val[H_sp_top] = H->val[Htop - 1];
++H_sp_top;
}
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
/* hydrogen bond lists */
if ( control->hb_cut > 0 && (ihb == 1 || ihb == 2) &&
nbr_pj->d <= control->hb_cut )
{
// fprintf( stderr, "%d %d\n", atom1, atom2 );
jhb = sbp_j->p_hbond;
if ( ihb == 1 && jhb == 2 )
{
hbonds->select.hbond_list[ihb_top].nbr = j;
hbonds->select.hbond_list[ihb_top].scl = 1;
hbonds->select.hbond_list[ihb_top].ptr = nbr_pj;
++ihb_top;
++num_hbonds;
}
else if ( ihb == 2 && jhb == 1 )
{
jhb_top = End_Index( workspace->hbond_index[j], hbonds );
hbonds->select.hbond_list[jhb_top].nbr = i;
hbonds->select.hbond_list[jhb_top].scl = -1;
hbonds->select.hbond_list[jhb_top].ptr = nbr_pj;
Set_End_Index( workspace->hbond_index[j], jhb_top + 1, hbonds );
++num_hbonds;
}
}
/* uncorrected bond orders */
if ( far_nbrs->select.far_nbr_list[pj].d <= control->nbr_cut )
{
Kurt A. O'Hearn
committed
r2 = SQR( r_ij );
if ( sbp_i->r_s > 0.0 && sbp_j->r_s > 0.0)
{
C12 = twbp->p_bo1 * POW( r_ij / twbp->r_s, twbp->p_bo2 );
BO_s = (1.0 + control->bo_cut) * EXP( C12 );
}
Kurt A. O'Hearn
committed
else
{
BO_s = 0.0;
C12 = 0.0;
}
if ( sbp_i->r_pi > 0.0 && sbp_j->r_pi > 0.0)
{
C34 = twbp->p_bo3 * POW( r_ij / twbp->r_p, twbp->p_bo4 );
BO_pi = EXP( C34 );
}
Kurt A. O'Hearn
committed
else
{
BO_pi = 0.0;
C34 = 0.0;
}
if ( sbp_i->r_pi_pi > 0.0 && sbp_j->r_pi_pi > 0.0)
{
C56 = twbp->p_bo5 * POW( r_ij / twbp->r_pp, twbp->p_bo6 );
BO_pi2 = EXP( C56 );
}
Kurt A. O'Hearn
committed
else
{
BO_pi2 = 0.0;
C56 = 0.0;
}
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
/* Initially BO values are the uncorrected ones, page 1 */
BO = BO_s + BO_pi + BO_pi2;
if ( BO >= control->bo_cut )
{
num_bonds += 2;
/****** bonds i-j and j-i ******/
ibond = &( bonds->select.bond_list[btop_i] );
btop_j = End_Index( j, bonds );
jbond = &(bonds->select.bond_list[btop_j]);
ibond->nbr = j;
jbond->nbr = i;
ibond->d = r_ij;
jbond->d = r_ij;
rvec_Copy( ibond->dvec, nbr_pj->dvec );
rvec_Scale( jbond->dvec, -1, nbr_pj->dvec );
ivec_Copy( ibond->rel_box, nbr_pj->rel_box );
ivec_Scale( jbond->rel_box, -1, nbr_pj->rel_box );
ibond->dbond_index = btop_i;
jbond->dbond_index = btop_i;
ibond->sym_index = btop_j;
jbond->sym_index = btop_i;
++btop_i;
Set_End_Index( j, btop_j + 1, bonds );
bo_ij = &( ibond->bo_data );
bo_ji = &( jbond->bo_data );
bo_ji->BO = bo_ij->BO = BO;
bo_ji->BO_s = bo_ij->BO_s = BO_s;
bo_ji->BO_pi = bo_ij->BO_pi = BO_pi;
bo_ji->BO_pi2 = bo_ij->BO_pi2 = BO_pi2;
/* Bond Order page2-3, derivative of total bond order prime */
Cln_BOp_s = twbp->p_bo2 * C12 / r2;
Cln_BOp_pi = twbp->p_bo4 * C34 / r2;
Cln_BOp_pi2 = twbp->p_bo6 * C56 / r2;
/* Only dln_BOp_xx wrt. dr_i is stored here, note that
dln_BOp_xx/dr_i = -dln_BOp_xx/dr_j and all others are 0 */
Kurt A. O'Hearn
committed
rvec_Scale( bo_ij->dln_BOp_s, -bo_ij->BO_s * Cln_BOp_s, ibond->dvec );
rvec_Scale( bo_ij->dln_BOp_pi, -bo_ij->BO_pi * Cln_BOp_pi, ibond->dvec );
rvec_Scale( bo_ij->dln_BOp_pi2,
-bo_ij->BO_pi2 * Cln_BOp_pi2, ibond->dvec );
