Newer
Older
/*----------------------------------------------------------------------
SerialReax - Reax Force Field Simulator
Copyright (2010) Purdue University
Hasan Metin Aktulga, haktulga@cs.purdue.edu
Joseph Fogarty, jcfogart@mail.usf.edu
Sagar Pandit, pandit@usf.edu
Ananth Y Grama, ayg@cs.purdue.edu
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
See the GNU General Public License for more details:
<http://www.gnu.org/licenses/>.
----------------------------------------------------------------------*/
#include "forces.h"
#include "charges.h"
#include "four_body_interactions.h"
#include "list.h"
#include "system_props.h"
#include "single_body_interactions.h"
#include "three_body_interactions.h"
#include "tool_box.h"
#include "two_body_interactions.h"
Kurt A. O'Hearn
committed
/* File scope variables */
static interaction_function Interaction_Functions[NO_OF_INTERACTIONS];
Kurt A. O'Hearn
committed
typedef enum
{
DIAGONAL = 0,
OFF_DIAGONAL = 1,
} MATRIX_ENTRY_POSITION;
void Dummy_Interaction( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
{
}
void Init_Bonded_Force_Functions( control_params *control )
{
Interaction_Functions[0] = Calculate_Bond_Orders;
Interaction_Functions[1] = Bond_Energy; //*/Dummy_Interaction;
Interaction_Functions[2] = LonePair_OverUnder_Coordination_Energy;
//*/Dummy_Interaction;
Interaction_Functions[3] = Three_Body_Interactions; //*/Dummy_Interaction;
Interaction_Functions[4] = Four_Body_Interactions; //*/Dummy_Interaction;
Kurt A. O'Hearn
committed
if ( control->hb_cut > 0.0 )
{
Interaction_Functions[5] = Hydrogen_Bonds; //*/Dummy_Interaction;
Kurt A. O'Hearn
committed
}
else
{
Interaction_Functions[5] = Dummy_Interaction;
}
Interaction_Functions[6] = Dummy_Interaction; //empty
Interaction_Functions[7] = Dummy_Interaction; //empty
Interaction_Functions[8] = Dummy_Interaction; //empty
Interaction_Functions[9] = Dummy_Interaction; //empty
void Compute_Bonded_Forces( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
Kurt A. O'Hearn
committed
//real t_start, t_end, t_elapsed;
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/* Mark beginning of a new timestep in each energy file */
fprintf( out_control->ebond, "step: %d\n%6s%6s%12s%12s%12s\n",
data->step, "atom1", "atom2", "bo", "ebond", "total" );
fprintf( out_control->elp, "step: %d\n%6s%12s%12s%12s\n",
data->step, "atom", "nlp", "elp", "total" );
fprintf( out_control->eov, "step: %d\n%6s%12s%12s\n",
data->step, "atom", "eov", "total" );
fprintf( out_control->eun, "step: %d\n%6s%12s%12s\n",
data->step, "atom", "eun", "total" );
fprintf( out_control->eval, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "eval", "epen", "total" );
fprintf( out_control->epen, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "epen", "total" );
fprintf( out_control->ecoa, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"angle", "bo(12)", "bo(23)", "ecoa", "total" );
fprintf( out_control->ehb, "step: %d\n%6s%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3",
"r(23)", "angle", "bo(12)", "ehb", "total" );
fprintf( out_control->etor, "step: %d\n%6s%6s%6s%6s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3", "atom4",
"phi", "bo(23)", "etor", "total" );
fprintf( out_control->econ, "step:%d\n%6s%6s%6s%6s%12s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "atom3", "atom4",
"phi", "bo(12)", "bo(23)", "bo(34)", "econ", "total" );
#endif
/* Implement all the function calls as function pointers */
for ( i = 0; i < NO_OF_INTERACTIONS; i++ )
{
Kurt A. O'Hearn
committed
(Interaction_Functions[i])( system, control, data, workspace,
lists, out_control );
Kurt A. O'Hearn
committed
(Print_Interactions[i])(system, control, data, workspace,
lists, out_control);
void Compute_NonBonded_Forces( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace,
list** lists, output_controls *out_control )
Kurt A. O'Hearn
committed
fprintf( out_control->evdw, "step: %d\n%6s%6s%12s%12s%12s\n",
data->step, "atom1", "atom2", "r12", "evdw", "total" );
fprintf( out_control->ecou, "step: %d\n%6s%6s%12s%12s%12s%12s%12s\n",
data->step, "atom1", "atom2", "r12", "q1", "q2", "ecou", "total" );
Kurt A. O'Hearn
committed
Compute_Charges( system, control, data, workspace, lists[FAR_NBRS], out_control );
Kurt A. O'Hearn
committed
data->timing.cm += t_elapsed;
{
vdW_Coulomb_Energy( system, control, data, workspace, lists, out_control );
}
{
Tabulated_vdW_Coulomb_Energy( system, control, data, workspace,
Kurt A. O'Hearn
committed
lists, out_control );
}
Print_vdW_Coulomb_Forces( system, control, data, workspace,
Kurt A. O'Hearn
committed
lists, out_control );
/* This version of Compute_Total_Force computes forces from coefficients
accumulated by all interaction functions. Saves enormous time & space! */
void Compute_Total_Force( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace, list **lists )
Kurt A. O'Hearn
committed
int i;
list *bonds;
Kurt A. O'Hearn
committed
bonds = (*lists) + BONDS;
Kurt A. O'Hearn
committed
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp parallel default(shared)
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
{
int pj;
#ifdef _OPENMP
int j;
#endif
Kurt A. O'Hearn
committed
#ifdef _OPENMP
Kurt A. O'Hearn
committed
#pragma omp for schedule(static)
Kurt A. O'Hearn
committed
#endif
Kurt A. O'Hearn
committed
for ( i = 0; i < system->N; ++i )
{
for ( pj = Start_Index(i, bonds); pj < End_Index(i, bonds); ++pj )
Kurt A. O'Hearn
committed
if ( i < bonds->select.bond_list[pj].nbr )
{
if ( control->ensemble == NVE || control->ensemble == NVT || control->ensemble == bNVT)
{
Add_dBond_to_Forces( i, pj, system, data, workspace, lists );
}
else
{
Add_dBond_to_Forces_NPT( i, pj, system, data, workspace, lists );
}
}
Kurt A. O'Hearn
committed
}
#ifdef _OPENMP
#pragma omp barrier
#pragma omp for schedule(static)
for ( i = 0; i < system->N; ++i )
{
for ( j = 0; j < control->num_threads; ++j )
{
rvec_Add( system->atoms[i].f, workspace->f_local[j * system->N + i] );
}
}
#endif
}
}
void Validate_Lists( static_storage *workspace, list **lists, int step, int n,
Kurt A. O'Hearn
committed
int Hmax, int Htop, int num_bonds, int num_hbonds )
int i, flag;
list *bonds, *hbonds;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
/* far neighbors */
if ( Htop > Hmax * DANGER_ZONE )
{
workspace->realloc.Htop = Htop;
if ( Htop > Hmax )
{
fprintf( stderr,
"step%d - ran out of space on H matrix: Htop=%d, max = %d",
step, Htop, Hmax );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
workspace->realloc.num_bonds = num_bonds;
for ( i = 0; i < n - 1; ++i )
Kurt A. O'Hearn
committed
{
if ( End_Index(i, bonds) >= Start_Index(i + 1, bonds) - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > Start_Index(i + 1, bonds) )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
}
if ( flag > -1 )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, bonds), Start_Index(flag + 1, bonds) );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
}
if ( End_Index(i, bonds) >= bonds->num_intrs - 2 )
{
workspace->realloc.bonds = 1;
if ( End_Index(i, bonds) > bonds->num_intrs )
{
fprintf( stderr, "step%d-bondchk failed: i=%d end(i)=%d bond_end=%d\n",
step, flag, End_Index(i, bonds), bonds->num_intrs );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
/* hbonds list */
if ( workspace->num_H > 0 )
{
flag = -1;
workspace->realloc.num_hbonds = num_hbonds;
for ( i = 0; i < workspace->num_H - 1; ++i )
Kurt A. O'Hearn
committed
{
if ( Num_Entries(i, hbonds) >=
(Start_Index(i + 1, hbonds) - Start_Index(i, hbonds)) * DANGER_ZONE )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > Start_Index(i + 1, hbonds) )
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
}
if ( flag > -1 )
{
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d str(i+1)=%d\n",
step, flag, End_Index(flag, hbonds), Start_Index(flag + 1, hbonds) );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
}
if ( Num_Entries(i, hbonds) >=
(hbonds->num_intrs - Start_Index(i, hbonds)) * DANGER_ZONE )
{
workspace->realloc.hbonds = 1;
if ( End_Index(i, hbonds) > hbonds->num_intrs )
{
fprintf( stderr, "step%d-hbondchk failed: i=%d end(i)=%d hbondend=%d\n",
step, flag, End_Index(i, hbonds), hbonds->num_intrs );
Kurt A. O'Hearn
committed
exit( INSUFFICIENT_MEMORY );
Kurt A. O'Hearn
committed
static inline real Init_Charge_Matrix_Entry_Tab( reax_system *system,
control_params *control, int i, int j,
real r_ij, MATRIX_ENTRY_POSITION pos )
{
int r;
real base, dif, val, ret = 0.0;
LR_lookup_table *t;
switch ( control->charge_method )
{
case QEQ_CM:
//TODO: tabulate other portions of matrices for EE, ACKS2?