rvec_Scale( bo_ji->dln_BOp_s, -1., bo_ij->dln_BOp_s );
rvec_Scale( bo_ji->dln_BOp_pi, -1., bo_ij->dln_BOp_pi );
rvec_Scale( bo_ji->dln_BOp_pi2, -1., bo_ij->dln_BOp_pi2 );
/* Only dBOp wrt. dr_i is stored here, note that
dBOp/dr_i = -dBOp/dr_j and all others are 0 */
rvec_Scale( bo_ij->dBOp,
-(bo_ij->BO_s * Cln_BOp_s +
bo_ij->BO_pi * Cln_BOp_pi +
bo_ij->BO_pi2 * Cln_BOp_pi2), ibond->dvec );
rvec_Scale( bo_ji->dBOp, -1., bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[i], bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[j], bo_ji->dBOp );
bo_ij->BO_s -= control->bo_cut;
bo_ij->BO -= control->bo_cut;
bo_ji->BO_s -= control->bo_cut;
bo_ji->BO -= control->bo_cut;
workspace->total_bond_order[i] += bo_ij->BO; //currently total_BOp
workspace->total_bond_order[j] += bo_ji->BO; //currently total_BOp
Kurt A. O'Hearn
committed
bo_ij->Cdbo = 0.0;
bo_ij->Cdbopi = 0.0;
bo_ij->Cdbopi2 = 0.0;
bo_ji->Cdbo = 0.0;
bo_ji->Cdbopi = 0.0;
bo_ji->Cdbopi2 = 0.0;
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
/*fprintf( stderr, "%d %d %g %g %g\n",
i+1, j+1, bo_ij->BO, bo_ij->BO_pi, bo_ij->BO_pi2 );*/
/*fprintf( stderr, "Cln_BOp_s: %f, pbo2: %f, C12:%f\n",
Cln_BOp_s, twbp->p_bo2, C12 );
fprintf( stderr, "Cln_BOp_pi: %f, pbo4: %f, C34:%f\n",
Cln_BOp_pi, twbp->p_bo4, C34 );
fprintf( stderr, "Cln_BOp_pi2: %f, pbo6: %f, C56:%f\n",
Cln_BOp_pi2, twbp->p_bo6, C56 );*/
/*fprintf(stderr, "pbo1: %f, pbo2:%f\n", twbp->p_bo1, twbp->p_bo2);
fprintf(stderr, "pbo3: %f, pbo4:%f\n", twbp->p_bo3, twbp->p_bo4);
fprintf(stderr, "pbo5: %f, pbo6:%f\n", twbp->p_bo5, twbp->p_bo6);
fprintf( stderr, "r_s: %f, r_p: %f, r_pp: %f\n",
twbp->r_s, twbp->r_p, twbp->r_pp );
fprintf( stderr, "C12: %g, C34:%g, C56:%g\n", C12, C34, C56 );*/
/*fprintf( stderr, "\tfactors: %g %g %g\n",
-(bo_ij->BO_s * Cln_BOp_s + bo_ij->BO_pi * Cln_BOp_pi +
bo_ij->BO_pi2 * Cln_BOp_pp),
-bo_ij->BO_pi * Cln_BOp_pi, -bo_ij->BO_pi2 * Cln_BOp_pi2 );*/
/*fprintf( stderr, "dBOpi:\t[%g, %g, %g]\n",
bo_ij->dBOp[0], bo_ij->dBOp[1], bo_ij->dBOp[2] );
fprintf( stderr, "dBOpi:\t[%g, %g, %g]\n",
bo_ij->dln_BOp_pi[0], bo_ij->dln_BOp_pi[1],
bo_ij->dln_BOp_pi[2] );
fprintf( stderr, "dBOpi2:\t[%g, %g, %g]\n\n",
bo_ij->dln_BOp_pi2[0], bo_ij->dln_BOp_pi2[1],
bo_ij->dln_BOp_pi2[2] );*/
Set_End_Index( j, btop_j + 1, bonds );
}
}
}
}
/* diagonal entry */
Kurt A. O'Hearn
committed
H->j[Htop] = i;
Kurt A. O'Hearn
committed
H->val[Htop] = Init_Charge_Matrix_Entry( system, control, i, i,
Kurt A. O'Hearn
committed
r_ij, DIAGONAL );
Kurt A. O'Hearn
committed
H_sp->j[H_sp_top] = i;
H_sp->val[H_sp_top] = H->val[Htop - 1];
Kurt A. O'Hearn
committed
{
Set_End_Index( workspace->hbond_index[i], ihb_top, hbonds );
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
Init_Charge_Matrix_Remaining_Entries( system, control, far_nbrs,
H, H_sp, &Htop, &H_sp_top );
Kurt A. O'Hearn
committed
H->start[system->N_cm] = Htop;
H_sp->start[system->N_cm] = H_sp_top;
/* validate lists - decide if reallocation is required! */