case EE_CM:
case ACKS2_CM:
Kurt A. O'Hearn
committed
switch ( pos )
{
case OFF_DIAGONAL:
t = &( LR
[MIN( system->atoms[i].type, system->atoms[j].type )]
[MAX( system->atoms[i].type, system->atoms[j].type )] );
/* cubic spline interpolation */
r = (int)(r_ij * t->inv_dx);
if ( r == 0 )
{
++r;
}
Kurt A. O'Hearn
committed
base = (real)(r + 1) * t->dx;
dif = r_ij - base;
val = ((t->ele[r].d * dif + t->ele[r].c) * dif + t->ele[r].b) * dif +
t->ele[r].a;
Kurt A. O'Hearn
committed
val *= EV_to_KCALpMOL / C_ele;
ret = ((i == j) ? 0.5 : 1.0) * val;
break;
case DIAGONAL:
ret = system->reaxprm.sbp[system->atoms[i].type].eta;
Kurt A. O'Hearn
committed
break;
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "Invalid charge method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
return ret;
}
static inline real Init_Charge_Matrix_Entry( reax_system *system,
control_params *control, int i, int j,
real r_ij, MATRIX_ENTRY_POSITION pos )
{
Kurt A. O'Hearn
committed
real Tap, dr3gamij_1, dr3gamij_3, ret;
Kurt A. O'Hearn
committed
ret = 0.0;
Kurt A. O'Hearn
committed
switch ( control->charge_method )
{
case QEQ_CM:
case EE_CM:
case ACKS2_CM:
Kurt A. O'Hearn
committed
switch ( pos )
{
case OFF_DIAGONAL:
Tap = control->Tap7 * r_ij + control->Tap6;
Tap = Tap * r_ij + control->Tap5;
Tap = Tap * r_ij + control->Tap4;
Tap = Tap * r_ij + control->Tap3;
Tap = Tap * r_ij + control->Tap2;
Tap = Tap * r_ij + control->Tap1;
Tap = Tap * r_ij + control->Tap0;
Kurt A. O'Hearn
committed
/* shielding */
Kurt A. O'Hearn
committed
dr3gamij_1 = ( r_ij * r_ij * r_ij +
system->reaxprm.tbp[system->atoms[i].type][system->atoms[j].type].gamma );
Kurt A. O'Hearn
committed
dr3gamij_3 = POW( dr3gamij_1 , 1.0 / 3.0 );
Kurt A. O'Hearn
committed
ret = ((i == j) ? 0.5 : 1.0) * Tap * EV_to_KCALpMOL / dr3gamij_3;
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
case DIAGONAL:
ret = system->reaxprm.sbp[system->atoms[i].type].eta;
break;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
default:
fprintf( stderr, "[Init_forces] Invalid matrix position. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
break;
default:
fprintf( stderr, "Invalid charge method. Terminating...\n" );
exit( INVALID_INPUT );
break;
}
return ret;
}
Kurt A. O'Hearn
committed
static void Init_Charge_Matrix_Remaining_Entries( reax_system *system,
Kurt A. O'Hearn
committed
control_params *control, list *far_nbrs,
sparse_matrix * H, sparse_matrix * H_sp,
Kurt A. O'Hearn
committed
int * Htop, int * H_sp_top )
{
Kurt A. O'Hearn
committed
int i, j, pj;
real d, xcut, bond_softness, * X_diag;
Kurt A. O'Hearn
committed
switch ( control->charge_method )
{
case QEQ_CM:
break;
Kurt A. O'Hearn
committed
H->start[system->N_cm - 1] = *Htop;
H_sp->start[system->N_cm - 1] = *H_sp_top;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
for ( i = 0; i < system->N_cm - 1; ++i )
Kurt A. O'Hearn
committed
{
H->j[*Htop] = i;
H->val[*Htop] = 1.0;
Kurt A. O'Hearn
committed
*Htop = *Htop + 1;
Kurt A. O'Hearn
committed
H_sp->j[*H_sp_top] = i;
H_sp->val[*H_sp_top] = 1.0;
Kurt A. O'Hearn
committed
*H_sp_top = *H_sp_top + 1;
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
H->j[*Htop] = system->N_cm - 1;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N_cm - 1;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
Kurt A. O'Hearn
committed
break;
case ACKS2_CM:
Kurt A. O'Hearn
committed
if ( (X_diag = (real*) calloc(system->N, sizeof(real))) == NULL )
{
fprintf( stderr, "not enough memory for charge matrix. terminating.\n" );
exit( INSUFFICIENT_MEMORY );
}
H->start[system->N] = *Htop;
H_sp->start[system->N] = *H_sp_top;
for ( i = 0; i < system->N; ++i )
{
H->j[*Htop] = i;
Kurt A. O'Hearn
committed
H->val[*Htop] = -1.0;
Kurt A. O'Hearn
committed
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = i;
Kurt A. O'Hearn
committed
H_sp->val[*H_sp_top] = -1.0;
Kurt A. O'Hearn
committed
*H_sp_top = *H_sp_top + 1;
}
H->j[*Htop] = system->N;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
for ( i = 0; i < system->N; ++i )
{
H->start[system->N + i + 1] = *Htop;
H_sp->start[system->N + i + 1] = *H_sp_top;
H->j[*Htop] = i;
Kurt A. O'Hearn
committed
H->val[*Htop] = -1.0;
Kurt A. O'Hearn
committed
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = i;
Kurt A. O'Hearn
committed
H_sp->val[*H_sp_top] = -1.0;
Kurt A. O'Hearn
committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
*H_sp_top = *H_sp_top + 1;
for ( pj = Start_Index(i, far_nbrs); pj < End_Index(i, far_nbrs); ++pj )
{
if ( far_nbrs->select.far_nbr_list[pj].d <= control->r_cut )
{
j = far_nbrs->select.far_nbr_list[pj].nbr;
xcut = ( system->reaxprm.sbp[ system->atoms[i].type ].b_s_acks2
+ system->reaxprm.sbp[ system->atoms[j].type ].b_s_acks2 )
/ 2.0;
if ( far_nbrs->select.far_nbr_list[pj].d < xcut &&
far_nbrs->select.far_nbr_list[pj].d > 0.001 )
{
d = far_nbrs->select.far_nbr_list[pj].d / xcut;
bond_softness = system->reaxprm.gp.l[34] * POW( d, 3.0 ) * POW( 1.0 - d, 6.0 );
H->j[*Htop] = system->N + j + 1;
H->val[*Htop] = MAX( 0.0, bond_softness );
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N + j + 1;
H_sp->val[*H_sp_top] = MAX( 0.0, bond_softness );
*H_sp_top = *H_sp_top + 1;
X_diag[i] -= bond_softness;
X_diag[j] -= bond_softness;
}
}
}
H->j[*Htop] = system->N + i + 1;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N + i + 1;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
}
H->start[system->N_cm - 1] = *Htop;
H_sp->start[system->N_cm - 1] = *H_sp_top;
for ( i = system->N + 1; i < system->N_cm - 1; ++i )
{
for ( pj = H->start[i]; pj < H->start[i + 1]; ++pj )
{
if ( H->j[pj] == i )
{
H->val[pj] = X_diag[i - system->N - 1];
break;
}
}
for ( pj = H_sp->start[i]; pj < H_sp->start[i + 1]; ++pj )
{
if ( H_sp->j[pj] == i )
{
H_sp->val[pj] = X_diag[i - system->N - 1];
break;
}
}
}
for ( i = system->N + 1; i < system->N_cm - 1; ++i )
{
H->j[*Htop] = i;
Kurt A. O'Hearn
committed
H->val[*Htop] = -1.0;
Kurt A. O'Hearn
committed
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = i;
Kurt A. O'Hearn
committed
H_sp->val[*H_sp_top] = -1.0;
Kurt A. O'Hearn
committed
*H_sp_top = *H_sp_top + 1;
}
H->j[*Htop] = system->N_cm - 1;
H->val[*Htop] = 0.0;
*Htop = *Htop + 1;
H_sp->j[*H_sp_top] = system->N_cm - 1;
H_sp->val[*H_sp_top] = 0.0;
*H_sp_top = *H_sp_top + 1;
sfree( X_diag, "Init_Charge_Matrix_Remaining_Entries::X_diag" );
Kurt A. O'Hearn
committed
break;
default:
break;
}
}
void Init_Forces( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
{
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int Htop, H_sp_top, btop_i, btop_j, num_bonds, num_hbonds;
Kurt A. O'Hearn
committed
real r_ij, r2;
real C12, C34, C56;
real Cln_BOp_s, Cln_BOp_pi, Cln_BOp_pi2;
real BO, BO_s, BO_pi, BO_pi2;
sparse_matrix *H, *H_sp;
list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
bond_data *ibond, *jbond;
bond_order_data *bo_ij, *bo_ji;
far_nbrs = *lists + FAR_NBRS;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
H = workspace->H;
H_sp = workspace->H_sp;
num_bonds = 0;
num_hbonds = 0;
btop_i = btop_j = 0;
for ( i = 0; i < system->N; ++i )
{
atom_i = &(system->atoms[i]);
type_i = atom_i->type;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
H->start[i] = Htop;
H_sp->start[i] = H_sp_top;
btop_i = End_Index( i, bonds );
sbp_i = &(system->reaxprm.sbp[type_i]);
ihb = ihb_top = -1;
Kurt A. O'Hearn
committed
Kurt A. O'Hearn
committed
{
Kurt A. O'Hearn
committed
}
for ( pj = start_i; pj < end_i; ++pj )
{
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
atom_j = &(system->atoms[j]);
flag = 0;
if ((data->step - data->prev_steps) % control->reneighbor == 0)
{
if ( nbr_pj->d <= control->r_cut )
{
if ( nbr_pj->d <= control->r_sp_cut )
{
flag_sp = 1;
}
}
else
{
flag = 0;
flag_sp = 0;
}
}
else if ((nbr_pj->d = Sq_Distance_on_T3(atom_i->x, atom_j->x, &(system->box),
nbr_pj->dvec)) <= SQR(control->r_cut))
{
if ( nbr_pj->d <= SQR(control->r_sp_cut))
{
flag_sp = 1;
}
nbr_pj->d = SQRT( nbr_pj->d );
flag = 1;
}
if ( flag )
{
type_j = system->atoms[j].type;
r_ij = nbr_pj->d;
sbp_j = &(system->reaxprm.sbp[type_j]);
twbp = &(system->reaxprm.tbp[type_i][type_j]);
Kurt A. O'Hearn
committed
H->j[Htop] = j;
Kurt A. O'Hearn
committed
H->val[Htop] = Init_Charge_Matrix_Entry( system, control, i, j,
r_ij, OFF_DIAGONAL );
/* H_sp matrix entry */
if ( flag_sp )
{
Kurt A. O'Hearn
committed
H_sp->j[H_sp_top] = j;
H_sp->val[H_sp_top] = H->val[Htop - 1];
++H_sp_top;
}
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
/* hydrogen bond lists */
if ( control->hb_cut > 0 && (ihb == 1 || ihb == 2) &&
nbr_pj->d <= control->hb_cut )
{
// fprintf( stderr, "%d %d\n", atom1, atom2 );
jhb = sbp_j->p_hbond;
if ( ihb == 1 && jhb == 2 )
{
hbonds->select.hbond_list[ihb_top].nbr = j;
hbonds->select.hbond_list[ihb_top].scl = 1;
hbonds->select.hbond_list[ihb_top].ptr = nbr_pj;
++ihb_top;
++num_hbonds;
}
else if ( ihb == 2 && jhb == 1 )
{
jhb_top = End_Index( workspace->hbond_index[j], hbonds );
hbonds->select.hbond_list[jhb_top].nbr = i;
hbonds->select.hbond_list[jhb_top].scl = -1;
hbonds->select.hbond_list[jhb_top].ptr = nbr_pj;
Set_End_Index( workspace->hbond_index[j], jhb_top + 1, hbonds );
++num_hbonds;
}
}
/* uncorrected bond orders */
if ( far_nbrs->select.far_nbr_list[pj].d <= control->nbr_cut )
{
Kurt A. O'Hearn
committed
r2 = SQR( r_ij );
if ( sbp_i->r_s > 0.0 && sbp_j->r_s > 0.0)
{
C12 = twbp->p_bo1 * POW( r_ij / twbp->r_s, twbp->p_bo2 );
BO_s = (1.0 + control->bo_cut) * EXP( C12 );
}
Kurt A. O'Hearn
committed
else
{
BO_s = 0.0;
C12 = 0.0;
}
if ( sbp_i->r_pi > 0.0 && sbp_j->r_pi > 0.0)
{
C34 = twbp->p_bo3 * POW( r_ij / twbp->r_p, twbp->p_bo4 );
BO_pi = EXP( C34 );
}
Kurt A. O'Hearn
committed
else
{
BO_pi = 0.0;
C34 = 0.0;
}
if ( sbp_i->r_pi_pi > 0.0 && sbp_j->r_pi_pi > 0.0)
{
C56 = twbp->p_bo5 * POW( r_ij / twbp->r_pp, twbp->p_bo6 );
BO_pi2 = EXP( C56 );
}
Kurt A. O'Hearn
committed
else
{
BO_pi2 = 0.0;
C56 = 0.0;
}
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
/* Initially BO values are the uncorrected ones, page 1 */
BO = BO_s + BO_pi + BO_pi2;
if ( BO >= control->bo_cut )
{
num_bonds += 2;
/****** bonds i-j and j-i ******/
ibond = &( bonds->select.bond_list[btop_i] );
btop_j = End_Index( j, bonds );
jbond = &(bonds->select.bond_list[btop_j]);
ibond->nbr = j;
jbond->nbr = i;
ibond->d = r_ij;
jbond->d = r_ij;
rvec_Copy( ibond->dvec, nbr_pj->dvec );
rvec_Scale( jbond->dvec, -1, nbr_pj->dvec );
ivec_Copy( ibond->rel_box, nbr_pj->rel_box );
ivec_Scale( jbond->rel_box, -1, nbr_pj->rel_box );
ibond->dbond_index = btop_i;
jbond->dbond_index = btop_i;
ibond->sym_index = btop_j;
jbond->sym_index = btop_i;
++btop_i;
Set_End_Index( j, btop_j + 1, bonds );
bo_ij = &( ibond->bo_data );
bo_ji = &( jbond->bo_data );
bo_ji->BO = bo_ij->BO = BO;
bo_ji->BO_s = bo_ij->BO_s = BO_s;
bo_ji->BO_pi = bo_ij->BO_pi = BO_pi;
bo_ji->BO_pi2 = bo_ij->BO_pi2 = BO_pi2;
/* Bond Order page2-3, derivative of total bond order prime */
Cln_BOp_s = twbp->p_bo2 * C12 / r2;
Cln_BOp_pi = twbp->p_bo4 * C34 / r2;
Cln_BOp_pi2 = twbp->p_bo6 * C56 / r2;
/* Only dln_BOp_xx wrt. dr_i is stored here, note that
dln_BOp_xx/dr_i = -dln_BOp_xx/dr_j and all others are 0 */
Kurt A. O'Hearn
committed
rvec_Scale( bo_ij->dln_BOp_s, -bo_ij->BO_s * Cln_BOp_s, ibond->dvec );
rvec_Scale( bo_ij->dln_BOp_pi, -bo_ij->BO_pi * Cln_BOp_pi, ibond->dvec );
rvec_Scale( bo_ij->dln_BOp_pi2,
-bo_ij->BO_pi2 * Cln_BOp_pi2, ibond->dvec );
rvec_Scale( bo_ji->dln_BOp_s, -1., bo_ij->dln_BOp_s );
rvec_Scale( bo_ji->dln_BOp_pi, -1., bo_ij->dln_BOp_pi );
rvec_Scale( bo_ji->dln_BOp_pi2, -1., bo_ij->dln_BOp_pi2 );
/* Only dBOp wrt. dr_i is stored here, note that
dBOp/dr_i = -dBOp/dr_j and all others are 0 */
rvec_Scale( bo_ij->dBOp,
-(bo_ij->BO_s * Cln_BOp_s +
bo_ij->BO_pi * Cln_BOp_pi +
bo_ij->BO_pi2 * Cln_BOp_pi2), ibond->dvec );
rvec_Scale( bo_ji->dBOp, -1., bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[i], bo_ij->dBOp );
rvec_Add( workspace->dDeltap_self[j], bo_ji->dBOp );
bo_ij->BO_s -= control->bo_cut;
bo_ij->BO -= control->bo_cut;
bo_ji->BO_s -= control->bo_cut;
bo_ji->BO -= control->bo_cut;
workspace->total_bond_order[i] += bo_ij->BO; //currently total_BOp
workspace->total_bond_order[j] += bo_ji->BO; //currently total_BOp
Kurt A. O'Hearn
committed
bo_ij->Cdbo = 0.0;
bo_ij->Cdbopi = 0.0;
bo_ij->Cdbopi2 = 0.0;
bo_ji->Cdbo = 0.0;
bo_ji->Cdbopi = 0.0;
bo_ji->Cdbopi2 = 0.0;
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
/*fprintf( stderr, "%d %d %g %g %g\n",
i+1, j+1, bo_ij->BO, bo_ij->BO_pi, bo_ij->BO_pi2 );*/
/*fprintf( stderr, "Cln_BOp_s: %f, pbo2: %f, C12:%f\n",
Cln_BOp_s, twbp->p_bo2, C12 );
fprintf( stderr, "Cln_BOp_pi: %f, pbo4: %f, C34:%f\n",
Cln_BOp_pi, twbp->p_bo4, C34 );
fprintf( stderr, "Cln_BOp_pi2: %f, pbo6: %f, C56:%f\n",
Cln_BOp_pi2, twbp->p_bo6, C56 );*/
/*fprintf(stderr, "pbo1: %f, pbo2:%f\n", twbp->p_bo1, twbp->p_bo2);
fprintf(stderr, "pbo3: %f, pbo4:%f\n", twbp->p_bo3, twbp->p_bo4);
fprintf(stderr, "pbo5: %f, pbo6:%f\n", twbp->p_bo5, twbp->p_bo6);
fprintf( stderr, "r_s: %f, r_p: %f, r_pp: %f\n",
twbp->r_s, twbp->r_p, twbp->r_pp );
fprintf( stderr, "C12: %g, C34:%g, C56:%g\n", C12, C34, C56 );*/
/*fprintf( stderr, "\tfactors: %g %g %g\n",
-(bo_ij->BO_s * Cln_BOp_s + bo_ij->BO_pi * Cln_BOp_pi +
bo_ij->BO_pi2 * Cln_BOp_pp),
-bo_ij->BO_pi * Cln_BOp_pi, -bo_ij->BO_pi2 * Cln_BOp_pi2 );*/
/*fprintf( stderr, "dBOpi:\t[%g, %g, %g]\n",
bo_ij->dBOp[0], bo_ij->dBOp[1], bo_ij->dBOp[2] );
fprintf( stderr, "dBOpi:\t[%g, %g, %g]\n",
bo_ij->dln_BOp_pi[0], bo_ij->dln_BOp_pi[1],
bo_ij->dln_BOp_pi[2] );
fprintf( stderr, "dBOpi2:\t[%g, %g, %g]\n\n",
bo_ij->dln_BOp_pi2[0], bo_ij->dln_BOp_pi2[1],
bo_ij->dln_BOp_pi2[2] );*/
Set_End_Index( j, btop_j + 1, bonds );
}
}
}
}
/* diagonal entry */
Kurt A. O'Hearn
committed
H->j[Htop] = i;
Kurt A. O'Hearn
committed
H->val[Htop] = Init_Charge_Matrix_Entry( system, control, i, i,
Kurt A. O'Hearn
committed
r_ij, DIAGONAL );
Kurt A. O'Hearn
committed
H_sp->j[H_sp_top] = i;
H_sp->val[H_sp_top] = H->val[Htop - 1];
Kurt A. O'Hearn
committed
{
Set_End_Index( workspace->hbond_index[i], ihb_top, hbonds );
Kurt A. O'Hearn
committed
}
Kurt A. O'Hearn
committed
Init_Charge_Matrix_Remaining_Entries( system, control, far_nbrs,
H, H_sp, &Htop, &H_sp_top );
Kurt A. O'Hearn
committed
H->start[system->N_cm] = Htop;
H_sp->start[system->N_cm] = H_sp_top;
/* validate lists - decide if reallocation is required! */
Validate_Lists( workspace, lists,
Kurt A. O'Hearn
committed
data->step, system->N, H->m, Htop, num_bonds, num_hbonds );
fprintf( stderr, "step%d: Htop = %d, num_bonds = %d, num_hbonds = %d\n",
data->step, Htop, num_bonds, num_hbonds );
void Init_Forces_Tab( reax_system *system, control_params *control,
Kurt A. O'Hearn
committed
simulation_data *data, static_storage *workspace,
list **lists, output_controls *out_control )
{
int i, j, pj;
int start_i, end_i;
int type_i, type_j;
int Htop, H_sp_top, btop_i, btop_j, num_bonds, num_hbonds;
int flag, flag_sp;
Kurt A. O'Hearn
committed
real r_ij, r2;
real C12, C34, C56;
real Cln_BOp_s, Cln_BOp_pi, Cln_BOp_pi2;
real BO, BO_s, BO_pi, BO_pi2;
sparse_matrix *H, *H_sp;
list *far_nbrs, *bonds, *hbonds;
single_body_parameters *sbp_i, *sbp_j;
two_body_parameters *twbp;
far_neighbor_data *nbr_pj;
reax_atom *atom_i, *atom_j;
bond_data *ibond, *jbond;
bond_order_data *bo_ij, *bo_ji;
far_nbrs = *lists + FAR_NBRS;
bonds = *lists + BONDS;
hbonds = *lists + HBONDS;
H = workspace->H;
H_sp = workspace->H_sp;
H_sp_top = 0;
num_bonds = 0;
num_hbonds = 0;
btop_i = btop_j = 0;
for ( i = 0; i < system->N; ++i )
{
atom_i = &(system->atoms[i]);
type_i = atom_i->type;
start_i = Start_Index(i, far_nbrs);
end_i = End_Index(i, far_nbrs);
H->start[i] = Htop;
H_sp->start[i] = H_sp_top;
btop_i = End_Index( i, bonds );
sbp_i = &(system->reaxprm.sbp[type_i]);
ihb = ihb_top = -1;
if ( control->hb_cut > 0 && (ihb = sbp_i->p_hbond) == 1 )
ihb_top = End_Index( workspace->hbond_index[i], hbonds );
for ( pj = start_i; pj < end_i; ++pj )
{
nbr_pj = &( far_nbrs->select.far_nbr_list[pj] );
j = nbr_pj->nbr;
atom_j = &(system->atoms[j]);
flag = 0;
flag_sp = 0;
if ((data->step - data->prev_steps) % control->reneighbor == 0)
{
if (nbr_pj->d <= control->r_cut)
{
if ( nbr_pj->d <= control->r_sp_cut )
{
flag_sp = 1;
}
}
else
{
flag = 0;
flag_sp = 0;
}
}
else if ((nbr_pj->d = Sq_Distance_on_T3(atom_i->x, atom_j->x, &(system->box),
nbr_pj->dvec)) <= SQR(control->r_cut))
{
if ( nbr_pj->d <= SQR(control->r_sp_cut))
{